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Computational analysis of mRNA
expression profiling in the inner ear reveals
candidate transcription factors associated
with proliferation, differentiation, and
deafness
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Abstract

Background: Hearing loss is a major cause of disability worldwide, impairing communication, health, and quality of
life. Emerging methods of gene therapy aim to address this morbidity, which can be employed to fix a genetic
problem causing hair cell dysfunction and to promote the proliferation of supporting cells in the cochlea and their
transdifferentiation into hair cells. In order to extend the applicability of gene therapy, the scientific community is
focusing on discovery of additional deafness genes, identifying new genetic variants associated with hearing loss,
and revealing new factors that can be manipulated in a coordinated manner to improve hair cell regeneration.
Here, we addressed these challenges via genome-wide measurement and computational analysis of transcriptional
profiles of mouse cochlea and vestibule sensory epithelium at embryonic day (E)16.5 and postnatal day (P)0. These
time points correspond to developmental stages before and during the acquisition of mechanosensitivity, a major
turning point in the ability to hear.

Results: We hypothesized that tissue-specific transcription factors are primarily involved in differentiation, while those
associated with development are more concerned with proliferation. Therefore, we searched for enrichment of
transcription factor binding motifs in genes differentially expressed between the tissues and between developmental
ages of mouse sensory epithelium. By comparison with transcription factors known to alter their expression during
avian hair cell regeneration, we identified 37 candidates likely to be important for regeneration. Furthermore, according
to our estimates, only half of the deafness genes in human have been discovered. To help remedy the situation, we
developed a machine learning classifier that utilizes the expression patterns of genes to predict how likely they are to
be undiscovered deafness genes.

Conclusions: We used a novel approach to highlight novel additional factors that can serve as points of intervention
for enhancing hair cell regeneration. Given the similarities between mouse and human deafness, our predictions may
be of value in prioritizing future research on novel human deafness genes.
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Background
Hearing and balance are fundamental processes that are
essential for communication and for orientation within
space. The inner ear is composed of the auditory system,
which is responsible for hearing, and the vestibular sys-
tem, which is responsible, in part, for balance. While
these systems display extensive similarities, there are also
structural and functional differences. The organ of Corti
in the cochlea is unique to the auditory system and con-
tains the sensory epithelium responsible for hearing. In
contrast, the vestibular system contains five organs: the
three semicircular canals lined with cristae sensory epi-
thelium that detect angular acceleration by fluid motion,
and the saccule and utricle, which contain the macula
sensory epithelium that can sense linear acceleration due
to gravity. The development of the inner ear requires a
complex dynamic process to produce the final sensory
organ with both hearing and balance capabilities [1].
The mouse has long served as a model for studying

human inner ear structure and function, in part because
of the ability to breed and select offspring with desired
traits, including those affecting hearing and balance [2].
More recently, the similarities between the genomes,
and the ability to manipulate the mouse phenotype by
gene-targeted mutagenesis and genome editing, have
reaffirmed the mouse as an ideal vehicle for studying hu-
man auditory and vestibular dysfunction [3, 4]. As a re-
sult, mouse inner ear development has been studied in
detail on a molecular level [5, 6]. This includes the eluci-
dation of transcriptional pathways that govern the differ-
entiation of the otocyst towards sensory or nonsensory
regions during early development (reviewed in [7]). A
number of temporal and spatial triggers of development
and maturation have been characterized, including the
molecular controls on patterning, hair bundle height,
and numbers of stereocilia. Information about the active
transcriptional pathways has laid the groundwork for es-
tablishing the nature of the early and late developmental
pathways of the inner ear. Mutations in some of these
critical developmental genes are now known to lead to
defects in the mouse [8] and human inner ear and to
cause deafness [9].
Regeneration after cellular damage shares some similar-

ities with normal organ development. In birds, regener-
ation of hair cells involves proliferation of nearby
epithelial supporting cells, which then differentiate to
form replacement hair cells and supporting cells [10, 11].
However, while mature mammalian vestibular organs are
also able to regenerate at least a subpopulation of hair
cells after damage [12–14], the adult cochlea is incapable
of any regeneration. It should be noted that there is some
evidence that the cochlea may contain supporting cells
with the ability to form new hair cells in very young ani-
mals [15] or upon misexpression of Atoh1 [16]. Given the

limitations in the mammalian systems, the resemblance of
the auditory sensory epithelia and cochlea between birds
and mammals [5], and the ability of birds to regenerate
hair cells in the cochlea and vestibule, it is relevant to
compare the gene expression profiles of the mammalian
and avian inner ears. To this end, we applied systemic
transcriptomic approaches to decipher the regulatory
pathways of the auditory system and make relevant com-
parisons to the avian transcriptome.
Sensorineural hearing loss most commonly results

from degeneration of cochlear hair cells. As mentioned,
if these are lost through damage or the natural aging
process, they are not replaced. Gene therapy could po-
tentially be used to induce hair cell regeneration [17].
For many tissues, reprogramming and regeneration is
achieved by coordinated manipulation of multiple fac-
tors. Initial evidence shows this approach might be suc-
cessful in the cochlea. In embryonic and neonatal mouse
cochlear tissue, ectopic expression of ETV4, TCF3,
GATA3, MYCN, or ETS2 in combination with ATOH1
yielded more hair cell-like cells than did overexpression
of ATOH1 alone [18, 19]. The efficacy of these interven-
tions is partial, rendering the search for other transcrip-
tion factors (TFs) that can be manipulated to enhance
this process extremely relevant. As the number of TFs in
human is estimated to be in the range of a few thou-
sands [20], one cannot perform an exhaustive experi-
mental search on all possible manipulations of TFs and
their combinations. Instead one should focus its efforts
on TFs that are more likely to participate in tissue differ-
entiation. In the aforementioned studies [18, 19], the
manipulation was performed on TFs that have conserved
binding sites near ATOH1 on the POU4F3 gene. Here,
we suggest yet another method to identify these candi-
date TFs, which focus on the concordance between TFs
involved in tissue identity in early stages of development,
and those participating in avian hair cell regeneration.
The main purpose of this research was to elucidate

transcriptional pathways that govern auditory versus ves-
tibular functions or control cell cycle exit. We report the
characterization of transcriptional profiles for mouse
cochlea and vestibule sensory epithelium at embryonic
day (E)16.5 and postnatal day (P)0, time points chosen
because they correspond to developmental stages before
and during the acquisition of mechanosensitivity [21].
Genes differentially expressed between the tissues, and
between the developmental ages, could be associated
with the activity of specific TFs. Our analysis identified a
number of regulators that are already known, while
others are novel. The identified regulators were com-
pared with TFs already known to alter their expression
during avian hair cell regeneration [22, 23], allowing us
to detect TFs involved either in proliferation or in differ-
entiation of the inner ear. To our knowledge, this is the
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first study in the inner ear to integrate expression data
from a developmental study in the mouse with data
from a regeneration experiment in the chick in the
search for TFs governing regeneration.
In addition, our analysis identified a number of candi-

date genes as involved in inner ear defects. For this pur-
pose, we developed a machine learning classifier, which
utilized the expression patterns of genes to predict their
probabilities of being yet undiscovered deafness genes.
Our predictions allow for prioritizing of candidate genes
by their probability to be involved in deafness. The de-
velopment of a classifier for deafness genes is another
unique contribution of this study. Our predictions of
novel deafness genes and of TFs with a role in regener-
ation can be helpful in advancing gene therapy research.

