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Abstract

The analysis of population structure has many applications in medical and population genetic research. Such analysis is
used to provide clear insight into the underlying genetic population substructure and is a crucial prerequisite for any
analysis of genetic data. The analysis involves grouping individuals into subpopulations based on shared genetic
variations. The most widely used markers to study the variation of DNA sequences between populations are single
nucleotide polymorphisms. Data preprocessing is a necessary step to assess the quality of the data and to determine
which markers or individuals can reasonably be included in the analysis. After preprocessing, several methods can be
utilized to uncover population substructure, which can be categorized into two broad approaches: parametric and
nonparametric. Parametric approaches use statistical models to infer population structure and assign individuals into
subpopulations. However, these approaches suffer from many drawbacks that make them impractical for large
datasets. In contrast, nonparametric approaches do not suffer from these drawbacks, making them more viable than
parametric approaches for analyzing large datasets. Consequently, nonparametric approaches are increasingly used to
reveal population substructure. Thus, this paper reviews and discusses the nonparametric approaches that are available
for population structure analysis along with some implications to resolve challenges.
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Background

Population structure analysis is a major area of interest
within the field of genetics and bioinformatics. Population
structure is the grouping of individuals into subpopulations
based on observable characteristics, such as culture,
language, geographical region, and physical appearance [1].
Since patterns of genetic variation exist among people, gen-
etic research is concerned with characterizing the genetic
variations of populations and summarizing the relationships
between individuals from genetic data. Thus, the analysis of
population structure involves the identification of shared
genetic variations among individuals and, accordingly, the
grouping of similar individuals into subpopulations.

The inference of population structure from genetic
markers is very helpful in different applications, such as
genome-wide association studies (GWAS) [2-8] and
forensics [9]. In GWAS, case-control studies aim to scan
a large portion of the genome to identify the responsible
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genes for different diseases via associations between a
genetic marker and a disease. The presence of popula-
tion structure might result in spurious associations
between a marker and a disease, which occur when most
of the samples in the case group are from a specific
population. Subsequently, a marker appears significantly
more frequently in the case than in the control group,
so this marker is incorrectly considered to be associated
with the disease. Consequently, inferring population
structure is a prerequisite for association mapping
studies to avoid making spurious correlations or missing
genuine correlations, which would eventually reduce
false positive rates. In forensics, identifying population
substructure is a prerequisite for developing reference
panels. Reference panels are composed of a set of
genetic markers that can provide information on an
individual’s ancestry [10].

Populations are genetically structured into distinct
subpopulations [11]. Thus, the main research question is
how to assign # individuals using m genetic markers to
K subpopulations. Therefore, research in population
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structure addresses the following problems: how to de-
tect population structure, how to assign individuals to
their corresponding subpopulation, how to determine
the optimal number of subpopulations, how to reduce
the number of genetic markers needed for inference of
population structure, how to infer population structure
at a fine scale, and finally, how to handle large genetic
datasets [11-16].

Several methods can be utilized to uncover population
substructure. In general, these methods can be catego-
rized into two broad approaches: parametric and non-
parametric. Parametric approaches use statistical models
to infer population structure and assign individuals into
subpopulations. However, these approaches suffer from
many drawbacks that make them impractical for large
datasets. Such drawbacks include an intensive computa-
tional cost, genetic assumptions that must be held, and
sensitivity to sample size. In contrast, nonparametric
approaches have the advantage of efficient computa-
tional cost and no modeling assumption requirements,
making them more viable than parametric approaches
for analyzing large datasets.

Advances in DNA sequencing technology have pro-
vided genome-wide single nucleotide polymorphisms
(SNPs) that have enabled the study of genetic variation
at an unprecedented resolution. Detailed
characterization of genetic variations across all chro-
mosomes is possible using thousands of markers span-
ning the entire genome. Consequently, nonparametric
approaches are increasingly being used to reveal popu-
lation structure because of their great advantage of ef-
ficiency in handling high-dimensional genetic datasets.
Therefore, this paper reviews the literature on the
topic of population structure analysis with an em-
phasis on nonparametric approaches. The purpose of
this paper is to review the nonparametric methods
available to infer population structure from genetic
data. The paper comprises seven sections, including
this background section. It begins by outlining the
background information required to understand the
genetic data used for the analysis, along with the data
preprocessing. Then, an overview of the parametric
and nonparametric approaches of population structure
analysis is presented. Since nonparametric approaches
are more viable than parametric approaches for ana-
lyzing large datasets, this paper is concentrated on the
nonparametric approaches proposed to address the in-
ference of population structure from genetic data.
These approaches are categorized into dimension
reduction-based methods and distance-based methods.
Afterward, the paper discusses the literature on the
selection of informative markers. Finally, the paper
concludes with a comprehensive discussion of the lit-
erature. Figure 1 provides a general workflow for
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population structure analysis, where the input is the
genetic dataset and the output is the population sub-
structure as a set of subpopulations (i.e., clusters).

