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Abstract

Background: Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs)
significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show
suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative
analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by
leveraging these variants in a functional, regulatory context.

Results: We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and

gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated
with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical

disease relevance.

otherwise have been missed through GWAS.

and network methods approach to identify relevant genes and observe them in the context of overall genetic
control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique
SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative
analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and
PCBP2 with RNA binding activity and the gene ACVRIB were identified in network communities with validated

Conclusions: The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent
intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities
harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would
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Background

Chronic obstructive pulmonary disease (COPD) is charac-
terized by progressive airflow obstruction accompanied by
chronic inflammation. It is a major cause of morbidity and
mortality worldwide [1]. Although environmental expo-
sures such as cigarette smoking are risk factors, a genetic
component to susceptibility has been observed [2-5].
Multiple genome-wide association studies (GWAS) have
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identified loci associated with COPD susceptibility across
various populations [6—9]. However, most of these associ-
ations have small effect sizes, so there are likely additional
COPD genes to be discovered. Understanding the gene
regulatory implications of the significant and sub-
genome-wide significant (sub-threshold) GWAS variants
in lung tissue may identify genes and loci relevant to
COPD for future validation experiments.

Prioritization of previously identified genomic loci en-
hances the molecular understanding of complex disease
[10, 11]. Additionally, sub-threshold genetic loci may
play a role in complex diseases [12] such as COPD, as
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they likely carry a significant biological signal and may
reach significance in later higher powered studies. In-
creasing the power to identify additional associations
often requires a much larger sample size [13], which
greatly increases study expense. Integration with omics
data can provide insight into the regulatory effects of
these variants [12, 14, 15], without increasing sample
size. Expression quantitative trait locus (eQTL) analysis
tests the association between genetic variants and gene
expression and can point to relevant single nucleotide
polymorphisms (SNPs) and genes within GWAS loci
[15—-17] using the observation that trait-associated SNPs
are likely to be eQTLs/eSNPs [17] and/or have gene
regulatory implications [18].

In this study of genetic control of gene expression, we
performed eQTL analysis in lung tissue samples from
severe COPD cases and ex-smoker controls and inte-
grated the findings with results from a prior GWAS [8].
We used the Bayesian method Sherlock [19] to identify
genes having collective associations within the significant
and sub-threshold GWAS SNPs. To observe these genes
in the overall context of genetic control of gene expres-
sion, we constructed a bipartite network and identified
communities [20] harboring the Sherlock-derived genes.
We observed that some of these communities contained
differentially expressed genes and genes with CpG sites
differentially methylated by COPD status. This integra-
tion of previous omics studies hones in on the commu-
nities demonstrating greater relevance to COPD.

The central hypothesis of this study is that sub-
threshold GWAS SNPs, in addition to genome-wide sig-
nificant SNPs, both influence gene expression and confer
disease susceptibility through effects better observed
using network and integrative statistical methods. The
foundation of this study is the aggregation of the gene
expression signals from SNPs identified in prior GWAS,
both significant and sub-threshold, using regulatory evi-
dence via an ensemble Bayesian and network approach.
This integrative method extracts the additional genetic
and genomic signals contained in the sub-threshold
SNPs by combining evidence across genotyping, gene
expression and DNA methylation datasets and highlights
novel genes and loci within regions that may not have
been identified through GWAS. This motivates hypoth-
eses regarding the biological role of these findings in
disease and informs selection of targets for further func-
tional investigations.

Results

Gene expression data were available for lung tissue sam-
ples from 86 severe COPD cases (mean FEV; 26.4% pre-
dicted) and 31 controls with normal spirometry, all
Caucasians (Additional file 1: Table S1). There were no
significant differences between cases and controls by sex
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or age. The cases had higher lifetime smoking intensity
in pack-years and quit smoking on average 8.7 fewer
years in the past (p = 0.0006). We identified eQTLs using
the gene expression and imputed genotyping data and
integrated them with prior GWAS and omics studies
using an ensemble approach of statistical and network
methods (Fig. 1).