Results
Tissue source and age are associated with differences in
transcription
Sensory epithelia were dissected from the cochlea and
vestibule of mice at two stages of development, embry-
onic day 16.5 (E16.5) and postnatal day 0 (P0). This was
followed by RNA-seq, as previously described [24, 25].
Our analysis identified 39,178 Ensembl genes (including
non-coding genes and pseudogenes), 15,206 of which
have at least one read per million in three or more of
the samples. A principal component analysis (PCA) plot
demonstrated four well separated groups (Fig. 1). The
first principal component (PC1) explained almost half
the variance and is associated with the age of the sample,
whereas PC2 explained about a quarter of the variance
and is associated with the originating tissue (F test on
associations, p values = 1.99 × 10−5, 1.31 × 10−5, respect-
ively). Additional PCs were not associated with either
tissue or age (p value ≥ 0.05). The E16.5 genes displayed
a lower intra-group variability than at P0. This might re-
flect differences in the rate of development of the

different organs between mice from the same population
in the period between E16.5 and P0.
We used linear mixed models to estimate the percentage

of variance that can be attributed to age, tissue, or the
interaction of age and tissue (Additional file 1:
Supplementary Methods). According to our estimates, the
majority of variance can be attributed to either age (44.0
± 6.5) or tissue (39.6 ± 5.4) (mean percentage ± standard
deviation). The remaining non-negligible percentage can
be attributed to the interaction term (8.0 ± 1.5), and a
model with this interaction term describes the data
better according to a restricted likelihood ratio test
(p value ≤ 2.2 × 10−16). Less than 10% of the variance
was left unexplained (8.4 ± 1.08).
We selected genes that were differentially expressed

between tissues or between ages, and genes for which
the interaction of tissue and age was significant in deter-
mining expression. Our results identified 3306 upregu-
lated genes and 6890 downregulated genes at P0
compared to E16.5. Four thousand one hundred
fifty-nine genes were found to be upregulated and 2382
were downregulated in the vestibule compared to the
cochlea. For 745 genes, the cochlea to vestibule expres-
sion ratio increased over development, and it decreased
for 1211 genes. We performed gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment analyses on genes from the six identified sets
(Additional file 2: Table S1). The enrichment results are
summarized below.

Expression changes with age
Genes that were upregulated at E16.5 are enriched for
terms related to cell cycle, DNA replication, cytoskeleton
organization, and other terms that are in accordance
with a highly proliferative state. In contrast, genes that
were upregulated at P0 are enriched for ribosomes, indi-
cating high protein synthesis, mainly of plasma mem-
brane and extracellular matrix proteins. The lipid and
oxphos-related metabolic activities are also high in this
group. The cells at this stage of development are more
adhesive, communicate more with one another, and are
more responsive to external cues. They are also respon-
sive to a variety of signaling receptors, including calcium
signaling, and have high ion transport activity. The up-
regulated terms are typical of a less proliferative environ-
ment, where the highly expressed genes promote
homeostatic processes and inhibit peptidase activity.
Some terms show signs of cell specialization, in terms of
sensory perception, cartilage-related metabolism, and
the regulation of ossification; the last might indicate a
cross-talk between sensory epithelium cells and endo-
chondral cells. Another marker for the more differenti-
ated state is an up-regulation of the MHC protein
complex. In summary, the enrichment suggests that the

Fig. 1 PCA plot comparing samples in the different ages and tissues
according to their mRNA expression. The x- and y-axes are the first and
second coordinates, respectively. The samples are colored according to
their originating tissue, while the marker shape relates to age. A
normal contour line is drawn at 68% probability for each group
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inner ear is in a more proliferative state at E16.5 than at
P0, whereas at P0 the tissues are more differentiated and
exhibit specialization for sensory perception.
KEGG enrichment generally confirmed the aforemen-

tioned differences and provided more details regarding
specific metabolic processes activated at P0. For ex-
ample, we could attribute the enriched lipid metabolism
to sphingolipids, arachidonic acid, and retinol, the
enriched aminoglycan metabolism to glycan degradation,
and the biosynthesis of chondroitin and keratan sulfate.
Pathways enriched at P0 suggest that the activity of the
immune system increases during development, with leu-
kocytes migrating into the tissue and intercellular com-
munication using cytokines. As the complement and
coagulation cascades and the renin-angiotensin system are
also enriched at P0, we can hypothesize that the inner ear
is more exposed to blood circulation at this age.

Expression change between tissues
According to the enrichment analysis (Additional file 2:
Table S1), a number of the differentially expressed (DE)
genes in both the cochlea and vestibule are involved in
signal transduction. In the cochlea, the majority of the
signaling is mediated by voltage- and ligand-gated ion
channels and can be attributed to neuron-neuron synap-
tic transmission. In agreement with this finding, other
upregulated activities are neurogenesis and neuron pro-
jection. In contrast, the signaling in the vestibule is
probably required for the coordination of both innate
and acquired immune responses, an observation that re-
lates to the main function enriched in this tissue. The
signaling, some of which involves purinergic receptors,
plays a role in the response to external stimulus and
stress, and also in taxis. Another function enriched in
the vestibule is locomotion, with the cilium and the axo-
neme being two enriched cellular components related to
the movement of the hair cells’ stereocilia. The vestibule
is richer in blood vessel formation and hematopoiesis,
and the extracellular matrix is more evolved than in the
cochlea. Together with the high immune-related activity,
these factors may explain why the vestibular cells are
more adhesive. We also detected enrichment for replace-
ment ossification, suggesting the development of bone.
As a generalization, upregulated genes were associated
with neurological terms in the cochlear, but to vascular,
structural, and immunological terms in the vestibule.
This partitioning was not perfect as we could detect en-
richment for mesenchymal cell differentiation in the
cochlea, and 3.1% of the upregulated genes in the vesti-
bule were annotated for a role in sensory perception.
The KEGG enrichment data also agreed with the

characterization of the cochlea as more neurological ver-
sus a more vascular vestibule. In addition, the data pro-
vided more information about the typical signaling in

each apparatus. Neuroactive ligand signaling was identi-
fied in both, although the cochlea was associated with
the TGF-beta, MAPK, and ErbB signaling pathways,
while cytokine-mediated, calcium, and Toll-like receptor
signaling were more important in the vestibule. Three
pathways shown to be unique to the cochlea affect cell
proliferation, survival, differentiation, and migration
[26–28], suggesting that these developmental processes
are more activated in the cochlea. Other unique meta-
bolic pathways enriched in the cochlea were O-glycan
and chondroitin sulfate biosynthesis. The vestibule, on
the other hand, was enriched for glycan degradation and
metabolic pathways concerning arachidonic acid, retinol,
and glutathione.

Tissue expression ratio change with age
Genes for which the cochlea to vestibule expression ratio
increased with age ðCochlea

Vestibule
↑Þ were enriched for processes

related to sensory perception and central nervous system
development, as well as signaling through G-coupled re-
ceptors, ligand-gated ion channels, or calcium. Accord-
ingly, a significant number of genes were annotated to be
in the apical part of the cell. Other genes annotated to the
extracellular region might mediate the biological adhesion,
which increases during development. Another enriched
component was identified as the sarcomere, which most
closely resembles the stereocilia in the inner ear.
We can envision two possible scenarios for each of these

enrichments. The first option is that genes annotated for
enrichment are upregulated in the cochlea at E16.5 and the
gap between the cochlea and the vestibule increases during
development. The second option is that these genes are
upregulated in the vestibule at E16.5 and the gap between
the cochlea and the vestibule decreases during develop-
ment. To distinguish between the two, we compared the
expression of all genes that are annotated for each GO
term. The median expression log-ratio between the cochlea
and the vestibule at P0 was plotted against the value of the
same parameter at E16.5 (Fig. 2, circles). The plot only
contains the terms for which the gap between the cochlea
and the vestibule significantly increases with age. More
precisely, only terms for which the log-ratios at P0 were
larger than their paired values at E16.5 were included
(Wilcoxon signed rank test, q values ≤ 0.05).
Interestingly, the vestibule is appeared to be more spe-

cialized for sensory perception at E16.5 than the cochlea,
as manifested by a negative median log-ratio for terms
sensory perception, mechanoreceptor differentiation,
and detection of stimulus involved in sensory percep-
tion. However, by P0, the cochlea surpassed the vestibule
in all of these fields. In contrast, ligand-gated ion chan-
nel activity was already higher in the cochlea at E16.5,
and the gap only increased with development.
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Genes for which the vestibule to cochlea ratio in-
creased with age ðVestibule

Cochlea
↑Þ were enriched for signaling,

neuron projection, neurotransmitter transport, and se-
cretion. These are all functions that are higher in the
cochlea at E16.5, and for which the difference between
the vestibule and the cochlea decreases with time (Fig. 2,
triangles).