Genetic data

Data description

The most widely used markers to study the variation of
DNA sequences are SNPs [17]. SNPs take the form of
substitutions at a single base pair. An SNP occurs when
a single nucleotide from a DNA sequence differs at the
same position between individuals. Since SNPs arise in
certain populations only, they are very useful to differen-
tiate and analyze different populations. In practice, geno-
typing is an inexpensive process used to examine DNA
samples to determine which alleles appear in particular
loci. Therefore, genotyping produces a genotypic profile
of an individual as an unordered set of alleles that
appears at each locus. In this profile, the nucleotides are
encoded as two alleles, allele (A) and allele (B). There-
fore, three distinct genotypes can appear at a locus:
wild-type homozygous (AA), homozygous (BB), and
heterozygous (AB). Nevertheless, an SNP marker can be
encoded as 0, 1, or 2 according to the number of
reference alleles. Thus, it has the advantage of being
handled as a numerical variable that represents the
number of reference alleles.

Many datasets are available online to study population
structure. These datasets consist of genotyped markers
along with information about individuals, where the
population label is the most required information for
population structure analysis. The most well-known
datasets are HapMap [18-20], 1000 Genomes Project
[21], and Pan-Asian [22].

Data preprocessing

The preprocessing of genetic data is a necessary step to
examine the quality of data and determine which
markers or individuals can reasonably be included in the
analysis [23]. First, the quality of the SNP markers is
assessed, including the following:

— SNP call rate: SNP call rate is assessed to verify the
amount of missing data for each marker. SNP call
rate is the proportion of genotypes per marker with
non-missing data. Usually, a threshold of 95% is used
to remove these poorly genotyped SNPs. However,
the threshold should be set carefully to avoid remov-
ing important markers.

— Hardy-Weinberg equilibrium (HWE): HWE [12]
verifies the assumptions of Hardy-Weinberg. So, a
statistical test is applied to determine whether a
marker follows the Hardy-Weinberg equilibrium or
not. If a marker deviates from the equilibrium, then
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it may be because of genotyping errors; therefore, it
should be excluded.

— Minor allele frequency (MAF): MAF denotes the
frequency of a marker’s less frequent allele in a given
population. SNPs with low MAF should be
excluded, and a threshold of 1-2% is typically
applied.

For this assessment, PLINK [24] is typically used to
prune SNPs with a minor allele frequency greater than
5%, a missing rate less than 5%, and a Hardy-Weinberg
equilibrium (HWE) deviation p value of no less than 0.05.

Then, an assessment is performed to check the quality
of the individuals, which includes the following:

e Individual call rate: Individual call rate refers to
the proportion of genotypes per individual with
non-missing data. The missingness rate should
not exceed a certain threshold.

e Identity by descent (IBD): IBD [25] is calculated
to assess which individuals are related. It indicates
whether a pair of individuals has identical copies

of the same ancestral allele. The proportion of
shared alleles between a pair of individuals
determines the relation between them, such as
identical twins, first-degree relatives (i.e., full
siblings, parent—offspring), second-degree relatives
(i.e., half-siblings, uncle/aunt, nephew/niece), and
third-degree relatives (i.e., cousins). Related
individuals are excluded. In practice, relatedness
can be assessed using kinship coefficients estimated by
KING [26]. The KING command can be used to filter
out related individuals, where a threshold of a degree
relationship can be specified.

Parametric approaches

Parametric approaches use statistical models to infer
population structure and assign individuals into subpop-
ulations. These models are used to estimate population
parameters, such as allele frequency, for the population
and to calculate the likelihood that an individual belongs
to a specific subpopulation [12, 27]. Parametric ap-
proaches are based on several genetic assumptions about
the data, including the Hardy-Weinberg equilibrium
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(HWE) [12] for populations and the linkage equilibrium
(LE) [28] between loci within each population.

Essentially, a parametric approach infers ancestral pro-
portions for each individual and then groups individuals
who have similar patterns of inferred ancestry [16]. The
majority of parametric methods for population structure
analysis apply Bayesian inference. Bayesian inference is
applied to model the probability of observed genotypes
given the individual ancestry proportions and population
allele frequencies. These methods simultaneously assign
individuals to populations and identify populations from
genotype data based on the estimation of the allele
frequencies for each population [13, 29, 30].

STRUCTURE is a widely used parametric method that
relies on Bayesian MCMC [12, 29]. In particular, Markov
chain Monte Carlo (MCMC) based on Gibbs sampling is
implemented to estimate the posterior distribution of
allele frequency given the probability of ancestral popu-
lations of individuals and allele frequencies for all popu-
lations. Similar to STRUCTURE, PARTITION ([31],
BAPS/BAPS2 [32, 33], and GENELAND [34] take the
same modeling approach, which is based on an MCMC
algorithm, to sample the posterior distribution. More-
over, FRAPPE [35] and ADMIXTURE [30, 36] adopt the
same modeling approach but rely on maximizing the
likelihood using an expectation-maximization (EM)
algorithm instead of sampling the posterior distribution.
In contrast, L-POP [27] implements a maximum likeli-
hood approach based on latent class analysis (LSA),
whereas PSMIX [37] uses the same approach via the im-
plementation of a mixture model. Recently, fast STRUC-
TURE [38] was developed to improve the inference
model underlying STRUCTURE using a variational
Bayesian method. Variational methods optimize the
computation of posterior distributions and accelerate
the inference process.