Using the lung tissue gene expression profiling and
imputed genotyping data from the cases and controls,
we performed cis- and trans-eQTL analysis (see the
“Methods” section). We identified 347,251 significant
cis-eQTL results (FDR <5%) out of 55,550,191 total
tests. Within these results, there were 250,312 unique
cis-eQTL SNPs (eSNPs) and 5878 unique eQTL genes
(eGenes, 4997 gene symbols) (Additional file 1: Table
S2). This represents 4.2% of the SNPs and 24% of the ex-
pression probes tested. The trans results contain 8519
significant results (FDR <5%), out of 146,665,850,054
total tests, with 6930 unique eSNPs and 451 unique
eGenes (434 gene symbols) (Additional file 1: Table S3).

We intersected the significant cis-eQTL results with the
GWAS at a suggestive level of significance (p < 10™%) [8]
and observed that 292 of these 1847 significant and sub-
threshold GWAS SNPs were eSNPs (4.3 fold enrichment,
hypergeometric p value <0.00001). The top intersection
results are shown in (Additional file 1: Table S4). Regional
genomic plots of significant cis-eQTLs (FDR <5%) for 5
of these 13 loci highlight the regulatory information for
the top eSNPs and SNPs in linkage disequilibrium (LD)
(Additional file 1: Figures S1-S5). Two of the eSNPs from
(Additional file 1: Table S4) are located within the
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Fig. 1 Graphical overview of the study methods and process. The
cis- and trans-eQTLs identified in lung tissue were integrated with
prior GWAS using Bayesian and network methods. The network
communities identified were interrogated for evidence of differential

gene expression and differential DNA methylation by COPD status
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associated eGene (rs1504550-IREB2 and rs2252518-
ACVRIB; Additional file 1: Figures S1 and S2). Two others
(rs12461383-C190rf54 and rs11852372-CHRNAS; Add-
itional file 1: Figures S3 and S4) are in promoter flanking
and transcription factor binding regions within DNase
hypersensitivity (DHS) sites. The last eSNP (rs151321-
SULT1A2; Additional file 1: Figure S5) is in LD (shaded in
red) with several SNPs located in regulatory regions. To ob-
serve overall genetic control of gene expression in a disease
context, we intersected all cis-eQTL results with the nom-
inally significant GWAS SNPs (p < 0.05) [8] and plotted the
p values from the two sets (Fig. 2). Each point in the plot
represents an eQTL result (eSNP-eGene pair); prior COPD
gene expression profiling results [21] are overlaid in color.
We observed that eQTLs with COPD GWAS associations
are generally not enriched for differentially expressed genes;
regions with sub-threshold GWAS p values (p <10™*) and
significant eQTL p values lack differentially expressed genes
(FDR < 5%). Therefore, we used additional statistical and
network methods to extract the signal in these results,
given this complex relationship between the disease and
the genetic control of gene expression.

We integrated the nominally significant cis-eQTLs
(p<107°) and trans-eQTLs (p < 107°) with prior GWAS
using the Bayesian method Sherlock [19], seeking genes
with collective associations across the significant and sub-
threshold GWAS results. The 438,536 SNPs common to
the eQTL, GWAS, and GWAS permutation data were the
basis for this integrative analysis. A total of 50 Sherlock re-
sults had p values < 107 (Table 1, Additional file 2: Table
S5). This p value threshold corresponds to a LBF
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(logarithm of Bayes factor) sum of 1.94. Of the 50 genes
identified, 13 were previously found in the intersection be-
tween cis-eQTLs and GWAS (p<10™*) results. Several
genes have been identified in previous COPD GWAS
studies. We repeated the Sherlock analysis using the
eQTL results from GTEx V7 (using the same p value
thresholds) and observed the results for these top 50
genes (Table 1). We further sought to place our 50
Sherlock-derived genes in the context of overall genetic
control of gene expression using network methods, since
co-regulated genes may have shared function. This
process has the potential to reveal additional COPD genes
of interest.