Deafness genes can be predicted using expression patterns
A list of 140 genes associated with human deafness was
compiled from a public dataset (http://hereditaryhearin-
gloss.org/; Additional file 3: Table S2). Expression data
for 130 orthologous mouse genes are available in our
dataset. Of these genes, mutations in 25 orthologs are

associated with syndromic deafness in human, 96 with
non-syndromic deafness, and nine with both types of
deafness and are treated as syndromic deafness genes
(DGs) in subsequent analyses. It should be noted that
we found no ortholog for any of the five mitochon-
drial DGs.
We observed general patterns of expression for these

syndromic and non-syndromic DGs. First, when com-
paring vestibular and cochlear expression, the absolute
values of the fold change (FC) of the DGs were higher
than for the background FCs (p value = 1.98 × 10−5,
one-sided Wilcoxon rank sum test; Fig. 3, upper subfi-
gure). In addition, the absolute FCs of non-syndromic
DGs were slightly higher than the FCs of syndromic
DGs (p value = 7.00 × 10−2, same test). That is, DGs tend

Fig. 2 GO terms enriched for genes affected by age-tissue interaction. The median cochlea to vestibule (C/V) expression ratios of genes annotated for
GO terms at P0 (y-axis) against E16.5 (x-axis). Circles mark GO terms enriched for genes with increased C/V ratios between E16.5 and P0, and for which
the ratios of all annotated genes are higher at P0 than at E16.5. Triangles mark GO terms with parallel properties for the reciprocal ratio (V/C)
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to be tissue-specific, with the non-syndromic genes pos-
sibly being even more specific. Interestingly, the majority
of the DE DGs were higher in the vestibule than in the
cochlea, despite the acknowledged role of the cochlea in
hearing (57 out of 76, p value = 2.19 × 10−5, two-sided
proportion test).
Second, when comparing P0 and E16.5 expression,

DGs tended to have higher FCs compared to back-
ground FCs (p values = 6.32 × 10−6, one-sided Wilcoxon
rank sum test; Fig. 3, middle subfigure). This indicates
that their expression tends to increase with develop-
ment. Third, their cochlea to vestibule expression ratio
tended to increase with development compared to back-
ground (p values = 5.15 × 10−6, same test; Fig. 3, lower
subfigure). Moreover, the increase in the ratio of
non-syndromic DGs was higher than that for syndromic
genes (p value = 3.48 × 10−3, same test).

Deafness gene prediction
We used the three types of FC and the averaged ex-
pression (see the “Methods” section), to build a classi-
fier that can predict whether a gene is a DG. The
classifier achieved a ROC score of 0.66 ± 0.04 across
repeated training/test splits. A ROC score of greater
than 0.5 indicates that the expression data have some
predictive value for the relation of a gene to deafness.
This classifier performs better than a similar version
that used the averaged RPKM values in each condi-
tion (ROC score 0.60 ± 0.05). Removing one or more
of the four feature types from the original classifier
resulted in a lower score.

It must be appreciated that genes not marked as DGs
might still represent undiscovered DGs. For this reason,
it was important to train our classifier to distinguish be-
tween known DGs and genes with an unknown role in
deafness. The first group of genes is termed positive, and
those in the second group are classified as unlabeled.
We wished to adapt our positive unlabeled (PU) classi-
fier to output the probability that an unlabeled gene is a
positive gene. This type of classification is referred to as
transductive PU learning [29]. Supposing that the known
DGs are a random subset of all DGs, i.e., the features we
explore impose no bias over which of the positive genes
are labeled, then, the probability that the PU classifier
assigns to the positivity of new genes both (i) correctly
ranks the genes and (ii) the probabilities are only off by
a constant factor (see [30] for details). We used a
bagging-like algorithm similar to the one presented in
[29] in order to calculate the probabilities for the set of
unlabeled genes. Some modifications in our system are
described in the “Methods” section. One main difference
between our approach and the previously reported ver-
sion in [29] was that we kept the same proportion of
positive (labeled) samples in the training set as in the
test set, whereas in [29], all positive samples were in-
cluded in training. This property allowed us to address
the issue of biases in the probabilities, albeit at the price
of losing some predictive power. One source of bias was
due to undersampling in the learning process [31]. A
second source of bias was the one described above for a
PU classifier. We addressed the latter using methods
presented in [30].
To gain some insight about the accuracy of our esti-

mator, in spite of the lack of a definitive classification of
the unlabeled set, we downloaded lists of genes associ-
ated with hearing loss according to the text mining tools
DigSeE [32], DisGeNET [33], and DISEASES [34]. We
refer to these genes as deafness-associated genes
(DAGs). By these means, we obtained 1313 genes that
were associated with deafness according to at least one
tool. These included 115 known DGs, accounting for
82% of all reported DGs. The respective numbers of
mouse orthologs were 1021, 106, and 82%. See
Additional file 1: Supplementary Results, Figure S1 for a
comparison of the lists of genes provided by the tools.
Applying our bagging-like algorithm resulted in a PU

classifier with a ROC score of 0.694 where the probabil-
ities from this native classifier were probably biased up-
ward due to undersampling. Correcting for this bias
resulted in a better calibration of the probabilities, as
demonstrated by a calibration plot (Additional file 1:
Figure S2, left), and the lowering of the Brier score (BS)
from 2.07 × 10−1 to 8.47 × 10−3. We employed three dif-
ferent methods (e1, e2, e3; see [30]) to correct the bias
in the probabilities caused by the PU scenario. In order

Fig. 3 FCs against average expression for deafness and non-deafness
genes. Each point represents a gene. The logarithm of the FCs of
genes between tissues (upper), ages (middle), and age-tissue
combinations (lower) are plotted against their averaged expression
across samples (in log counts per million [CPM]). Transparent points
correspond to genes that are not differentially expressed in the
comparison. Deafness genes are marked with larger points and are
colored based on the type of deafness involved
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to perform the calibration, all three methods first esti-
mate the probability that a known DG is labeled p(s = 1|
y = 1). The estimates for this probability, according to e1,
e2, and e3, were 0.032 ± 0.014, 0.022 ± 0.007, and 0.518
± 0.248, respectively. The estimates made by e1 and e2
support the existence of a few thousand DGs, compared
to the few hundred predicted according to e3 (4.1 × 103,
5.9 × 103, and 2.5 × 102, respectively). We believe that
given the status of deafness research, the last estimate is
the most reasonable. To investigate the issue further, we
re-evaluated the calibration of the probabilities produced
by each method. For this purpose, we assumed that all
the DAGs are in fact deafness genes. With this assump-
tion, the e3 method resulted in the best calibration, as
demonstrated by a calibration plot (Additional file 1:
Figure S2, right), and the lowest BS (scores 6.64 × 10−2,
1.20 × 10−1, 2.84 × 10−1, 6.45 × 10−2 for no fix, e1, e2, and
e3, respectively). Hence, we decided to use e3 probabil-
ities in all subsequent analyses and let pg be the prob-
ability that gene g is positive according to e3.
We then reran our bagging-like algorithm, but this

time, we chose to treat a gene g as positive with prob-
ability pg, and as negative with probability 1 − pg. This
reassignment was performed before each iteration. Fi-
nally, we recalculated the ROC score of our classifier. In
this case, we ignored known DGs in order to make a
proper separation between training and test stages. The
rerun achieved a slightly better ROC score (0.602 vs
0.600, p < 0.05, DeLong’s test for two correlated ROC
curves [35]). We chose to continue with the rerun
classifier and added a correction for undersampling to
the resultant probabilities. The predictions for both hu-
man genes and mouse orthologs are available in
Additional file 4: Table S3. The 20 mouse genes with the
highest predicted probabilities include the known
non-syndromic DGs Smpx, and Ptprq, seven DAGs (Gfi1,
Lhx3, Erbb4, Ephx1, Il33, Slc52a3, and Ttr), and nine
genes not associated with deafness (Mlf1, Nell1, Espnl,
Rbm24, Lrrc10b, Agr3,Tgm2, Id4Cd164l2, and Faim2).
For the purpose of selecting a discrimination threshold