Parametric approaches estimate the observed allele
frequency for each population using statistical inference
models that include some parameters and are based on
probability distribution. Before running these methods,
parameters must be set, such as the number of popula-
tions K, the most critical parameter. Accordingly, a para-
metric approach suffers from many drawbacks: First and
most importantly, the intensive computational cost
makes it impractical for large-scale datasets containing
thousands of individuals and thousands of markers [39—41].
Second, parametric approaches are developed on the basis
of the genetic assumptions of the Hardy-Weinberg equilib-
rium (HWE) and the linkage equilibrium (LE) between loci
within each population. As a result, they can be very
misleading when data assumptions cannot be verified or are
invalidated [35, 40]. In specific, LE does not hold when a
vast amount of genetic data are used [42]. Third, parametric
methods depend on an estimation of allele frequency that is
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sensitive to sample size. Consequently, allele frequency is
subject to high variations when using small samples repre-
senting each subpopulation [29, 42]. Lastly, parametric
methods are not applicable to analyzing large and highly
structured population datasets because of the limited num-
ber of K clusters that can be inferred [16].

Nonparametric approaches

Nonparametric approaches have been proposed to
address the problem of analyzing population structure
from genetic data in order to overcome the drawbacks
of parametric approaches. Nonparametric approaches
group individuals with similar genetic profiles together
[16]. In 2006, Liu and Zhao [40] proposed a two-stage
nonparametric strategy for analyzing population struc-
ture from genetic data with the goal of facilitating the
clustering process of the high-dimensional space of
genotype data. The first stage involves reducing the
dimensionality of the genotypic dataset using multivari-
ate analysis methods, such as singular value decompos-
ition (SVD) and principal component analysis (PCA).
The second stage involves applying clustering algorithms
to identify population substructure from the reduced
data. Another nonparametric strategy is to calculate the
pairwise distances between individuals and then perform
clustering. Both strategies have the advantage of identify-
ing a population structure and assigning individuals to
their corresponding subpopulation. Indeed, both strat-
egies provide a framework for population structure ana-
lysis from genetic data where different methods can fit
into that framework.

Nonparametric approaches have many advantages, in-
cluding an efficient computational cost and no modeling
assumption requirements. Nonparametric approaches
have a more efficient computational cost compared to
parametric approaches, making the former more viable
for analyzing large datasets [15]. Also, nonparametric
approaches do not make any assumption on genetic
data, which is a great advantage over parametric
approaches [43]. Therefore, when a large amount of
genotype data is available, nonparametric approaches are
preferred, as there is no need to verify the assumptions
of Hardy-Weinberg and the linkage equilibrium [44].
Moreover, since these approaches are not dependent on
estimating allele frequencies, they are unaffected when
the number of individuals representing a subpopulation
is small [42].

There are many nonparametric methods. Some methods
use a dimension reduction technique to reduce the dimen-
sions of genetic markers before conducting a clustering.
Other methods consider computing dis/similarity matrices
of the data where a clustering technique is applied. Thus,
nonparametric methods can be categorized into dimension
reduction-based methods and distance-based methods.
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Dimension reduction-based methods

Dimension reduction-based methods are based on map-
ping high-dimensional genetic data to low-dimensional
space and then applying clustering on the reduced di-
mensions. Principal component analysis (PCA) is the
most cited dimension reduction method used to detect
population structure based on genetic data [45, 46]. Typ-
ically, PCA’s scatterplots are used to visualize population
structure, where the most genetically isolated subpopula-
tions appear as distinct clusters of individuals. Most im-
portantly, PCA can be used to infer spatial population
genetic variations [47].

EIGENSTRAT\smartpca [39, 41] is the most used
PCA-based tool for detecting population structure. In
EIGENSTRAT\smartpca, eigenanalysis is used to detect
population substructure, such that eigenvalues and
eigenvectors capture the amount and axes of variation
among individuals, respectively. Thus, the principal
components (PCs), or eigenvectors, serve as the new
reduced dimensions. Similar to EIGENSTRAT\smartpca,
PLINK [24] and SNPRelate [48] can be used to apply
PCA on genetic datasets.

Principal components analysis

Given x = (xi1) 1<;<, I8 an nxp matrix, where 7 is

"1<i<p
the number of individuals and p is the number of SNPs.
Each entry x; ; corresponds to the genotype of individual
i for the marker /, coded as 0, 1, or 2 according to the
number of reference alleles present at the locus /.

To perform a principal components analysis (PCA) on
the matrix x, the data are first centered and normalized.
The column means y; and the observed allele frequency
of each marker p; are computed as follows:

DXl

Uy = P
:1+Z?:1xﬂ
P 24+2n

The new genotype matrix x is defined, such that each
entry is:
~ Xil—
% =t
pi(1-p;)

Based on the # x n covariance matrix, a singular vector
decomposition is computed as:

&))"

"=

Then, a set of principal components (PCy, PC,, ..., PC,,_ )
are generated [41, 49].
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A major issue with PCA applied to genetic data is how
to determine the number of significant principal compo-
nents, which is the number of principal components
needed to sufficiently describe a structure of the popula-
tion [13]. The EIGENSTRAT algorithm applies a variant
of eigenanalysis to determine the significant principal
components based on Tracy-Widom (TW) theory [50].
TW theory states that the distribution of the largest
eigenvalue approximately follows the TW distribution
when the dimension of a matrix is suitably large [51].
Hence, the TW distribution is used to determine the
probability of population substructure.