We constructed a bipartite network using the cis- and
trans-eQTLs with p value thresholds identical to those for
Sherlock (cis: p < 107 and trans: p < 107°). After all filter-
ing steps (see the “Methods” section), 171,490 eSNPs and
11,348 eGenes were used in the construction of the net-
work. The power-law nature of the degree distribution for
this network is heavy-tailed (Additional file 1: Figure. S6)
and similar to that seen in other bipartite eQTL networks
[20], suggesting a scale-free structure characterized by the
presence of hubs. We identified 250 communities within
this network and focused on the 14 that contain Sherlock-
derived genes (Table 2, Additional file 1: Table S6). We
also examined two communities that contained putative
interactors (HMGBI and CD79A) of genes near GWAS
loci from our previous study [21]. These differentially
expressed interactors were identified using gene expres-
sion profiling in lung tissue and in vitro, in vivo, and in
silico datasets that identified genes with evidence of
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Fig. 2 Plot of COPD GWAS p values vs. the cis-eQTL p values. Each point in the plot represents a cis-eQTL result with an rsID found in the prior
GWAS. GWAS p values (y axis) are plotted against the expression QTL p values (x axis). A vertical dotted line indicates the threshold of significance
(FDR < 5%) for the eQTL. Horizontal lines delineate genome-wide significant (red) and sub-threshold (blue) GWAS p values. The significant
(red; FDR < 5%) and nominally significant (blue; p <0.05) eGenes from gene expression profiling in COPD lung tissue are highlighted
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Table 1 COPD genes identified in the Sherlock analysis
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Gene symbol  Total LBF score  Sherlock  Differentially expressed probe  Differentially methylated site  GTEx V7 GTEx V7
p value (p <0.05) (p < 0.05, effect > 5%) (cis-only, LBF score)  (cis-only, p value)

MAPT 765 6.91E-07  Yes No 731 641E-07
LRRC37A4 746 6.91E-07  No No 2.13 1.8E-3
C170rf69 7.38 6.91E-07  Yes No 2.39 1.3E-3
IREB2 ~ 640 6.91E-07  No No 437 5.89E-05
C19orf54 " 545 553E-06 No No 501 1.79E-05
ACVRIB 540 553E-06  No Yes 477 2.82E-05
giF3cL” 445 1.94E-05 No No N/A N/A
TUFM * 4.29 249E-05  Yes No 531 8.97E-06
FAM13A 4.09 360E-05 No No 569 3.84E-06
PCBP2 397 443E-05 No No N/A N/A
Cyp2B7 " 387 567E-05 No No N/A N/A
SULTIAT " 3.81 6.08E-05  Yes No 5.38 8.97E-06
SuLTIA2 " 3.80 6.08E-05  Yes Yes 5.01 1.79E-05
TIGD2 358 7.88E-05 No No 248 1.10E-03
CHRNAS 337 1.05E-04 No No 5.27 1.15E-05
BZRAPIT 327 1.20E-04 No Yes —-0.20 7.28E-01
GPX8 ™ 325 120E-04  No No N/A N/A
TEKT3 3.19 1.31E-04 No No 0.00 1.59E-01
SNRPB 3.06 163E-04 No No 0.00 1.61E-01
ZNF652 3.03 1.69E-04 No No -0.02 2.69E-01
AHSA2 " 2.86 2.14E-04  No No 2.22 1.63E-03
CDH23 2.82 221804  No Yes 0.01 1.38E-01
NOP2 269 299E-04  No No N/A N/A
AASDH 2.68 3.06E-04 No No 245 1.14E-03
DAGLA 268 3.06E-04 No No N/A N/A
IF2712 " 265 324E-04  No No 290 5.98E-04
APIP 2.60 348E-04 No No 2.52 1.03E-03
AXINZ 2.59 355604  No No -0.04 4.10E-01
WDR47 249 4.20E-04  Yes No N/A N/A
C4orf33 241 474E-04 No No 1.68 3.71E-03
HNRNPAB 2.34 523E04 No No N/A N/A
GFPTI 233 524E-04  Yes No -0.02 2.04E-01
LOC644172 2.32 530E-04 No No N/A N/A
SNORD25 225 5.86E-04 No No N/A N/A
PPAT 2.23 6.06E-04  Yes No -0.03 3.22E-01
FBRSL1 2.23 6.08E-04 No No -0.09 5.90E-01
FSTL5 2.22 6.14E-04  No No N/A N/A
SMG6 2.18 6.44E-04 No Yes -0.01 1.85E-01
CHIAP2 2.09 758E-04  No No N/A N/A
RPL23A 207 7.77E-04  Yes No N/A N/A
Coorf74 " 206 7.85E-04  No No N/A N/A
CTSH 2.04 8.17E-04 No No 140 5.59E-03
UBE2J1 2.03 827E-04  Yes No N/A N/A
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Table 1 COPD genes identified in the Sherlock analysis (Continued)
Gene symbol  Total LBF score  Sherlock  Differentially expressed probe  Differentially methylated site  GTEx V7 GTEx V7
p value (p <0.05) (p < 0.05, effect > 5%) (cis-only, LBF score)  (cis-only, p value)
AEN 201 850E-04 No No 036 3.61E-02
cuLt 2.00 8.88E-04 No No -0.02 3.02E-01
DSP 2.00 891E-04 No No 1.51 4.77E-03
MYCN 197 9.32E-04 No No -0.04 4.13E-01
TRIM4 1.96 943E-04  Yes No 1.57 4.37E-03
ZNF57 1.94 9.64E-04 No No -0.02 2.16E-01
NARS2 1.94 9.74E-04  No No 2.89 6.10E-04