for our binary classifier, we can consider two plots,
which demonstrate how well our classifier predicts
DAGs (again while ignoring known DGs). The first is a
ROC curve, which visualizes the balance between speci-
ficity and sensitivity (Fig. 4, top). The threshold maxi-
mizing the sum of these two parameters is suggested as
a candidate threshold. A disadvantage of a ROC curve,
in our context, is that it ignores the association scores
provided by the text mining tools. In order to account
for these scores, we can consider a range of values of the
threshold and use a non-parametric test (one-tailed
Wilcoxon rank sum test) to compare the association
scores of the genes with probabilities higher than the
threshold, with all the others. We hypothesized that

genes above the “right” threshold would tend to have
higher association scores. We analyzed the association
scores from each tool separately and together (see the
“Methods” section) and plotted −log2P − value against
the threshold (Fig. 4, bottom). The value giving the low-
est p value for the combined scoring was proposed as a
candidate threshold. Four thousand six hundred
seventy-four and 1934 genes passed the thresholds sug-
gested by the ROC curve (0.027) and the Wilcoxon test
(0.043), respectively. Other thresholds may also be con-
sidered, depending on the required number of candi-
dates, specificity, and sensitivity. We recommend
choosing thresholds that give local maxima on either
curve (available in Additional file 4: Table S3).

Transcription factors affecting expression
When we screened for enrichment of transcription
factor (TF) binding sites in three sets of DE genes
(Additional file 5: Table S4) we could identify six motifs
that were associated with changes in expression during
development, 43, between tissues, and 10, across an
age-tissue interaction (i.e., the change in the cochlea to
vestibule expression ratio throughout development).
This 7-fold increase in tissue-specific motifs over those
associated with a developmental stage was very surpris-
ing, in view of the fact that the absolute number of
tissue-specific DE genes identified was about 35% less
than the number that changed during development. In
total, we identified 50 unique motifs across all compari-
sons and manually connected them to 64 mouse TFs
(i.e., a few motifs were associated with multiple TFs).
For each TF, we tested whether the TF gene itself was

DE under the same conditions as the gene it regulates
(Additional file 5: Table S4). This property interests us
for three reasons: (i) It indicates whether the regulation
of the TF activity is (at least partially) transcriptional.
Knowing how a TF is regulated makes it a better candi-
date for experimental interventions. (ii) The direction
(upregulation or downregulation) in which a TF is DE
implies whether it functions as a repressor or an activa-
tor. (iii) It strengthens our faith that the associated motif
is important for regulation, and not a false-positive. In
our analysis, 30 of the 64 TFs identified were DE (in at
least one comparison).
In order to investigate how the levels of the TFs affect

their targets, we plotted the median FC of all targets of
a specific motif, against the median FC of the TFs asso-
ciated with that motif (Additional file 1: Figure S3). In
all cases, we observed a positive, although insignificant,
correlation between the two values (Pearson’s r = 0.51,
0.05, or 0.52 for the comparisons between tissues, across
age, and for age-tissue interaction, respectively; com-
bined p value (22) = 0.15) [36]. Among the factors that
contribute to the incomplete correlation is the
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post-transcriptional regulation of TFs, which reduces the
correlation between the transcript levels and TF activity.
In addition, while most TFs activate the transcription of
the targets, certain factors can repress the transcription of
some or all of their targets. Moreover, taking the median
FC of the TFs associated with a motif ignores the possibil-
ity of complex interrelationships, such as the ability of a
subset of the TFs to activate transcription alone (an ex-
ample for the motif AHRHIF is discussed later).

The TFs identified as being associated with develop-
ment were compared with TF genes shown to change
their expression during avian regeneration of inner ear
sensory epithelia in one of two experiments conducted
in chick. The first experiment measured expression of
TFs after either laser “wounding” cultured sensory epi-
thelia or treating inner ear organs with the ototoxic anti-
biotic neomycin [22]. The sampling time points after the
laser lesion (30 min, 1 h, 2 h and 3 h) were chosen in

Fig. 4 Choosing a threshold probability for discrimination of deafness-associated genes. The two plots demonstrate the effect of choosing a
threshold on the balance between sensitivity and specificity of prediction. Top: a standard ROC curve. A gene associated with deafness according
to any of the text mining tools is considered a positive gene, all others are considered negative. Bottom: threshold determination based on a
comparison of association scores. At each threshold, significance according to the Wilcoxon rank sum test is assigned to the difference between
the association scores of genes above the threshold and all other genes. A higher −log2P value indicates a more significant difference, in the
direction of higher association scores for genes above the threshold. Line color indicates the source of the association scores used. Each graph
has two thresholds marked. The first is the threshold value for which the sum of specificity and sensitivity of the ROC curve is highest (upper,
circle shape; lower, solid vertical line). The second is the threshold value for which the Wilcoxon test is most significant for the “Combined”
association score (upper, triangle shape; lower, dotted line)
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order to provide insights into the very early signaling
events that occur after epithelial injury, while the sam-
pling time points after a 24-h incubation of inner ear
organ cultures with neomycin (immediately after incuba-
tion, and after 24 and 48 h in neomycin-free medium)
were chosen to cover the period of the S-phase entry by
supporting cells, which peaks at about 48 h after oto-
toxic injury in vitro. Unlike the first experiment, which
measured responses to lesions in both cochlear and ves-
tibular cultures, the second regeneration experiment
[23] from the same group only measured expression in
chick utricles. Also, the second experiment only ex-
plored the effect of an ototoxic antibiotic on gene ex-
pression. Still, this study had several advantages over
[22]. First, it followed the expression changes across a
7-day time course, with more frequent measures in the
48–72 h window of regeneration, a period characterized
by highly dynamic patterns of expression for many
genes. Second, it employed RNA-seq instead of microar-
rays for the expression measuring, allowing the authors
to obtain a comprehensive transcriptome, instead of spe-
cifically focusing on transcription factors expression as
was done in the first experiment.
The comparison of the TFs was designed to detect

pathways that are common to inner ear development
and regeneration and specifically to reveal genes essen-
tial for either proliferation of supporting cells, or for
transdifferentiation to hair cells. Out of 712 DE TFs in
the first regeneration experiment [22], we mapped 596
to orthologous mouse genes. Intersection with our list of
64 TFs yielded 33 TFs that are involved in both develop-
ment and regeneration (Additional file 1: Figure S4). Sig-
nificantly, eight of these are also DE. The overlap with
the later avian transcriptome experiment [23] was far
more limited. Out of 212 DE TFs found in the experi-
ment, we mapped 208 to orthologous mouse genes, of
which only six appear also in our list of TFs
(Additional file 1: Figure S5), and five of them are also
DE. The TFs SMAD9 and SPI1 were DE in both avian
experiments and were associated with enriched motifs in
our developmental study.
Finally, we performed a comprehensive literature

search for the motifs found in the context of inner ear
development. For a small subset, the results are detailed
in the following sections, with a more complete list
available in Additional file 1: Supplementary Results.

