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Abstract

Over the last 15 years, development of chromosome conformation capture (3C) and its subsequent high-throughput
variants in conjunction with the fast development of sequencing technology has allowed investigators to generate
large volumes of data giving insights into the spatial three-dimensional (3D) architecture of the genome. This huge
data has been analyzed and validated using various statistical, mathematical, genomics, and biophysical tools in order
to examine the chromosomal interaction patterns, understand the organization of the chromosome, and find out
functional implications of the interactions. This review summarizes the data generated by several large-scale high-
throughput chromosome conformation capture studies and the functional implications obtained from the
data analyses. We also discuss emerging results on factors (both CCCTC binding factor (CTCF) related and
CTCF independent) that could contribute to looping interactions.
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Background
Recent advances in the field of chromosome conform-
ation capture (3C) and its subsequent advancements like
4C (chromosome conformation capture-on-chip), 5C
(carbon copy chromosome conformation capture), and
high-throughput chromosome conformation capture
(Hi-C) have greatly expanded the general understanding
of the three-dimensional spatial arrangement of the
genome. Consequently, the notion of a linear chromo-
somal distribution of various elements of the coding and
the non-coding genome is being revisited. This has
brought forth a new perspective on how genomic func-
tions such as replication, transcription, and DNA repair
would be investigated. Interestingly, the proximity of
various regions of the genome, which were otherwise
unintuitive, now opens new possibilities by which
various aspects of gene regulation would be studied in
future. Along with these, herein, we also discuss recent
data suggesting the role of telomeres in looping interac-
tions, both near and with interstitial regions of the
genome. In addition, factors other than the chromatin-

associated protein CCCTC binding factor (CTCF) that
could mechanistically contribute to the formation of
chromatin loops are also discussed.

The spatial organization of the genome from Hi-C
data
All to all chromosome interaction matrices reveal
compartments within genomes
Hi-C is a high-throughput NGS (next-generation sequen-
cing)-based version of chromosome conformation capture
assay commonly known as 3C [1]. It provides a global
view of all chromosomal interactions across the genome.
In such experiments, tagged nucleotides are used to
capture ligated products after restriction digestion and
appropriately diluted ligation. This is followed by sequen-
cing of the captured DNA fragments. The resulting reads
represent ligation of fragments both adjacent to each
other as well as far apart in the linear genome. A genome-
wide two-dimensional contact matrix is generated by
dividing the genome or each chromosome into bins of
equal distance and then aligning these reads into those
bins. Such matrices depict the collective average of the in-
teractions present within the population of cells used for
Hi-C studies [2]. There are several other 3C-based assays
to look at chromosomal interactions, but the advantage of
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Hi-C experiments is that they give a global view of all the
chromosomal interactions across the genome.
Though we obtain vast knowledge on the biology of

chromosomal interactions and genome organization from
Hi-C data, there are some drawbacks of the method as
well. The Hi-C data, for instance, does not provide much
quantitative information on the stability and strength of
chromosomal interactions. Most of the reported Hi-C
studies so far used asynchronized cells and did not
consider the variability that the different cell cycle stages
(particularly mitotic phase) would most likely introduce
into the chromatin conformation. Several reviews have
further described the technical aspects of these 3C-based
assays and complimentary microscopy techniques [3–5].
In 2009, Lieberman-Aiden et al. used karyotypically

normal GM06990 human lymphoblastoid cells to gener-
ate 8.4 million reads that uniquely aligned to the human
genome reference sequence in a Hi-C experiment; of
these, 6.7 million reads corresponded to long-range
contacts between segments of the genome > 20 Kb apart.
The long-range contact reads were used to construct
genome-wide contact matrices by dividing the genome
into 1-Mb-sized bins. This revealed an interesting pat-
tern comprising distinct intra- and inter-chromosomal
genomic compartments with contacts that were primar-
ily restricted within compartments [2].
A few years later, using Hi-C contact matrices of

bin sizes ranging from 20 to 100 Kb, about 1.7 billion
read-pairs of data were analyzed and genome-wide
formation of compartments or topologically associated
domains (TADs) in mouse and human-differentiated
and embryonic stem (ES) cells was reported [6]. This
was supported by work from Jin et al. who studied
chromatin interactions in response to transient TNF-
alpha signaling in IMR90 primary human fibroblasts
by performing Hi-C before and after 1 h TNF-alpha
treatment [7]. This gave about 3.4 billion uniquely
mapped paired-end reads from multiple biological