LBF logarithm of Bayes factor
*Gene identified in the cis-eQTL-GWAS intersection in (Additional file 1: Table S4)

interaction with one of the three genes (HHIB, FAMI13A,
and IREB2) implicated by in-depth functional studies at
COPD GWAS loci.

To validate the disease relevance of the communities,
we calculated the differential expression and differential
DNA methylation meta-analysis p values (see the
“Methods” section) for these 16 communities. Seven
communities were validated based on nominally signifi-
cant (meta-p < 0.05) differential expression and differen-
tial methylation results (Table 2). These communities
contain the Sherlock-derived genes CDH23, CHRNAS,
HNRNPAB, IREB2, PCBP2, ZNF652, ACVRIB, and
RPL23A (Figs. 3, 4, and 5 and Additional file 1: Figures
S7-S8) or the interactors HMGBI and CD79A

(Additional file 1: Figures S9-S10). There was significant
pathway enrichment (FDR g value < 0.05) using Consen-
susPathDB [22] for two validated communities (ID =
222:ACVRIB and ID = 135:CD79A) in Table 2 (Add-
itional file 1: Table S7), highlighting cGMP-PKG signal-
ing, focal adhesion, and actin and immune system-
related pathways. Six of the nine remaining communi-
ties, which were lacking joint evidence, had either nom-
inally significant differential expression or differential
methylation.

Discussion
Although many genome-wide significant loci from
COPD GWAS were not eSNPs in lung tissue, we found

Table 2 CONDOR communities that contain Sherlock-derived genes or putative COPD GWAS gene interactors

Community Sherlock or Total Sub- Total  Number of differentially Number of differentially Expression Methylation

D interactor gene(s) SNPs tsm(;zhold genes expressed genes methylated genes meta-p value meta-p value