Principal components can be used as the axes of varia-
tions to provide a graphical overview of the population
structure. This graphical representation of the individuals
can highlight outlier individuals, or those which seem to
lie farther out than the others. Also, the set of significant
principal components can be used to cluster individuals
into genetically homogeneous subpopulations. For in-
stance, the Gaussian mixture model or K-means algorithm
can be applied to these principal components [52].

Clustering based on principal components

Different clustering algorithms can be applied to the princi-
pal components. Since the principal components are nor-
mally distributed, they fit well with the Gaussian mixture
model (GMM) clustering. Therefore, the PCAclust
algorithm [52] was proposed as three steps. The first step
involves applying PCA to the genetic data to compute the
principal components (PCs). Then, a set of significant PCs
is selected using the TW statistic at a 5% level. Finally, the
selected PCs are clustered using the GMM algorithm to
group the individuals into populations.

Moreover, Lee et al. [52] have proposed using PCA for
dimension reduction with three clustering algorithms: K-
means [53], the mixture model [54], and spectral cluster-
ing [55]. They used Gap statistics [56] and the Bayesian
information criterion (BIC) [57] to predict the optimal
number of clusters. In their experiment, they showed
that all three algorithms have comparable results. How-
ever, the different clustering algorithms showed different
degrees of sensitivity to noisy and non-informative
markers, which demonstrated the importance of selecting
a proper set of informative markers.

Furthermore, iterative pruning PCA (ipPCA) was pro-
posed to resolve the highly structured population that
appears as a conglomerate in PCA space. ipPCA does this
by iteratively applying PCA to decompose the structure of
the population. The ipPCA method has two versions,
TW-ipPCA [11] and EigenDev-ipPCA, [16], which differ
in their termination tests. Recently, HiClust-ipPCA [58]
was proposed as a variation of EigenDev-ipPCA wherein
hierarchical clustering is used.
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The PCA-based ipPCA method [11] has been pro-
posed to address the overlapping problem that appears
in PCA space when analyzing closely related subpopula-
tions. The ipPCA method can detect population struc-
ture at a fine scale by iteratively bisecting individuals
based on a termination test that checks whether a sig-
nificant structure is present. In ipPCA, PCA is applied,
and then a termination test is verified to decide whether
to advance to clustering or to stop. Clustering is per-
formed based on significant PCs. The number of signifi-
cant PCs depends on the number of individuals in the
dataset, such that later iterations require fewer PCs for
clustering than earlier iterations. Therefore, the new
bisected datasets will have fewer individuals. ipPCA iter-
ates until all individuals have been assigned to homoge-
neous subpopulations. At the end, the number of
subpopulations K is determined by counting all the ter-
minal nodes or subpopulations. ipPCA uses a fuzzy C-
mean algorithm to split the dataset into two parts.
Indeed, the iterative pruning nature of ipPCA offers a
logical way to present the degree of relatedness between
subpopulations.

ipPCA has two different versions: TW-ipPCA [11] and
EigenDev-ipPCA [16]. TW-ipPCA applies the TW test
as a termination criterion [41]. TW, as previously men-
tioned, is implemented in the EIGENSTRAT/smartpca
algorithm for detecting whether a significant structure is
present in the dataset. TW-ipPCA suffers from type 1
error when the sample size is large, and subsequently, a
group of individuals belonging to a single subpopulation
would be assigned into separate subpopulations.

EigenDev-ipPCA was proposed to address the spuri-
ous cluster problem using a heuristic called EigenDev as
a termination criterion [16]. EigenDev is inspired by the
Eigenvalue Grads heuristic [59], which is applied in the
signal processing domain. The EigenDev statistic is
based on the eigenvalues of the data matrix; it has no
hidden parameters and is more robust to type 1 error.
The application of EigenDev to ipPCA improves the
accuracy of individuals’ assignments and the estimation
of the number of subpopulations, especially when using
huge and complex datasets. EigenDev-ipPCA reveals
subpopulations that are subclusters of subpopulations
generated by TW-ipPCA.

HiClust-ipPCA [58] is another variation of ipPCA that
employs hierarchical clustering instead of fuzzy C-mean
within the ipPCA framework. In addition, a PCA-based fea-
ture selection is applied as a data preprocessing step. In
each iteration, PCA is applied to select the most
informative markers. Then, PCA is applied to the selected
markers to map them to a reduced space. Next, a hierarch-
ical clustering with Ward’s minimum variance is applied to
cluster data into two groups. This process is iterated until
satisfying a termination condition. The experiments
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illustrate that hierarchical clustering provides better cluster-
ing results than fuzzy C-mean and that the use of the fea-
ture selection technique is effective for reducing data
dimensions and increasing computational efficiency.