replicates, among which, approximately 1.4 billion
were intra-chromosomal reads.
A slightly different approach termed as in situ Hi-C

was used by Rao et al. where DNA-DNA proximity
ligation was carried out inside intact nuclei—in situ
ligation reduced the chances of spurious contacts due to
random ligation in dilute solution [8]. This also yielded a
higher resolution of up to 1 Kb bin size and 200- to
1000-fold more contacts. Using the high-resolution
contact matrices, it was possible to see many smaller
contact domains (sub-TADs) with higher intra-domain
contact frequency like the topologically associated
domains and other similar small domains discussed in
several Hi-C studies (Fig. 1) [6, 9, 10].

Contacts prevalent within chromosomes rather than
across chromosomes
Chromosomal interactions across the whole genome
noted that the average intra-chromosomal contact prob-
ability between pairs of loci in a chromosome decreased
consistently with increasing genomic distance (Fig. 2) [2].
Interestingly, this suggested polymer-like behavior of the
genome where the three-dimensional distance between
pairs of loci increases with increasing genomic distance.
Other studies on chromosomal organization via 3C and
fluorescence in situ hybridization (FISH) also made similar
observations [1, 11]. Even at distances greater than
200 Mb, the average intra-chromosomal contact probabil-
ity was always more than the average contact probability
between different chromosomes (inter-chromosomal), im-
plying the existence of chromosomal territories.
Intriguingly, probabilities of inter-chromosomal con-

tacts show that small, gene-rich chromosomes (chromo-
somes 16, 17, 19, 20, 21, and 22) preferentially interact
with each other. Furthermore, FISH studies also ob-
served these chromosomes to frequently localize to the
center of the nucleus [12, 13]. On the other hand,
another small but gene-poor chromosome, i.e., 18, was

Fig. 1 Schematic representation of how smaller TAD-like structures (sub-TADs) emerge from Hi-C contact matrix and how they might be forming
in three dimensions. Dynamic loop extrusion by factors like Cohesin might lead to looping and higher interactions in the extruded loci leading to
emergence of sub-TADs
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found to interact less with other chromosomes, and
FISH studies showed chromosome 18 tends to be
located near the nuclear periphery [14].

Genome topologies constructed from interaction matrices
Using principal component analysis, each chromosome
could be partitioned into two compartments (termed A
and B) such that loci within the same compartment had
correlated contact profiles. Through this correlation,
even loci belonging to different chromosomes were
assigned the same compartment, resulting in the whole
genome being divided into two spatial compartments
such that greater interactions occurred within than
across compartments [15].
It was observed that loci in compartment B had a

higher tendency for close spatial localization, suggesting
a relatively compact state of chromatin. On the other
hand, loci within compartment A showed significant
correlation with the presence of genes, higher expres-
sion, and chromatin accessibility (DNase I hypersensitiv-
ity) and were enriched for activating chromatin marks
(H3K36me3). Thus, compartment A could be associated
with open, accessible, and actively transcribed chroma-
tin. Together, these suggested open and closed chroma-
tin domains throughout the genome occupy different
spatial compartments in the nucleus.
At higher resolution (bin sizes less than 100 Kb),

highly self-interacting regions were found to emerge,
seen as triangles in the interaction matrix heat map [6].
These regions were termed as topological domains.
Topological domains were found to be bound by narrow
segments where the chromatin interactions appear to
end abruptly. Using a statistic termed directionality
index (DI), authors identified 2200 topological domains

in mouse ES cells with a median size of 880 Kb that
covered ~ 91% of the genome. DI models the difference
between a number of upstream and downstream interac-
tions at a given locus along a chromosome, and thereby
boundaries of topological domains were detected where
there was a significant shift from contact points oriented
with upstream vis-à-vis downstream bias. Also, as expected,
the frequency of intra-domain interactions was noted to be
higher than that of inter-domain interactions.