98" HMGBI 143 0 4 3 1 2.26E-19 0.0028

113" CDH23 489 0 12 2 1 00184 4.95E-05

135 CD79A 1959 0 162 29 13 9.27E-11 427E-33

202" CHRNAS, HNRNPAB, IREB2, 203 57 17 4 1 0.0032 0.0026
PCBP2

218" ZNF652 410 0 47 8 3 0.0017 4.85E-06

222" ACVRIB 790 0 67 12 9 0.0003 823E-16

223" RPL23A 509 4 32 10 6 326E-06 8.82E-18

20" WDR47 476 0 6 3 0 0.0021 -

78" CHIAP2 631 0 18 3 1 0.0907 0.0019

131 AHSA2 C201f74 509 8 4 1 0 0.0634 -

161 SMG6 633 0 18 1 2 03723 338E-09

179" DSP 68 0 7 3 0 0.0060 -

181" FSTLS 475 0 23 4 1 0.0503 0.0069

187" SNRPB 178 0 14 1 2 0.5669 0.0001

210 CTSH 439 5 12 0 0 05741 -

249 TRIMA4 555 0 11 3 0 0.0957 -

*Communities with either significant differential expression or differential methylation (p < 0.05)
**Communities with both significant differential expression and differential methylation (p < 0.05)
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Fig. 3 Community 202 from CONDOR analysis that contains the Sherlock-derived genes CHRNAS5, HNRNPAB, IREB2, and PCBP2. Community genes are
listed in (Additional file 1: Table S6). (Red = SNP, yellow = SNP with GWAS p < 107% square = Sherlock gene, gray = gene, green = gene with differentially
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that the sub-threshold GWAS findings are enriched in
eSNPs. We also observed that eQTLs with GWAS asso-
ciations did not have eGenes significantly differentially
expressed in severe COPD cases vs controls, demon-
strating the complex nature of genetic control of gene
expression. We employed an ensemble approach involv-
ing Bayesian and network methods to investigate these
eQTL results, which yielded 16 relevant bipartite com-
munities. Based on the differential gene expression and/
or differential DNA methylation of all of the genes or
CpG sites within each community, we validated the dis-
ease relevance for 13 of these communities, highlighting
potential COPD genes within the significant and sub-
threshold GWAS results.

One of the seven communities (community 202) which
was validated by both differential expression and DNA
methylation contains two previously identified COPD
GWAS genes located in a genome-wide significant region:
IREB2 (iron responsive element binding protein 2) and
CHRNAS (cholinergic receptor nicotinic alpha 5 subunit)
[23-25]. The product of IREB2 is known to interact with
mRNA to influence translation or degradation. Two other
Sherlock-derived genes in community 202 also have puta-
tive RNA binding activity, PCBP2 (poly(rC) binding pro-
tein 2) and HNRNPAB (heterogeneous nuclear

ribonucleoprotein A/B). PCBP2 plays a role in mRNA sta-
bility, and it has been suggested that deregulation of this
stability may contribute to COPD pathogenesis [26]. A re-
cent study of breast cancer highlighted the regulatory role
of RNA binding by PCBP3 (paralog of PCBP1 along with
PCBP2) on mRNA stability and induction of epithelial-
mesenchymal transition (EMT) [27]. Additionally,
HNRNPAB has been shown to induce EMT [28], a poten-
tial contributor to airway disease [29, 30]. Together, this
suggests a role for this community in COPD pathogenesis.
Community 222 contains the Sherlock-derived gene
ACVRIB (activin A receptor type 1B), a gene identified in
a previous eQTL study in blood and sputum in COPD
[31]. ACVRIB was a sub-threshold finding in a GWAS of
lung function in COPD [32] and was identified in our
intersection of eQTLs with the sub-threshold GWAS of
case-control status. The genes in community 222 were
enriched for cGMP-PKG signaling, bacterial invasion of
epithelial cells, and focal adhesion pathways [33], with
possible relevance to COPD pathogenesis and exacer-
bations. Community 113 includes the Sherlock-
derived gene CDH23 (cadherin-related 23), involved
in cell-cell adhesion and perhaps EMT as a calcium-
dependent cell adhesion molecule [34]. This gene was
contained within sub-threshold loci in GWAS of lung
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differentially expressed probe)