Other dimension reduction methods

There are many alternatives to PCA, such as singular
value decomposition (SVD) [60]. Liu and Zhao [40] used
SVD for dimension reduction and density-based mean
clustering (DBMC) for clustering. SVD is used because
it is efficient for a large matrix of markers and individ-
uals. DBMC was proposed as a variant of K-means that
can determine the number of clusters automatically,
because K-means requires the number of clusters to be
given. The similarity between individuals is measured
using Cosine similarity. The performance of DBMC was
compared with K-means and the mixture model [40],
and it was found that the mixture model and DBMC
performed better than K-means. Another alternative of
PCA is multi-dimensional scaling (MDS), which uses a
similarity matrix between the individuals instead of the
data matrix to create axes of variation [61].

Table 1 describes the nonparametric dimension
reduction-based methods in terms of dimension reduction
and/or proximity measure, clustering technique, and the
package/tool if it is available.

Distance-based methods

Distance-based methods are based on computing the pair-
wise similarities/distances between individuals. The allele-
sharing distance (ASD) [44, 62] is a measure proposed for
determining the genetic proximity between each pair of
individuals. Distance-based methods usually apply a clus-
tering on the ASD matrix to infer population structure.
For instance, allele-sharing distance and Ward’s minimum
variance hierarchical clustering (AWclust) [42, 44] applies
an agglomerative hierarchical clustering to ASD, while
Spectral Hierarchical clustering for the Inference of Popu-
lation Structure (SHIPS) [43] uses divisive clustering.
Furthermore, NETVIEW [63] reveals the hierarchy of
population substructures based on a representation of the
genetic data as a network of individuals connected by
edges representing the ASD between each pair. Iterative
neighbor-joining tree clustering (iNJclust) [64] performs a
graph-based clustering on a neighbor-joining (NJ) tree.
Table 2 describes the distance-based methods in terms of
the proximity measure, clustering technique, and available
package/tool.

Allele-sharing distance
For clustering genetic data, allele-sharing distance (ASD)
is used to identify closely related and distantly related
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Table 1 Dimension reduction-based methods of population structure analysis

Reference Dimension reduction Distance matrix Clustering Tool/package
Patterson at el. (2006) [41] PCA (TW) - - EIGENSTRAT/smartpca [82]: Perl
Liu at el. (2006) [40] SVD Cosine similarity Density-based mean -

clustering (DBMCQ)
Lee at el.(2009) [52] PCA (TW) - Spectral clustering -

(K-means, mixture model)
Intarapanich at el. (2009) [11] PCA (TW) Euclidean distance Fuzzy C-means TW-ipPCA [83]: MATLAB
Limpiti at el.(2011) [16] PCA (EigenDev) Euclidean distance Fuzzy C-means EigenDev-ipPCA [83]: MATLAB
Amornbunchornvej at el. (2012) [58] PCA ASD Ward's clustering -

pairs of individuals. ASD is similar to identity by state
(IBS) metric [25].

Given x = (x;) is a n x p matrix where 7 is the

1<i<n
1<l<p
number of individuals and p the number of SNPs. Each
entry x; ; corresponds to the genotype of individual i for
the marker /. Then, the ASD between individuals i and j
at locus /, denoted as D,(i, j), is defined as follows:

0 if same genotype
Di(i,j)=1¢1 if one common allele
2 if no common allele

Therefore, the total distance between individuals i and
j can be calculated as:

p

- }72(&(% )

=1

D(i, j) for each iand j € [1,#]

or as

for each iand j € [1,n]

1 p
D0 =13 s
=1

where x; ;, x; ; are the individuals’ genotypes, coded as 0,
1, or 2 according to the number of reference alleles
present at the locus I. The closer the pair of individuals
are, genetically, the smaller the value of D(j, j).

Using the function D(i,j) to quantify the distance
between each pair of individuals i and j, a distance
matrix can be formed by combining the information for all

pairs of individuals. The distance matrix, = (D;;) 1 <;<,; »

1<j<n
Table 2 Distance-based methods of population structure a]nalysis

is a squared matrix of # x n, where n is the number of
individuals.

Based on ASD, a similarity measure can be inferred to
measure the similarity between individuals i and j at
locus [, denoted as S(i, j), where:

1 )4
- E 2 {xll x,,| for each iand j e [1,#]
=

Clustering based on ASD
Distance-based clustering methods use the ASD matrix
as an input to group individuals into populations.
AW clust, SHIPS, NETVIEW, and iNJclust all distance-
based clustering methods, are summarized in Table 2.
AWclust [42, 44] is a distance-based population structure
exploration method. The first step of AWclust is to con-
struct the ASD matrix between all pairs of individuals in
the sample. The second step is to apply hierarchical cluster-
ing to infer clusters of individuals from the ASD matrix
using Ward’s minimum variance algorithm [65, 66].
AWclust uses gap statistics [56] to select the optimal num-
ber of subpopulations K. The employment of gap statistics
is computationally intensive as it involves an iterative statis-
tical inference process [67]. To deal with the slow speed of
calculating gap statistics, AWclust limits the number of
inferred K to be 16 at maximum [67]. The execution of
AWclust slows down dramatically when using a larger
number of SNPs due to the increase in the size of the ASD
matrix [67]. Deejai et al. [67] found that AWclust performs
well only with a small number of SNP markers and in indi-
viduals with low diversity (ie, the number of inferred
subpopulations K is small), and thus, it is not suitable for