Boundary demarcations between distinct genome
topologies
Consistent with this, fluorescent in situ hybridization
(FISH) experiments revealed pairs of loci within a particu-
lar topological domain were closer in space than pairs of
loci in different topological domains in spite of similar
genomic distances between the loci [16]. The genomic
regions between the topological domains were defined as
either “topological boundary regions” or “unorganized
chromatin,” depending on their sizes (topological bound-
ary regions: median ~ 0 Kb, 76.3% of the regions < 50 Kb;
or unorganized chromatin: median ~ 560 Kb). Moreover,
the topological domains correlated with other described
components of the genome-like compartments A and B
[2], replication time zones [17, 18], and large organized
chromatin K9 modification (LOCK) domains [19]. A large
subset of the identified domain boundaries also appeared
to mark the transition between LAD (lamina-associated
domain) and non-LAD regions in the genome [20, 21].
An in situ Hi-C study using high-resolution contact

matrices revealed numerous relatively small contact
domains with higher intra-domain contact frequency [8]
like topologically associated domains or other small
domains discussed in other Hi-C studies [6, 9, 10].

Fig. 2 Frequency distribution of interactions (above cutoff of 10 units of interaction value for a pair of loci) with distance between the interacting
loci by analyzing intra-chromosomal Hi-C contact matrix of human chromosome 5 (analysis was done using normalized interaction values from
Hi-C data given in Rao et al. [8])
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Interestingly, the in situ Hi-C data revealed six nuclear
sub-compartments based on long-range interaction pat-
terns, both intra-chromosomal and inter-chromosomal,
using different approaches to clustering. On comparison
with compartment A/B [2], two of the six interaction pat-
terns correlated with loci in compartment A—termed as
sub-compartments A1 and A2. These loci were gene
dense, harbored highly expressed genes, enriched in acti-
vating chromatin marks, and were depleted at the nuclear
lamina- and nucleolus-associated domains (NADs). Rest
of interaction patterns correlated with loci in compart-
ment B with very different properties than A1 and A2.
The DI data used to identify TADs can vary substantially

depending on the sliding window size selected with small
window sizes giving smaller TADs and larger ones yielding
larger TADs which often nest groups of smaller domains
[22]. In fact, reanalysis of the original Hi-C data from
which megabase-sized TADs were identified [6] with a
different algorithm using smaller window sizes led to the
observation that larger conserved TADs tend to consist
entirely of smaller domains. These domains were found to
be stable across cell lines and persistent across resolutions,
with their boundaries having high enrichment in CTCF
binding and activating histone marks [22].

Genome compartments: fractal globule versus
topologically associated domain architecture
Chromosomal regions have been perceived as an “equilib-
rium globule”—a compact and densely knotted configur-
ation originally used to describe a polymer in a poor
solvent at equilibrium [23, 24]. An alternative model
proposes that polymers, including interphase DNA, can
self-organize into a long-lived, non-equilibrium conform-
ation described as “fractal globule” [25, 26]. This dense,
compact state is adopted by an untangled polymer as it
crumbles into a series of small globules in a “beads-on-a-

string” configuration. These beads act as monomers in
further rounds of spontaneous crumpling until only a
single globule of globules of globules remain.
Lieberman-Aiden et al. analyzed the scaling of contact

probability of fractal globule and found that it is close to
the contact probability observed from the Hi-C data [2].
The predicted scaling of three-dimensional (3D) distance
between pairs of loci based on the fractal globule model is
also close to the scaling reported by 3D FISH for genomic
distances between 500 Kb and 2 Mb [24]. At a scale of
several megabases, the data is consistent with a fractal
globule model for chromatin organization. Fractal globule
is an attractive model to define chromatin organization
since they are free of knots [27] and in principle consistent
with unfolding and refolding, for instance, during gene
regulatory events like activation and repression or pro-
cesses such as replication and recombination.

Functional implications of domain formation in
the genome
Domain boundaries associated with gene promoters and
transcription
A strong enrichment of CTCF binding sites was observed
at the TAD boundary regions [6], a property also common
with many known insulator or barrier elements [20, 28, 29].
Like a classical boundary element is known to stop the
spread of heterochromatin, a clear segregation of the
heterochromatin marker H3K9me3 modification was
observed within the TAD boundary regions (Fig. 3).
Several studies found TADs to be majorly conserved

across cell types in a given organism, suggesting TADs to be
stable structures of the 3D genome organization [6, 9, 30].
On the other hand, the smaller scale structures, like sub--
TADs, loops, and insulation neighborhoods, all show at least
partial variation between different cell lineages, with the vari-
ations in their organization appearing to be related with cell
type [8, 31–33]. The dynamic chromatin interactions varying