Fig. 4 Community 222 from CONDOR analysis that contains the Sherlock-derived gene ACVR1B. Community genes are listed in (Additional file 1:
Table S6). (Red = SNP, yellow = SNP with GWAS p < 10~%, square = Sherlock gene, gray = gene, green = gene with differentially methylated site
(p <0.05 and effect > 5%), light blue = gene with differentially expressed probe (p < 0.05), and cyan = gene with differentially methylated site and

function decline [35], occupational asthma [36], and age
at smoking initiation [37]. DSP (desmoplakin) was in a
community (ID = 179) validated by differential expression
but not differential methylation. DSP has been identified
in a recent COPD GWAS meta-analysis [9] and in a study
of interstitial lung disease [38]. Identifying this gene,
which has only been highlighted in recent higher powered
studies, supports our hypothesis that sub-threshold SNPs
have the potential to confer disease susceptibility; genes in
communities 222 and 113 may also be found significant in
future GWAS.

The Sherlock analysis itself, prior to network integra-
tion, identified genes of interest that were not found
through the simple intersection of eQTL and GWAS re-
sults. One of these genes, MAPT (microtubule associated
protein tau), was previously found in a locus associated
with extremes of lung function [39] and was suggestive in
a recent COPD GWAS meta-analysis (p =4.5 x 107%) [9].
Genome-wide significant loci near MAPT were found to
be associated with pulmonary fibrosis [38, 40]. In our pre-
vious gene expression profiling study, we observed a
MAPT expression probe nominally differentially expressed
(p <0.05) in lung tissue of COPD cases vs. controls [21].
In the Sherlock analysis of the GTEx V7 results, we
observed robust replication, with high scores from GTEx

(LBF > 2.1) for eight of our top ten findings. Overall, 17 of
the 35 genes that overlap our top 50 Sherlock genes
attained a LBF of 1.94 or higher in the GTEx data. Trans-
eQTL results are not available in GTEx (see the
“Methods” section), preventing a complete replication of
our findings, as the trans-eQTLs contributed important
information to the COPD lung tissue Sherlock analysis. In
addition, seven of the COPD lung tissue Sherlock genes
were not included in the GTEx Sherlock input and eight
other genes were not available in GTEx V7 eQTL data.
Four genes in a complex region on chromosome 16 asso-
ciated with COPD in an exome array study [41] were identi-
fied in the Sherlock analysis and in the eQTL-GWAS
intersection: TUFM (Tu translation elongation factor, mito-
chondrial), EIF3CL (eukaryotic translation initiation factor 3
subunit C like), SULT1A1 (sulfotransferase family 1A mem-
ber 1), and SULTIA2 (sulfotransferase family 1A member
2). Nominal associations (p < 0.05) for SULT1A2 were found
in both previous gene expression profiling [21] and DNA
methylation profiling [42] studies; nominal results for only
gene expression were observed for SULTIAI and TUFM.
Two genes in the Sherlock results, CYP2B7 (cytochrome
P450 family 2 subfamily B member 7, pseudogene) and
C190rf54 (chromosome 19 open reading frame 54), are lo-
cated in another complex COPD locus on chromosome 19
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Fig. 5 Community 113 from CONDOR analysis that contains the Sherlock-derived gene CDH23. The central genes PSMCT and CTDSPL2 partially
overlap and are obstructed in the figure. Community genes are listed in (Additional file 1: Table S6). (Red = SNP, yellow = SNP with GWAS p < 10
~* square = Sherlock gene, gray = gene, green = gene with differentially methylated site (p < 0.05 and effect > 5%), light blue = gene

with differentially expressed probe (p < 0.05), cyan = gene with differentially methylated site and differentially expressed probe)

[7]. Further efforts will be required to determine which of
these genes is relevant for COPD pathogenesis.