Transcription factors affecting expression changes with age
The set of genes that were upregulated at E16.5 was
enriched for binding sites for the motifs: Elk-1, Nrf-1,
E2F-1, E2F, NF-Y, and AHRHIF of which, the subset
Elk-1, Nrf-1, NF-Y, E2F-1 and some TFs associated with
the motifs AHRHIF (Arnt and AhR) were upregulated
together with their regulated genes. Upregulation of

Hif1a, another motif associated with AHRHIF, could be
detected at P0, suggesting that the upregulation of Arnt
controlled genes is achieved by an increase in the forma-
tion of the heterodimer Arnt:AhR and not Arnt:Hif1a
[37]. There was no enrichment of binding sites detected
in the genes upregulated at P0.
ELK1 and TFs associated with AHRHIF are known to

change their expression during regeneration. The ex-
pression of ELK1 was reported to increase 30 min after
wounding cochlear hair cells with a laser, marking an
early signaling event that occurs after epithelial damage
[22]. Another TF that was increased after cellular insult
was the AHRHIF TF, ARNT whose expression increased
24 h after exposing cochlear hair cells to neomycin, only
to decrease again by 48 h, together with HIF1A and
AHR. These time points reflect a change of expression
in the supporting cells [22]. The transient increase of
ARNT during regeneration resembles its transient ex-
pression pattern during normal inner ear development,
between E13 and E17 in mouse cochlear epithelial cells
[38]. Interestingly, the three TFs (ARNT, HIF1A, and
AHR) were also reported to respond to tissue damage
caused by a different toxic compound (TCDD [39]).
E2F1 is an important pro-apoptotic TF [40], and under
some mitochondrial stress, it engages apoptotic signals
to cause deafness [41]. Regulation of transcription dur-
ing the cell cycle is under the control of E2 factors
(E2Fs), often in cooperation with nuclear factor Y
(NF-Y) [42], another TF highlighted in this comparison.
In utricle hair cell regeneration [23], E2F1 is changing
its expression in a pattern that is associated with cell
cycle genes. As mentioned, this TF and its targets are
upregulated in E16.5, an age when we see enrichment
for cell cycle activity.

Transcription factors affecting expression change
between tissues
In contrast to the genes differentially expressed during the
development, the set of genes upregulated in the cochlea
was enriched for binding sites for the motifs: HIC1, E2F,
ZNF219, ZF5, UF1H3BETA, MOVO-B, MAZ, VDR,
MAZR, MTF-1, c-Myc:Max, AP-2, CAC-binding protein,
ETF, E47, Lmo2 complex, RREB-1, LBP-1, CP2/LBP-1c/
LSF, and Spz1. TFs associated with E2F, ZF5, and MAZ
were significantly upregulated in the cochlea, while TFs
associated with MOVO-B, VDR, and Lmo2 complex were
upregulated in the vestibule. TFs associated with 11 of
these 20 motifs (LBP-1, Lmo2 complex, E47, E2F,
ZNF219, ZF5, VDR, MTF-1, c-Myc:Max, AP-2, CP2/
LBP-1c/LSF) have been previously reported to change
their expression during the regeneration of inner ear sen-
sory epithelia [22, 23].
Focusing on genes that are altered both during devel-

opment and regeneration, the enrichment of E2F noted
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indicates the presence of proliferation in the cochlea at
the relevant period of development. Given the role of
this TF family in inducing proliferation, their involve-
ment in hair cell regeneration is not surprising and is
currently the focus of active research [43]. In contrast,
ZF5 is known primarily as a repressor of transcription
and specifically as a regulator of cell cycle progression
(through c-myc [44]), and cognitive development
(through FMR1 [45]). Thus, the upregulation of expres-
sion in the cochlea, where its targets are also upregu-
lated, was unexpected. This might indicate the existence
of an additional activating role for ZF5, or that another
TF is activating the transcription of these targets, and
ZF5 is upregulated as part of a negative feedback loop.
In avian hair cell regeneration, the expression of ZF5 in
the cochlea increases late in the recovery from neomycin
damage, suggesting a role in cochlear hair cell differenti-
ation. Another TF with the same pattern of expression
during hair cell regeneration is LMO2. Enrichments for
LMO2 binding sites were found in the list of upregulated
genes from both the cochlea and the vestibule. While
the results of the regeneration experiment support a
function for LMO2 in the cochlea, the expression of the
TF in our experiment was higher in the vestibule. A pos-
sible explanation for this duality could be that LMO2 in-
teracts with different partners in the two tissues, and
thus, a different subset of genes is increased in each
case. The Lmo2 complex typically contains a single
GATA factor and a single TAL1/E47 heterodimer, but
the GATA factor can be replaced by an additional
TAL1/E47 heterodimer, resulting in a change in the
genes regulated [46]. As Gata2 and Gata3 are upregu-
lated in the vestibule and Tal1 is upregulated in the
cochlea (DE q-values = 7.32 × 10−18, 1.67 × 10−175, and
5.29 × 10− 7, respectively), the complexes formed in each
tissue might differ in composition. VDR is a transcrip-
tion factor regulated by vitamin D levels [47]. Hypo- and
hypervitaminosis D can cause sensorineural hearing loss
[48]. The downregulation of the gene in the cochlea,
where its targets are upregulated, suggests a repressor
role for this TF, which is supported by existing literature
[49]. In utricle hair cell generation [23],VDR’s expression
peaks in the 54–72 h window after the aminoglycoside
damage. This pattern makes it a candidate for playing a
role in the phenotypic conversion process from sup-
porting cells to hair cells in the vestibule. According to
our experiment, it might fulfill a similar role in the ves-
tibular development.
In the set of genes upregulated in the vestibule, we

could detect enrichment for binding sites for the 21 mo-
tifs: HNF4, SREBP-1, NF-1, PEA3, TEF-1, AP-2rep,
NF-kappaB (p65), LBP-1, LUN-1, E2A, PU.1, MyoD,
Nrf2, Lmo2 complex, COUPTF, ISRE, HEB, E47, SMAD,
AML-1a, and c-Ets-1. TFs associated with five motifs

(TEF-1, PU.1, Nrf2, Lmo2 complex, and ISRE) were sig-
nificantly upregulated in the vestibule, while TFs associ-
ated with four other motifs (PEA3, COUPTF, most
SMADs, and AML-1a) were upregulated in the cochlea.
TFs associated with 15 of the 21 enriched motifs (HNF4,
SREBP-1, PEA3, NF-kappaB p65, LBP-1, E2A, PU.1,
MyoD, Nrf2, Lmo2 complex, COUPTF, ISRE, HEB, E47,
SMAD, c-Ets-1) displayed a change in expression during
the regeneration experiments [22, 23].
The upregulation of TFs associated with the motifs

Spi1 [PU.1] and Nfe2l2 [Nrf2] in the vestibule supports
their role as inducers of transcription. However, the
decrease seen in the cochlear expression in late (48 h)
recovery from neomycin [22] suggests that their repres-
sion is required for proper differentiation of supporting
cells to cochlear cells. SPI1 is known to be involved in
hematopoietic development and induces proliferation of
immune cells [50] and therefore might upregulate the
immune functions that are enriched in the vestibule.
Similarly, NFE2L2 can upregulate functions related to
stress response and specifically to antioxidant defense
[51]. The expression pattern of Nr2f1 and Nr2f2 associ-
ated with the COUPTF motif is in agreement with their
suggested role as repressors of transcription, as they are
downregulated in the vestibule, although the motif as a
whole is enriched in the genes upregulated in the vesti-
bule. Following laser damage, the expression of NR2F2
increases in the cochlea for 3 h and an increase in coch-
lear expression is also evident in late (48 h) recovery
from neomycin [22]. Nr2f2 is known to work as a re-
pressor of myogenesis, inhibiting MyoD [52], another TF
whose targets are upregulated in the vestibule. Our data
suggest that their repressive effect might have a role in
cochlea development.
SMADs are intracellular proteins that transduce extra-