Fig. 3 Schematic representation to show that TAD boundary restricts the spread of heterochromatinization
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across cell types were also enriched for differentially
expressed genes [6, 34, 35].
These observations suggest that chromatin organization

as TADs is mostly stable across cell types, within which
specific structures and dynamic interactions can form to
play lineage and context-specific regulatory roles contribut-
ing to molecular events associated with differentiation [36].
Interestingly, the topological domains do not seem to

be the consequence of heterochromatin formation as the
detected boundaries were present in both pluripotent
cells and their differentiated progeny, i.e., before and
after heterochromatinization associated with cellular
differentiation. Importantly, this implied that the topo-
logical domains along with boundaries delineate the
endpoints of heterochromatic spreading [6].
Furthermore, enrichment of chromatin marks associ-

ated with promoters and gene bodies and depletion of
repressive chromatin marks were detected in the TAD
boundaries along with enrichment of housekeeping
genes, transcription start sites, and global run on se-
quencing signal in the boundaries. Together, these
suggest a high level of transcriptional activity associated
with boundary formation; however, whether boundary
formation was a cause or consequence of transcriptional
activity was not clear [6].

Point-to-point direct interactions—looping of chromatin
affects gene transcription
Interestingly, Hi-C data also revealed pairs of loci that
had significantly stronger interaction than any loci lying
between them. These were designated as loops, and can
appear within topology domains (discussed above), inde-
pendently and/or across TADs. Interestingly, chromatin
loops were not only conserved among human cell lines
but also found to be conserved between mouse and hu-
man cells [8]; chromatin looping interactions were sig-
nificantly enriched within cis-regulatory elements like
active promoters and enhancers while being depleted at
inactive TSS or regions with repressive chromatin marks
[6–8]. About 30% of chromatin loops brought promoters
and enhancers together (versus 7% expected by chance),
and genes with promoters associated with loops were
more expressed than genes whose promoters were not
associated with any loop (sixfold) [8]. Hi-C data analysis
also revealed 55% of distal enhancers interact with at
least one active promoter, confirming previous observa-
tions that promoters and enhancers often form complex
networks to regulate transcription [7, 37]. Interestingly,
a particular case study showed many genes without any
NF-kappaB (p65) binding site in promoters were in-
duced simultaneously by TNF-alpha (which is known to
trigger NF-kappaB signaling), possibly due to sharing of
overlapping distal interacting regions containing mul-
tiple NF-kappaB binding sites [7].

Somewhat intriguingly, there was little or no change in
promoter-enhancer looping interactions at a vast majority
of TNF-alpha-responsive enhancers on TNF-alpha treat-
ment. This suggested that in general, promoter-enhancer
contacts in untreated cells, which are the existing DNA
loops, did not alter upon transient activation or repression
of enhancers following treatment. Interestingly, chromatin
interactions involving cell type-specific enhancers are
variable between cell types indicating context-specific
interaction structures. This discrepancy between signal-
dependent and cell type-specific enhancers correlates with
H3K4me1 chromatin marks, which unlike H3K27me3
remain unchanged upon TNF-alpha treatment [7]. Other
studies have also observed pre-existing looping interac-
tions at several loci induced by p53, FOXO3, and gluco-
corticoid receptors [33, 38, 39].

Chromatin loops marked through CTCF binding
Analysis of ENCODE ChIP-seq data revealed loci with
chromatin loops were typically bound by the insulator
protein CTCF (86%) and the Cohesin subunits RAD21
(86%) and SMC3 (87%) [8]. This was consistent with
many reports which, using a variety of experimental ap-
proaches, suggest a role for CTCF and cohesion in medi-
ating DNA loops [28, 40, 41]. As many of these loops
demarcate domains, this observation was also concord-
ant with studies showing CTCF delimits structural and
regulatory domains [6, 42, 43]. Furthermore, most peak
loci possessed a unique DNA site containing a CTCF
binding motif to which all the three proteins (CTCF,
Rad21, and SMC3) bind. A vast majority of these motif
pairs present in the peak loci were oriented in a conver-
gent manner suggesting that a pair of CTCF motifs in
the convergent orientation might be required for the
formation of a loop [8].