In a previous gene expression profiling study [21], we
identified several putative interactors of three known
COPD GWAS genes (HHIP, FAMI13A, and IREB2). Com-
munities harboring two of these interactors were identified
in the current study. Both community 98 with HMGBI
(high-mobility group box 1) and community 135 with
CD79A (CD79a molecule) had evidence of differential ex-
pression and differential methylation. Additionally, there
may also be a role for HMGBI in the development of EMT
in airway epithelial cells [43].

Our study has several limitations. The omics datasets in
this study were generated using homogenized lung tissue,
so we could not determine the cellular specificity of the
eQTLs, differential expression, and differential methyla-
tion. Studies in single lung cell types will address this cel-
lular heterogeneity and provide validation of the findings.
Our study focused on severe COPD and was enriched for
subjects with emphysema and therefore may miss genes
relevant for milder disease or other COPD phenotypes
such as airway disease. Lastly, future integrative studies
using these datasets will explore in more detail the gene
regulatory impact of DNA methylation in lung tissue.

This study of the genetic control of gene expression in
human lung has revealed potential genes of interest co-
regulated with known COPD genes. The ensemble
approach using statistical and network methods also
pointed to specific genes in complex genomic regions
found through prior GWAS, and genes within loci that
would not meet strict thresholds for genome-wide
significance, thereby extracting additional information
from these results and supporting our hypothesis re-
garding the relevance of sub-threshold SNPs. We in-
tegrated three omics datasets, providing regulatory
characterization of significant and sub-threshold
GWAS variants, and highlighted genes for further
functional investigation that may be involved in
COPD pathogenesis. These genes would otherwise not
have been identified through GWAS and could poten-
tially meet the strict threshold for statistical signifi-
cance in larger GWAS in COPD.

Methods

Study subjects

We collected lung tissue samples from former smokers
undergoing thoracic surgery for lung transplantation,
lung volume reduction surgery, or lung nodule resection
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at three medical centers; all subjects quit smoking at least
1 month prior to surgery [21, 42]. Distant normal tissue
was sourced from lung nodule resection samples. The
COPD subjects had severe airflow obstruction, with GOLD
grade 3—4 spirometry (FEV1% predicted < 50% and FEV1/
FVC <0.7) and the controls had normal spirometry
(FEV1% predicted >=80% and FEV1/FVC =0.7). IRB
approval was obtained at the three centers (Brigham and
Women’s Hospital, Boston, MA; St. Elizabeth’s Hospital;
Boston, MA; and Temple University Hospital, Philadelphia,
PA), and subjects provided written informed consent.

eQTL analysis

Microarray expression profiling was available for 111 cases
and 40 controls [21] (GEO Series GSE76925). Of the
32,831 expression probes, 24,495 had genomic location in-
formation and were retained for integration with genotyp-
ing data. Genome-wide SNP genotyping data was
obtained from lung tissue DNA using the HumanOm-
ni2.5Exome-8 V1.0 BeadChip (Illumina, Inc., San Diego,
CA) as previously described [21]. After quality control, ge-
notypes were phased using SHAPEIT2 [44] and imputed
using IMPUTE2 [45, 46] with the 1000 Genomes Phase3
V5 reference. The analyses were performed using only
data from the Caucasian subjects. Data for markers with
an imputation info metric > 0.5 and minor allele frequency
>5% were retained for the 117 Caucasian subjects that
had both high-quality genotyping and gene expression
data (86 cases and 31 controls; Additional file 1: Table S8).
To account for population stratification, two principal
components (PC) based on the Tracy-Widom statistic for
the Caucasian population were retained [47]. Both cis-
and trans-eQTL analyses were performed using the R/Bio-
conductor package Matrix eQTL (version 2.1.1) [48]. A
total window size of 1 million bases was used for the cis
analysis (500 kb upstream and downstream from the
gene); trans analysis was performed genome-wide. This
analysis identifies associations between genotype dosage
and gene expression levels, adjusting for age, sex, pack-
years of smoking, and the two ancestry PCs. An iterative
method was used to determine the number of PCs for the
matrix of expression values to add as covariates to miti-
gate batch effects [21]; 13 PCs were included in the eQTL
analyses. An eQTL association result consists of an eGene
(microarray expression probe) and eSNP pair.