cellular signals from transforming growth factor beta
(TGF-β) ligands to the nucleus, where they activate
downstream gene transcription [53]. Although TGF-β
signaling is thought to be active in the cochlea, our re-
sults show rather that the downstream targets of this
pathway are enriched in the vestibule. In order to ad-
dress this issue, we examined the expression levels of in-
dividual SMADs. Most receptor-regulated SMADs
(R-SMADs) were upregulated in the cochlea (Smad1,
Smad2, Smad5, Smad9), in agreement with the hypoth-
esis of higher TGF-β activity in the cochlea. However,
inhibitors of this signaling pathway (Smad6 and Smad7)
were also upregulated in the cochlea, and with relatively
high FCs (1.9 and 1.6, respectively), and may be respon-
sible for decreasing the transcription of the downstream
genes in the cochlea compared to the vestibule. The
story becomes more complex with the two intracellular
pathways involving SMADs. The R-SMADS Smad2 and
Smad3 mediate the response to TGF-β ligands, which
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participate in the regulation of inner ear development by
retinoic acid [54]. Smad2 was upregulated in the coch-
lea, while Smad3 was upregulated in the vestibule. In
the regeneration experiment [22], SMAD2 expression in
the vestibule increased in a late response to neomycin
damage in the utricle, emphasizing the importance of
TGF-β signaling for vestibular differentiation. In a differ-
ent pathway, the R-SMADS Smad1, Smad5, and Smad9
mediate the response to bone morphogenetic proteins
(BPMs), which are involved in generation of inner ear
sensory epithelia [55], as well as chondrogenesis [56]. All
three were upregulated in the cochlea, with Smad9
showing a very impressive FC of 3.4. SMAD9 was also
increased in response to late neomycin damage in the
cochlea [22]. This, together with its high cochlear levels,
implies that it plays a role in cochlear differentiation.
SPI1 and SMAD9 also change in expression during ut-

ricle hair cell regeneration [23]. The patterns of the ex-
pression are complex. Notably, their maximal deviations
from the control are at time point 66 h, where SPI1 is
upregulated and SMAD9 is downregulated. These
changes are of opposite directions to those observed in
cochlear regeneration in [22], agreeing with the
tissue-specific roles of the two TFs.

Transcription factors affecting expression ratio change
with age
In the set of genes for which the cochlea to vestibule ex-
pression ratio increases with age ðCochlea

Vestibule
↑Þ, we could de-

tect enrichment for the binding sites for the motifs
HNF4, E47, and a group of nuclear receptors (LXR,
PXR, CAR, COUP, RAR), AP-4, and SMAD. The expres-
sion ratio of Nr2f1, a COUP TF, increased significantly
in the same direction as its targets, which might have a
positive downstream effect on retinoic acid receptor
(RAR) signaling [57]. Interestingly, TFs associated with
all the motifs changed their expression during the regen-
eration of inner ear sensory epithelia [22].
Retinoid signaling is critical during inner ear embry-

onic development, as well as in the postnatal mainten-
ance of its function [58]. Both vitamin A deficiency and
intake of excess retinoic acid (RA) during pregnancy
have been shown to cause malformations in ear develop-
ment. In rodents, in utero exposure of fetuses to RA
negatively affected the semicircular canals and the coch-
lea. Key components in retinoid signaling show spatio-
temporal expression patterns, and the interactions that
excess RA interferes with are dependent on the develop-
mental stage. KEGG enrichment of our DE genes
showed that metabolism of RA was higher in the vesti-
bule and at P0. Taken together with the motif enrich-
ment, we deduce that retinoid signaling is important to
both cochlear and vestibular development, with its role

in the cochlea becoming more prominent in the period
between E16.5 and P0. In the hair cell regeneration ex-
periment, the cochlear expression of the retinoid recep-
tor RARA decreased 24 h after neomycin damage, but by
48 h, NR2F1 expression increased [22]. This later in-
crease might mimic the increase in retinoid signaling
seen in normal development.
Interestingly, we could detect enrichment of binding

sites for AML-1a, LEF1, LBP-1, HEB, and POU6F1 in
the set of genes for which the vestibule to cochlea ex-
pression ratio increases with age ðVestibule

Cochlea
↑Þ. The expres-

sion ratio of Runx1 [AML-1a] increased significantly in
the same direction as its targets. TFs associated with
LBP-1 and HEB also changed their expression during
the regeneration of inner ear sensory epithelia.

Comparison with transcription factors known to enhance
mammalian hair cell regeneration
Previous studies that induced hair cell regeneration by
coordinated manipulation of multiple factors, showed a
better efficacy for the ectopic expression of ETV4, TCF3,
GATA3, MYCN, or ETS2 in combination with ATOH1
over the overexpression of ATOH1 alone [18, 19]. In
retrospect, our method identifies some of the TFs that
were mentioned earlier for their ability to induce differ-
entiation. Specifically, it singles out Etv4 [PEA3] and
Tcf3 [E47]; Gata3 is a partner of the highlighted Lmo2;
and Mycn and Ets2 have similar targets as c-myc [59]
and Ets1 [60], respectively. Moreover, four out of five of
the TF genes are DE between the cochlea and the vesti-
bule (Etv4, Gata3, Mycn, and Ets4; q value ≤ 0.05), which
makes them good candidates for experimental interven-
tions, as explained above.

Change in the proportion of hair cells in sensory epithelia
Because of the difficulty of dissecting out the sensory
epithelia and separating the hair cells from the adjacent
supporting cells, all tissue samples of this type contain
varying amounts of both hair cells and supporting cells.
This complicates conclusions as to whether differential
expression can be attributed to differences in the expres-
sion profiles or to variability in the cell mixture compos-
ition. In order to address this issue, we produced
expression signatures of hair cells and supporting cells
from a previous experiment [21] and used them to com-
pute the proportion of each type in each preparation.
We also evaluated the heterogeneity of cell types assum-
ing that the cochlear sample is contaminated by cells
from the vestibule (or utricle) and vice versa.
A different subset of genes was used to create the sig-

natures for E16.5 and P0. For each age, we ranked the
genes in decreasing order of expression variance across
the four reference samples (cochlear and vestibular GFP
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+ and GFP− samples). We then took the expression of
the first k genes in the list, where k equals 453 for E16.5,
and 193 for P0. The value of k was chosen so that it
minimized the estimated percentage of contamination in
our mixed data, i.e., the estimated percentage of cochlear
cells in vestibular samples plus the estimated percentage
of vestibular cells in cochlear samples. We predicted that
this heuristic approach would improve the overall pre-
diction accuracy, although it did not directly optimize
the precision of estimation of the percentage hair cells,
which was our main goal. We used DeconRNASeq to es-
timate the mixing proportions [61].
The estimated proportions of hair cells were similar in

both scenarios (Fig. 5), which allows us to ignore the
issue of possible tissue contamination. The estimated
percentages (±SD) are 32.6 (± 1.6) and 23.8 (± 1.0) in the
cochlea and the vestibule at E16.5 and 44.0 (± 1.1) and
40.1 (± 0.2) in the cochlea and the vestibule at P0, re-
spectively. These results indicate that the percentage of
hair cells is higher in the cochlea at both ages and in-
creases with development in both tissues, with the in-
crease in the vestibule being more prominent (1.9-fold
increase compared to 1.4-fold in the cochlea). Strikingly,
in all estimations, the percentage of supporting cells was
higher than 50%, suggesting that these cells have a dom-
inant influence on the expression profiles.
Even with the value of k selected to minimize the con-

tamination, our calculation gives 51.8% contamination in
the cochlea at P0. We are unsure how to interpret this
high number. Possible causes for an overestimate of con-
tamination could be (1) experimental noise, either in our
data or the data used to generate the expression signa-
tures at P0, or (2) inaccuracy of the deconvolution

method when the signatures are similar. The similarity
of the signatures of the same cell type in the cochlea and
the vestibule can be seen by the high correlation values
(r = 0.65, or 0.83 for signatures of hair cells and support-
ing cells, respectively).

Discussion
In this study, we analyzed sensory epithelia RNA-seq data
from mouse at E16.5 and P0, which correspond to devel-
opmental stages before and during the acquisition of
mechanosensitivity. By exploring these data with consider-
ations of developmental age and tissue type, we provided
extensive information about the development of the inner
ear. Moreover, we identified multiple transcription factors
that are involved in transcriptional regulation, and a com-
parison with previous reports [22, 23] enabled us to focus
on those that are also involved in regeneration of the avian
inner ear after damage.
The sensory epithelium constitutes a heterogeneous

tissue composed of hair cells and supporting cells, which
cannot be easily separated by mechanical means. Al-
though some previous experiments (e.g., [21]) employed
FACS sorting to obtain pure populations, the analysis of
data from the native tissue has the advantage of sum-
marizing the expression of the hair cells and the milieu
with which they interact. Although we did not physically
separate the cells by type, we did estimate the contribu-
tions of each cell type by using expression deconvolu-
tion. Our results indicated a higher hair cell content in
the cochlea compared to the vestibule, a content, which
increased further during development in both tissues, al-
beit with a relatively larger increase in the vestibule.