Reference Clustering

Tool/package

Gao at el.(2007) [44]

Bouaziz at el. (2012) [43]
Neuditschko at el.(2012) [63]
Limpiti at el. (2014) [64]

Ward's minimum variance algorithm
Spectral clustering (GMM)
Super paramagnetic clustering (SPC)

Neighbor-joining (NJ) tree-based clustering

AWCclust [84]: R package
SHIPS [85]: R package
NETVIEW [86]: MATLAB
iNJclust [87]: C++
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performing large-scale population genetic analysis. The
application of AWclust on HapMap project phase 1 [18]
provided good results. It successfully differentiated the four
ethnic populations in the dataset: African, European, Han
Chinese, and Japanese individuals [44].

SHIPS [43, 68], or Spectral Hierarchical clustering for
the Inference of Population Structure, is a distance-
based method for inferring the structure of populations
from genetic data. SHIPS applies a divisive strategy of
hierarchical clustering followed by a pruning procedure
to investigate population structure progressively. SHIPS
constructs a binary tree to represent the substructure of
a population using spectral clustering. Spectral cluster-
ing is applied to a pairwise distance matrix to divide a
population into two subpopulations, and this is iterated
for each of the two subpopulations. ASD is used within
SHIPS; however, SHIPS can be used with any similarity
matrix. SHIPS applies a pruning procedure along with
gap statistics to determine the optimal number of sub-
populations. A pruning procedure provides all possible
clustering results. Thus, it allows a fast calculation of the
gap statistics that requires all the clustering results of
specified numbers of clusters. Moreover, because calcu-
lating gap statistics is time consuming, SHIPS applies a
version of gap statistics that is less precise but has better
experimental performance in estimating the optimal K.
Experiments have involved applying SHIPS on two data-
sets: HapMap project phase 3 [19] and Pan-Asian [22].
These experiments have shown that SHIPS can accur-
ately assign individuals to clusters with relatively low
computational cost and estimate the number of clusters
as well [43, 68]. In addition, SHIPS is quite robust such
that several applications of SHIPS algorithm on the same
dataset produce the same clustering result.

NETVIEW [63] is an analysis pipeline that combines a
network-based clustering method with a visualization
tool to infer fine-scale population structure. NETVIEW
is composed of three key steps: distance matrix calcula-
tion, network construction and clustering, and network-
based visualization. NETVIEW first calculates the ASD
matrix that represents the relationships between all indi-
viduals in the dataset. Then, the ASD matrix is used to
construct a population network using super paramag-
netic clustering (SPC) [69]. In this network, nodes repre-
sent individuals, edges represent the relationship
between a pair of individuals, and the thickness of edges
represents the genetic distance. SPC is based on com-
puting the K-nearest neighborhood to produce a cluster
relationship matrix and a hierarchical tree of clusters.
Specifically, SPC is implemented as Sorting Points Into
Neighborhood (SPIN) [69, 70], which employs the Potts
Hamiltonian model [71] to identify the number and size
of clusters, known as cluster stability. The problem with
SPC is how to specify the number of the nearest
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neighborhood an individual can have. Based on this
number, NETVIEW produces clusters at optimal thresh-
olds of genetic distance. The result of this algorithm
provides a hierarchical clustering of individuals. How-
ever, NETVIEW uses a network-based visualization to
present the population structure at a very fine scale,
where highly interconnected individuals identify subpop-
ulations. The empirical study in [63] involved applying
NETVIEW on Human and Bovine HapMap datasets.
The study demonstrated that NETVIEW could assign
individuals to their corresponding subpopulations effect-
ively and showed the genetic relatedness of individuals
within their populations at a very fine scale.

iNJclust [64], or iterative Neighbor-Joining tree clus-
tering, is an iterative application of graph-based cluster-
ing on a neighbor-joining (NJ) tree. The algorithm starts
by computing the ASD matrix from the data. Then, an
NJ tree is constructed based on the ASD matrix. Next,
the algorithm performs a graph-based clustering to
bisect the NJ tree into two subtrees. For each subtree, a
new NJ tree is constructed based on the ASD matrix
that contains only individuals within that subtree. The
process of bisecting the NJ trees to create new subtrees
is iterated until all subtrees become homogenous. The
algorithm determines whether the cluster is homoge-
neous based on the fixation index. The fixation index
(Fst) is a measure of genetic population substructure
used to examine the overall genetic divergence among
subpopulations [72]. The construction of the NJ tree
starts with all individuals as the leaf nodes. Then, the
pair of nodes that are nearest to each other are merged.
The merging process is repeated until all nodes are
merged into the tree. The distance between nodes is
measured using the minimum evolution criteria [73]
based on the ASD. For NJ tree clustering, the NJ tree is
split into two subtrees by cutting the edge between the
two nodes with the longest length. iNJclust assigns the
individuals into populations and estimates the optimal
number of populations. The clustering result of iNJclust
is a binary tree, where each leaf node represents a popu-
lation of a set of individuals, and the tree structure
represents the relationships between populations. The
experimental results of applying iNJclust on real and
simulated data have indicated that iNJclust yields a
reasonable estimation of the number of populations, a
robust assignment of individuals, and a meaningful
representation of relationships among populations with
the binary tree [64].