Looping through telomere ends
Studies by Shay and Wright’s groups have demonstrated
that telomeres loop to specific loci (within 10 Mb)—a
phenomenon called TPE-OLD (telomere positioning
effect—over long distances). These studies showed that
genes close to the telomere were silenced in young pri-
mary cells with long telomeres, but were activated when
telomeres became short with cellular aging, an effect
that was reversed by re-elongation of telomeres upon
exogenous expression of the hTERT (human telomerase)
gene. Interactions of the telomere and sub-telomere with
chromosomal regions up to 10 Mb away from the
telomere end were revealed using modified Hi-C and 3C
experiments [44–47]. An important function of such
looping showed looping of chromosome 5 sub-telomere
resulted in heterochromatic silencing of the telomerase
gene in young primary cells [44]. Reports also suggest
that several telomere binding proteins like TRF2 and
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TIN2 can associate with interstitial telomere-like repeats
[48]. Such regions of repetitive DNA (often referred to
as interstitial telomeric repeats or ITS) may be crucial in
forming sub-telomeric loops by recruitment of telomeric
factors and structural proteins like Lamins to mediate
interaction with telomeres [49, 50].

Single cell Hi-C
Though Hi-C has given insights into the functional
chromosomal organization, one can argue that this is an
average, probabilistic view of chromosomal interactions
with much cell-to-cell variation, such that observed
domain organization and chromosomal interactions might
represent just a fraction of the cells. Some recent studies
attempt to address this with Hi-C at the single cell level.
In the first such report, pooled data recapitulated the
formation of TAD-like structures indicating these do-
mains are robust and form the basis of chromosome con-
formation in each cell [51]. However, the observed
variability in inter-domain contacts suggested significant
differences might be possible in the higher order folding
of chromosomes. Another single cell study concluded
that, though structures of individual TADs and chromo-
some loops vary substantially from cell to cell, the higher
order organizational signatures like the A/B compart-
ments are mostly retained [15, 52]. In addition, it was also
noted that LADs and active enhancers and promoters are
consistently organized genome-wide in every cell [52].

Other factors that nucleate chromatin interactions
in the 3D genome
The finding that a large fraction of loop boundaries are
bound by CTCF and the Cohesin subunits [8] led to
popularization of the extrusion model of loop formation.
In this model, a pair of factors (Cohesin), possibly with
motor function, can dynamically bind to DNA and move
along the DNA in opposite directions extruding the
chromatin to form loops in between until they dissociate
or stall at a boundary element (CTCF motif ) [53–55].
This model largely helps to understand the nested na-
ture of TADs and loops as well as the consequences of
CTCF motif deletion and inversion [36, 56]. However,
many convergent CTCF motifs exist that do not delin-
eate loops and, interestingly, a considerable fraction of
identified loops did not appear to possess any CTCF or
cohesion binding sites. Together, these suggest other
factors that could be involved in loop formation.
The fact that CTCF motifs can act as boundary

elements only when they are oriented in convergent
fashion indicate dimerization of CTCF is required for
stalling extruding cohesion loops. This indicates that in-
teractions between DNA binding proteins can possibly
play a role in mediating loop formation and chromatin
interactions by bringing distant genomic loci together.

Indeed, DNA binding proteins, YY1 and ZNF143, were
found to be enriched in loop loci [8]. Both homodimer
and heterodimer formation by proteins bound to distant
loci can lead to chromosomal looping interactions. In a
somewhat similar context, the telomere binding factor
TRF2 has already been implicated in mediating telo-
meric looping into the extra-telomeric interstitial regions
including the TERT loci [44]. The fact that TRF2 can
bind to many extra-telomeric sites throughout the
human genome implicates possibility of it mediating
other looping interactions as well [49, 50, 57, 58].
Apart from proteins, nucleic acids like lncRNAs and

secondary DNA structures might also contribute to
mediating chromosomal looping interactions. lncRNAs
called as activating/enhancer RNAs were found to bind
with mediator proteins (MED12 and MED1), and their
knockdown led to diminished looping between the
ncRNA loci and their target genes and a decrease in
mediator binding to the genes [59, 60].
Another interesting context that could support loop