Integration using Sherlock

The Sherlock method performs genetic signature match-
ing using a Bayesian statistical framework [19]. The hy-
pothesis is that SNPs associated with expression of
disease-relevant genes are also likely to influence disease
risk and be identified through GWAS. Using Sherlock,
we integrated the cis- and trans-eQTLs with all results
from a published COPD GWAS [8]. Sherlock provides a
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total score for each gene, along with the score for each
of the individual eQTL contributions. This total score is
the sum of the LBFs (logarithm of Bayes factor) for each
of these contributions. For interpretation of individual
results, a value of 4.0 is typically required for signifi-
cance. To output a p value, we created permuted GWAS
results with similar linkage disequilibrium structure to
the GWAS using the set of 379 EUR genotypes available
in 1000 Genomes Phasel V3 [49]. Specifically, we ran-
domly permuted the case-control phenotypes 50 times
as recommended in the Sherlock method (190 cases and
189 controls) and applied Plink2 [50] to calculate associ-
ation p values for each iteration and used these results
as inputs for Sherlock. Only overlapping SNPs (loci with
rsIDs) present across the eQTL, GWAS, and permuta-
tion results were included in the analysis; minor allele
frequencies for these markers were obtained from 1000
Genomes data. In the ensemble analysis, we applied a p
value threshold of 107> to select a more significant set of
Sherlock-derived genes for downstream analysis. We
performed a replication of the Sherlock analysis using
the GTEx V7 lung tissue eQTL results [51]. Only the
GTEx markers found across the COPD GWAS [8] and
our permutation results were included in the analysis.
The GTEx project produced cis-eQTL results using a
window of 1 million bases upstream and downstream.
To align this Sherlock input with our study, we labeled
eSNPs located 500 kb to 1 million bases from the gene
transcription start site as trans-eQTLs.

Network construction

A bipartite network was constructed using the cis-
and trans-eQTLs. Network nodes are eGenes repre-
sented by their gene symbol annotation and eSNPs
represented by their rsIDs. Edges only connect eSNPs
to eGenes; no edges are present between pairs of
eSNPs or pairs of eGenes. Only eSNPs represented in
the GWAS were included in the network. Cis- or
trans-eQTLs with only a single edge between an
eSNP and eGene were excluded, since they did not
create additional connections in the network. We
identified communities within this bipartite network
using the R package CONDOR [20] and visualized
them wusing the R package igraph [52], with the
Fruchterman-Reingold algorithm. A differential ex-
pression meta-analysis p value was computed for each
community of interest. Specifically, the differential
expression p values from prior expression profiling
[21] for each expression probe annotated to genes in
the community were combined using Fisher’s method
via the R package metap. For differential DNA methy-
lation, we used a similar approach based on prior
methylation profiling results [42] for CpG sites anno-
tated to genes in the community. In order to focus
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on CpG sites more likely to be biologically relevant,
we required that the mean difference in methylation
between cases and controls be greater than 5%.

Regulatory annotation

The R package Sushi [53] was used with gene annotation
and regulatory information from Ensemble BioMart [54]
(CTCF Binding Site, TF binding site, Open chromatin,
Promoter and Enhancer information produced from EN-
CODE, Roadmap Epigenomics, and Blueprint projects
[55] for GRCh37) and DNasel Hypersensitivity Clusters in
125 cell types from ENCODE (V3) from the UCSC data-
base [56] (GRCh37). Linkage disequilibrium information
in these regional plots was produced using correlation 7*
values for SNP pairs from PLINK, using genotyping data
from 1000 Genomes Phase3 V5.

Additional files

Additional file 1: Supplemental Data. Supplemental supporting figures
(Figures S1-S10) and tables (Tables S1-S8). (PDF 4193 kb)

Additional file 2: Supplemental Table S5. Table containing Sherlock
results. (PDF 68 kb)
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