Selection of informative markers

Given that a large number of genetic markers can be
used to infer population structure, reducing the number
of markers is often desirable for efficient structure iden-
tification. In such settings, selecting ancestry informative
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markers (AIMs) aims to identify the minimum set of
markers required to derive population structure and to
reduce the genotyping cost. Selecting informative
markers can be accomplished by using supervised or un-
supervised methods. Supervised methods rely on prior
knowledge of the ancestry of the individuals.

Informativeness for assignment ([,,) [74] is a super-
vised measure that computes mutual information based
on allele frequencies and relies on self-reported ancestry
information from individuals. In contrast, PCAIM [15] is
an unsupervised algorithm proposed to identify a set of
informative markers that captures the structure of a
population. It does not demand prior information about
the ancestry/origin of individuals. The PCAIM algorithm
applies PCA to determine markers that are correlated
with the significant principal components and then
assigns a score to each marker. Then, the algorithm
returns the top scoring markers that correlate well with
the top few eigenvectors. The algorithm is efficient in
selecting the informative markers. It is computationally
fast and suitable for large datasets.

The performance of I, and PCAIM in selecting inform-
ative markers has been evaluated in [15] and was found to
attain comparable results; in addition, a considerable over-
lap was found between the selected markers. The overlap-
ping was expected since PCAIM ranks markers based on
how well they can reproduce the structure of the dataset,
whereas I,, determines which markers are most likely to be
associated with major clusters in the dataset. Therefore,
PCAIM selects either the same markers or markers that
are in high linkage disequilibrium (LD) with markers
selected using the I,, measure.

The selection of informative markers could potentially
suffer from redundant markers. Typically, redundancy
exists due to the correlation among markers that are in
the LD region. To select a minimal set of informative
markers, a redundancy removal step should be applied
after the initial markers selection step to avoid redun-
dancy and determine the final set of AIMs.

In the literature, two different methods have been pro-
posed to filter out redundant markers. The first method
deals with the problem as a Column Subset Selection
Problem, which is a well-known problem in linear alge-
bra [75]. In [75], the algorithm Greedy QR [76, 77] is
employed to select the minimally correlated subset of
markers. The algorithm essentially works as an iterative
process to pick up the uncorrelated markers. This
algorithm has an implementation in MATLAB, and it
can run efficiently in a shorter amount of time using
thousands of markers. On the other hand, the redun-
dancy removal problem can be resolved via the cluster-
ing technique. In particular, a clustering-based strategy
was employed in [14] to minimize the number of
markers to the most informative and uncorrelated ones,
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which was inspired by [78] in data analysis. In simpler
terms, the strategy applies a clustering technique to clus-
ter markers into K clusters and then returns one repre-
sentative marker for each cluster. In [14], the Cluto
toolkit [79] was used with default parameters for cluster-
ing using a cosine similarity matrix. The advantage of
applying clustering to identify redundant markers is that
it returns K lists of markers. Within each list, the
markers are interchangeable, thus providing some flexi-
bility in choosing any informative marker that falls into
the same cluster. In contrast, the first method just
returns one set of non-redundant markers. Although the
two approaches of redundancy removal had comparable
performance, clustering was slightly more accurate but
was five times slower than the first method [14].

Discussion

Nonparametric approaches are increasingly being used
to reveal population structure because of their great
advantages of efficiency in handling high-dimensional
genetic datasets [74]. Due to the high dimensionality of
genetic data, it is imperative to reduce the dimensions of
the data before clustering. In the literature of population
structure analysis, PCA is employed as a dimension
reduction technique for two purposes. The first purpose
is feature extraction, where PCA is applied to transform
the data to low-dimensional space where clustering will
be performed. The second purpose is feature selection,
where PCA is applied to select the informative genetic
markers. To accomplish this, PCA is applied to a covari-
ance matrix of genetic markers, and then the genetic
markers that are well correlated with significant princi-
pal components are selected.

PCA is considered computationally efficient and
performs well in detecting the genetic structure of popu-
lations. However, it is also argued that PCA not be effi-
cient when used with correlated markers that naturally
arise in any genetic data, especially in densely genotyped
data. The problem is that a large number of redundant
and correlated markers may mask the real structure of
data. In practice, with large genotype data, there are
linked markers due to linkage disequilibrium (LD) [28],
which is considered dependent and redundant, and this
may seriously distort the results of PCA. Moreover,
dimension reduction methods, like PCA, consider the
complete markers of the dataset to produce only one
subspace, in which the clustering can then be performed.
However, an issue would arise when the correlation
between markers or the relevance of markers are signifi-
cant for some clusters (i.e., populations) but not for
complete datasets. Consequently, this issue can be
resolved by subspace clustering. Subspace clustering
computes multiple subspaces, where a different set of
features is selected for each subspace. Then, individuals
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are clustered differently in each subspace according to
the relevance of markers to describe those individuals.
Subspace clustering may be a significant solution, infer-
ring the population structure at a very fine scale.