formation in a CTCF-independent way comes from the
possible involvement of DNA secondary structures such
as G quadruplexes. G quadruplexes are typically formed
by a stretch of DNA with 3-guanines repeated at least four
times at close interval and are reported to be involved in
various biological functions across life forms [61–64]. The
formation of inter-molecular G quadruplexes raises the
possibility that such secondary structure DNA motifs can
bring together two distant genomic loci. G quadruplexes
have been found to be enriched in DNAse hypersensitive
(DHS) promoters as well as DHS cis-regulatory elements
[65, 66]. Half G quadruplexes (i.e., two runs of guanines,
both containing at least three consecutive Gs) were also
found to be enriched at the boundaries of these DHS
promoters and cis-elements but were depleted in the
vicinity of these sites. Computational analyses showed
such half G quadruplexes, one from DHS promoter and
one from DHS enhancer, could come together to form G
quadruplexes thereby bringing together promoters and
enhancers elements via looping [65]. Several studies have
reported enrichment of potential G quadruplex forming
sequences in fragile genomic regions associated with
pathogenic, cancer-causing breakpoints, and structural
variations [67–70]. The possible formation of chromo-
somal loops mediated by G quadruplexes could be one of
the contributing factors in increasing the fragility of such
chromosomal regions. Disruption of these DNA structure
motifs could give a clear idea regarding their roles in
mediating functional chromosomal interactions.

Disruption of TAD boundaries has deleterious
effects: clinical implications
Deletion of a TAD boundary, on the other hand, was
found to result in spreading of contacts across the
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deleted region and transcriptional misregulation [9]. Sev-
eral reports of TAD disruptions leading to pathological
outcomes have further consolidated TADs as functional
units. Structural variants disrupting CTCF-associated
TAD boundaries were noted to allow de novo promoter-
enhancer interactions and ectopic gene expression causing
limb malformation [71] and oncogenic transformation
[72]. Oncogenic chromosomal rearrangements were also
shown to induce aberrant oncogenic expression in AML
and medulloblastoma by causing enhancer trafficking
where an enhancer acts on a gene other than its normal
target due to genomic rearrangements like TAD disrup-
tions [73, 74]. Moreover, it was also reported from Hi-C in
prostate cancer cells that generation of smaller TADs due
to establishment of additional boundaries and particular
cancer-specific interactions within TADs could be associ-
ated with oncogenic transformation [75], and perturbation
of CTCF binding by aberrant DNA methylation could
cause oncogenic gene expression leading to gliomas by a
mechanism similar to “enhancer hijacking” [76]. These
pathogenic outcomes based on deregulated enhancer
function along with another reporter construct insertion
study [77] implicates that cis-regulatory elements can act
in a non-specific manner but within a given TAD in the
genome (Fig. 4).
Apart from how abrogation of TADs could lead to

pathogenic phenotypes, chromatin looping interactions,
even when not associated with a particular TAD, might
have significant clinical implications. Recently, an inter-
action has been reported that might be crucial for TERT
reactivation across different cancer types. The two cyto-
sine to thymidine single-point mutations in the TERT
proximal promoter (− 146 and − 124 bp from the trans-
lation start site), recurrent in several cancers, were found
to create a de novo consensus binding motif for ETS
transcription factor family [78–83]. GABPA (an ETS
transcription factor) was shown to bind to the mutant

promoter leading to a long-range chromatin interaction
with a region 300 Kb upstream of the TERT promoter.
As an effect of this binding, the promoter locus was
changed into an open, active chromatin region, eventu-
ally enhancing TERT expression which has been widely
associated with cancer development [84–86]. In another
study, it was shown that telomere looping at the 4q35
locus regulates expression of SORBS2, which is disrupted
in the age-associated genetic disease facioscapulohumeral
muscular dystrophy [45].

Conclusion
Many large-scale studies with vast Hi-C data have given
us important insights into possible mechanisms of loop-
ing, subsequent higher order chromatin organization,
and functional significance of domain formation and
chromosomal interactions in different processes includ-
ing transcriptional regulation. Given that these observa-
tions encourage a shift in perspective regarding how 3D
organization of the genome impacts biological processes,
it is of much interest to understand the underlying
mechanistic rules governing causation of the folded
architecture. Though cohesion and CTCF have been
implicated in the formation of chromosomal loops, these
proteins are absent in a fraction of loop loci (~ 10–14%)
suggesting a role of other factors in determining how
chromosomal interactions arise and how these contrib-
ute to specific cellular and context-specific functions.
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the same TAD and a TAD boundary restricts enhancer interaction and activity only to target genes within the same TAD
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