Fig. 5 Estimated proportions of hair cells and supporting cells in various samples. This estimated proportion of each cell type in each of the
groups is displayed in a stack bar chart, where the color of a stack identifies the cell type. On the left side, the cells composing a tissue were
confined to cells originating from that tissue, without allowing cross-tissue contamination, whereas on the right side, cross-tissue contamination
is assumed to occur. A light color indicates the amount of contamination. For example, focusing on the cochlear tissue at age P0 (P0.CO), the
estimated proportion of hair cells, when contamination is not allowed, is 44.1% (in red). When contamination is allowed, the estimated
proportion of hair cells decreases slightly to 44.0% and is composed of 26.6% cochlear hair cells (in dark red) and 17.4% contaminating vestibular
hair cells (in light red). The three other samples show a majority of non-contaminated tissue (darker colors). HC hair cells, SC supporting cells
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Nearly 75% of the variation in the gene expression of
our samples was explained by principal components as-
sociated with age (~ 47.5%) or tissue (~ 27.5%). Our ana-
lysis therefore focused on expression comparisons
during development and across tissues. We also analyzed
the more complex interaction of age and tissue. Our re-
sults showed that both cochlear and vestibular tissues
become less proliferative with development and more
differentiated in order to acquire the specialization re-
quired for their roles in sensory perception. According
to our estimations, this specialization is accompanied by
an increase in the relative proportion of hair cells in the
sensory epithelia.
More surprising results were obtained from a compari-

son between tissues. While the cochlea was character-
ized mainly by neurological GO terms, the vestibule was
shown to be enriched for vascular, structural, and im-
munological functions. Some of these differences could
be attributed to alterations in the relative proportion of
hair cells, which are presumed to be the dominant cell
type in the cochlea. This finding has medical implica-
tions, as the higher vascularization of the vestibule, and
its accessibility to immune cells, might impact the sus-
ceptibility of the tissues to ototoxic medications and
inner ear infections.
With respect to the interaction of tissue and age, one

notable finding was the delay in the development of sen-
sory perception in the cochlea compared to the vestibule.
This finding is supported by a delayed acquisition of
mechanosensitivity in the cochlea (between P0 and P2
[62]) compared to the vestibule (between E16 and E17
[63]). In contrast, neuron projection and signaling at
E16.5 is less developed in the vestibule than the cochlea,
although the gap decreases by P0. This decrease can be at-
tributed to the relatively larger increase in the proportion
of hair cells in the vestibule compared to the cochlea.
Known DGs tended to be differentially expressed be-

tween the tissues. From E16.5 to P0, there was an increase
both in expression and in the cochlear to vestibular ex-
pression ratio. In order to predict the probabilities of un-
identified genes being yet undiscovered DGs, we built a
classifier based on expression patterns. This classifier
achieved a ROC score of 0.602 in predicting which genes
are associated with deafness when validated by text mining
tools. While the list of deafness-associated genes produced
might not accurately reflect the genes that are essential for
hearing, we believe it to be a good proxy for the true list.
Ranking genes according to their algorithm estimated
probability of being DGs can be useful in prioritizing can-
didate DGs in a real-world scenario, e.g., when multiple
candidates arise from a familial segregation study.
We used enrichment analysis to identify TFs that are

responsible for differences in expression between across
tissues or developmental stages. Some of the TFs we

identified as controlling expression were already known,
e.g., the E2F family of TFs, which is responsible for
promoting proliferation in the sensory epithelia and is
controlled by retinoblastoma 1 during this stage of de-
velopment [7], or the retinoic acid nuclear receptors,
which are essential for the proper morphogenesis of the
ear [58]. Our analysis not only strengthens the evidence
connecting these known TFs to inner ear development,
but also emphasizes their additional roles in hair cell re-
generation in birds (see below). We also identified a
number of TFs that do not have a known function in the
inner ear. These include Arnt, which activates the tran-
scription of its target genes in E16.5; COUP TFs, which
we speculate to have a dual role, with Nr2f2 in inhibiting
myogenesis in the cochlea and Nr2f1 in promoting retin-
oid signaling; and the hemopoiesis agent Lmo2 [46],
which we believe may interact with different coactivators
in the vestibule and the cochlea.
To learn about the possibilities of regeneration of

hearing in humans, it might be beneficial to mimic the
regulation of transcription during a response to inner
ear damage in birds and follow the ability of avian coch-
lear hair cells to regenerate [22]. Two experiments mea-
sured changes in TFs expression during such a response.
The two complement each other, as the first [22] follows
the response in both cochlear and vestibular tissues to
either immediate laser damage or after a long exposure
to ototoxic antibiotic, while the second [23] focuses only
on vestibular response to an ototoxic antibiotic, but in-
cludes more frequent sampling, across a longer time
period, using newer, more sensitive technologies, includ-
ing RNA-seq. In these experiments, significant changes
in hundreds of TFs were identified during the regenera-
tive response. These factors were intersected with our
list of developmental TFs, in order to highlight genes
likely to be involved in either proliferation or differenti-
ation. Although we could detect dozens of overlapping
TFs, we focused only on those with differential expres-
sion, because this facilitates the interpretation of how
the genes are regulated and suggests the possibility to in-
fluence this regulation through interventions.
To date, only a few TFs known to enhance mammalian

cochlear hair cell regeneration were detected [18, 19]. For
each of them, our method succeeded in detecting either
the TF, a TF with a very similar motif or an interaction
partner. Most of them showed differential expression, sup-
porting our choice to further focus on TFs with this prop-
erty. Moreover, our method highlighted the complex
Arnt:AhR, which we believe is important in early develop-
ment and undergoes a transient increase during regener-
ation of avian hair cells. We also concluded that an
increase in the genes Zbtb14 [ZF5], Lmo2, Nr2f1, Nr2f2,
and Smad9 and a decrease in Spi1 [PU.1], Nfe2l2 [Nrf2],
and Mafk [Nrf2] are required for proper differentiation of
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the cochlea or hair cell regeneration. An increase in
Smad2 and VDR is involved in the parallel processes in
the vestibule. Noteworthy, Smad9 and Spil were DE in
both avian regeneration experiments in directions that fit
their suggested tissue specific roles.
The discussion has been concerned above with repro-

gramming of embryonic and neonatal tissue. Overcoming
the limits of aging on reprogramming cochlear cells might
be essential for clinical purposes because human cochleae
become functionally mature neonatally and because sen-
sorineural hearing loss is most prevalent in older adults
[64]. Lately, it was shown that co-manipulation of ATOH1
and p27kip1 creates new cochlear hair cells in adult mice
[64]. In contrast to known functions of p27, the authors
did not observe proliferation of supporting cells or con-
verted hair cells following its deletion and concluded that
p27 plays a cell cycle-independent role in preventing
ATOH1-mediated conversion of adult supporting cells to
hair cells by repressing GATA3 expression. Only a limited
number of converted hair cells could be produced in the
models suggested in the article, and some of the converted
hair cells exhibited clear signs of apoptotic cell death. We
believe that by inducing a more proliferative environment,
the numbers of new hair cells generated would increase
and their survival would improve. For this purpose, it
might be beneficial to ectopically express TFs that are ac-
tive in the highly proliferative age E16.5 and are also upreg-
ulated in hair cell regeneration, especially in the immediate
response phase. According to these criteria, Elk1 and Arntl
are the most prominent candidates. Suppression of the
pro-apoptotic E2f1 might contribute as well.