Many distance-based methods have been developed to
resolve the problem of clustering individuals into sub-
populations. These methods have utilized different clus-
tering techniques that required a matrix of pairwise
distance/similarity between individuals. Allele-sharing
distance (ASD) is widely used for this purpose. In [80], it
is shown that the ASD between individuals from
different subpopulations is always larger than that of
individuals from the same subpopulations. Moreover,
calculating the ASD for many SNP markers allows dif-
ferentiation of the populations through the accumulated
effect of SNP loci. However, distance assessment using
ASD between individuals becomes increasingly meaning-
less as dimensionality increases. As with increasing the
number of SNPs, the distances of the individual to its
similar individuals and dissimilar individuals tend to be
almost the same. Individuals appear almost alike because
of correlated SNPs, which are considered “redundant,”
while ASD treats each marker independently. Therefore,
the identification of correlated markers might improve
the inference of population structure from high-
dimensional genetic data. Filtering those markers before
calculating ASD could contribute to more accurate clus-
tering results, as achieved within HiClust-ipPCA [58].

The clustering techniques used to identify the population
genetic substructure can be categorized into partitional
clustering and hierarchical clustering. Partitional clustering
produces a flat clustering which divides the data into a pre-
specified number of clusters K (e.g., K-means [81], DBMS
[40], Lee’s [52]). In contrast, hierarchical clustering pro-
duces a hierarchy of clusters (e.g, AWclust [44], SHIPS
[43], NETVIEW [63], ipPCA [11, 16, 58], iNJclust [64]).
Hierarchical clustering is preferable over partitional cluster-
ing in the context of population structure analysis. This is
because it produces multiple nested partitions instead of
one partition, which allows the choice of different partitions
according to the desired level of similarity. Most import-
antly, a fine-scale population substructure can be obtained
using hierarchical clustering because of the clustering’s
ability to capture data at different levels of granularity.

A major challenge in population structure analysis is
the estimation of the optimal number of subpopulations
(i.e., clusters). Gap statistics [56] have often been applied
to determine the optimal number of clusters. However,
gap statistics is computationally intensive and impracti-
cal for highly structured genetic datasets that comprise a
large number of clusters. Some clustering methods can
implicitly determine the optimal number of clusters—for
instance, ipPCA [11, 16, 58], where the number of clus-
ters is represented by the number of leaf nodes of the
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binary tree constructed by iterative applications of PCA.
However, determining the number of populations as a
single number is not practical and may have no
biological meaning when there are hierarchical levels of
population structure (i.e., subpopulations within popula-
tions). Furthermore, the researcher must be able to con-
trol the level of granularity to uncover the substructure
of the population. Overall, these provide insights into
the importance of presenting the clustering result as a
hierarchy whereby the researcher can visually determine
the optimal level of separation from the number of
major clusters in the dendrogram. The dendrogram
serves as a visual means for both understanding the
structure of the data and selecting a reasonable number
of clusters.

Conclusion

The analysis of population structure is used to obtain a
clear insight into the underlying genetic population sub-
structure and is a crucial prerequisite for any analysis of
genetic data, such as genome-wide association studies,
to eventually reduce false positive rates, and for forensics
to develop reference panels that provide information on
an individual’s ancestry. Single nucleotide polymor-
phisms (SNPs) are the most widely used markers to
study the variation of DNA sequences between popula-
tions. Data preprocessing is a necessary step to assess
the quality of the data before analysis, including the as-
sessment of the call rates of both SNPs and individuals,
minor allele frequency, and relatedness between individ-
uals, where a threshold is set to eliminate SNPs/individ-
uals that do not meet that threshold. Additionally, the
selection of ancestry informative markers (AIMs), which
are the minimal set of markers required to derive popu-
lation structure, is considered important in preprocess-
ing to improve the accuracy of clustering results.

After preprocessing, several analysis methods, includ-
ing parametric and nonparametric, are used. Parametric
approaches are impractical for large datasets because of
their intensive computational cost, genetic assumptions
that must be held, and sensitivity to sample size. In con-
trast, nonparametric approaches have the advantage of
efficient computational cost with no modeling assump-
tion requirements, making them more viable than
parametric approaches for analyzing large datasets. Non-
parametric approaches can be categorized into dimen-
sion reduction-based and distance-based methods. On
the one hand, dimension reduction techniques are used
to reduce the dimensions of genetic markers before con-
ducting a clustering. The most used dimension reduc-
tion technique is principal components analysis (PCA),
as it is implemented in EIGENSTRAT\smartpca. On the
other hand, distance-based methods include computing
dis/similarity matrices of the data where the clustering
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method is applied, such as AWclust, SHIPS, NETVIEW,
and iNJclust. In these methods, similarity is measured
using allele-sharing distance (ASD). ASD is a measure to
determine how genetically close each pair of individuals is.

All in all, as evident in the challenges introduced by
the ever-growing sizes and complexity of genetic data-
sets, accurate and efficient analysis methods are increas-
ingly desirable to take full advantage of these available
genetic datasets.
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