Conclusions
We found the cochlea to be more enriched in neurological
functions, and to contain a higher percentage of hair cells
than the vestibule, but also to display delayed develop-
ment of sensory perception compared with the vestibule.
The vestibule, on the other hand, was shown to be more
vascular and more accessible to the immunological sys-
tem. The majority of TFs we predict to be key regulators
of the differentiation process have known functions that
agree with this dichotomistic characterization. Selected
TFs identified here may have potential as future candi-
dates for inducing hair cell regeneration. Given the paral-
lels between the mouse and human inner ear, in structure,
function, genes, and mechanisms of pathogenesis leading
to deafness, several of these candidates may be relevant
for human hearing loss.

Methods
Generation of mRNA data
Data generation for E16.5 and P0 samples is described in
our previous articles [24, 25, 65]. The datasets are avail-
able in the Gene Expression Omnibus (GEO) repository

under accession numbers GSE97270 (E16.5) GSE76149
(P0) and are available on the gene Expression Analysis
Resource web portal, gEAR, http://umgear.org/
p?s=ace02363 (SVG); http://umgear.org/p?s=1e3f9408
(bar graph). Sequence data was analyzed as previously
described [24].

Principal component analysis
Principal components were calculated with R, after scaling
and centering the log2-transformed RPKM values and
plotted using ggbiplot (http://github.com/vqv/ggbiplot).
Swamp (http://CRAN.R-project.org/package=swamp) was
used to test the association between the principal compo-
nents and annotations of sample age and tissue.

Differential expression
Differential expression analysis was done using edgeR
[66]. The design formula included the combination of
age and tissue of each sample. The tested contrasts were
the average difference between the two ages across tis-
sues, the average difference between the two tissues
across ages, and the difference of the differences at both
ages. This last contrast is sometimes referred to as the
interaction term of tissue and age. edgeR detection
threshold was q value ≤ 0.05. An FDR correction was ap-
plied for each contrast separately.

GO and KEGG enrichment analysis
We performed the enrichment analysis using the
Expander software [67], exploring all GO ontologies,
“biological process” (BP), “molecular function” (MF), and
“cellular component” (CC) (corrected p value ≤ 0.05), and
KEGG pathways (q value ≤ 0.01). For each contrast, we
looked separately for enrichments in the set of genes up-
regulated and downregulated, using as a background set
all the genes that were tested for differential expression.

Illustrating age-tissue interacting GO terms
We calculated the expression ratios between the cochlea
and the vestibule for E16.5 and P0 separately, using
edgeR [66]. We then z-scored the ratios at each age, to
allow a fair comparison of the ages. These ratios were
used both to select which GO terms to display and to
calculate a median ratio for each of these terms.
To select GO terms, we began with the lists of terms

enriched in genes with increased cochlear to vestibular
(C/V) or vestibular to cochlear (V/C) ratios between
E16.5 and P0 (see GO and KEGG enrichment analysis).
From each of these lists separately, we filtered only the
GO terms for which the expression ratios of annotated
genes are higher at P0 than at E16.5 (one-sided
Wilcoxon signed rank test at the respected direction, q
value ≤ 0.05). An FDR correction was applied for each
list separately.
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TF enrichment analysis
We performed the enrichment analysis using PRIMA
[68] with detection threshold q value ≤ 0.1. An FDR cor-
rection was applied for each list separately.

Deafness genes expression patterns
One hundred forty DGs were manually curated from
http://hereditaryhearingloss.org/ (updated 3/13/17). Using
BioMart [69], we mapped 133 of the genes to mouse
orthologs. Three genes were filtered out due to miss-
ing expression data of their homologs. To resolve
multiple mapping, we preferably mapped to orthologs
for which we have expression data. The DGs were
annotated according to the type of deafness, as
syndromic, non-syndromic, or mitochondrial. Genes
that were associated with both syndromic and
non-syndromic deafness were treated as if they were
syndromic in subsequent analyses.

Classifying deafness genes by expression
We built a classifier in order to categorize each gene as
DG or non-DG. We are aware that some of the genes
currently categorized as non-DGs are in fact DGs that
have not yet been discovered. Our classifier thus learned
to distinguish between positive and unlabeled genes. For
every gene, the features for the classifier were (1) the av-
eraged expression over all samples, in log counts per
million (CPM), (2) the logarithm of the fold change (FC)
of expression between the ages, (3) the logarithm of FC
of expression between the tissues, and (4) the logarithm
of the FC of the tissue expression ratio between the ages
[i.e., log (cochlea to vestibule expression ratio at P0)/
(cochlea to vestibule expression ratio at E16.5)]. This last
feature represents the interaction of age and tissue. All
four features were computed using edgeR [66]; specific-
ally, the FCs were obtained from the model presented in
the 'Differential expression' section. We trained the clas-
sifier with 75% of the genes, reserving the remaining
25% for testing purposes. Our classifier bagged over
1000 decision trees. Downsampling was used to account
for the imbalance in the frequencies of the deafness and
non-DGs (130 and 15,076 genes respectively). That is, to
build each decision tree, we chose 130 non-DGs at ran-
dom and used them together with all DGs in the build-
ing process. The R package caret was used for machine
learning [70].
We used only 25 repeated training/test splits to com-

pare the classifier with a classifier using the averaged
RPKM values in each condition as features. Two thou-
sand repeated splits were used to assign gene probabil-
ities, although internal testing revealed that the ROC
score reached a plateau after about 150 iterations. In
each iteration, we used the classifier to predict the prob-
abilities in the test set, corrected these probabilities for

the undersampling bias, and corrected them again for
the bias caused by the PU scenario. The correction
methods are detailed below.
The correction of the biases did not affect the ranking

of the genes in that iteration and was performed in order
to produce well-calibrated probabilities. We averaged
the probabilities over all iterations. The averaging caused
minor differences in ranking between different methods
of calibration, but the ROC score did not change signifi-
cantly (p > 0.05, DeLong’s test for two correlated ROC
curves [35]). We then assessed the calibration of the
probabilities produced by each method. Under the as-
sumption that most DGs are yet to be discovered, cali-
bration curves that treat only known DGs as positive
cases will falsely inflate the probabilities. For this reason,
we downloaded lists of genes that were associated with
hearing loss according to the text mining tools and as-
sumed that these deafness-associated genes together
with the known DGs comprise the full list of DGs. The
annotation of DAGs and the comparison of the calibra-
tion are detailed below. An illustration of the classifica-
tion process is provided in Additional file 1: Figure S6.
We then used these probabilities to build an im-

proved classifier where pg represents our estimation of
the probability of gene g. We reran our bagging-like al-
gorithm, but this time, we chose to treat a gene g as a
positive example with probability pg and as a negative
example with probability 1 − pg. This reassignment was
performed before each iteration, independently for each
gene, and only for the unlabeled genes. Labeled genes
were always treated as positive examples. This idea is
inspired by [30] where the authors achieved slightly
better results by rerunning their classifier with weights
based on the initial probabilities learnt, after adjusting
for the PU bias. Instead of reweighing the samples, we
decided to reassign their classes, as reassignment (of
only a few hundred genes) still allows us to perform
undersampling. We again used 2000 repeated splits and
averaged the probabilities over all iterations. We did
not perform any bias correction until the end of the
run, when we performed a correction only due to
undersampling, as detailed below. We compared the
ability of the initial classifier and the “rerun” classifier
to predict DAGs among all unlabeled genes using
DeLong’s test for two correlated ROC curves [35].
Assuming a considerable portion of DAGs are undis-
covered DGs, we wished our algorithm to rank those
higher than genes that are neither known DGs nor
deafness-associated. It should be noted that the prob-
abilities assigned by the classifiers to known DGs are
ignored in this comparison, because the annotation of
these genes as positive in the training of the initial clas-
sifier can lead to an artificial inflation of the probabil-
ities assigned by the “rerun” classifier. An illustration of
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the classification process improvement is provided in
Additional file 1: Figure S7.
Finally, we converted the mouse genes back to human

genes and resolved multiple mapping by averaging the
assigned probabilities.

Calibration of the estimator
The calibration of the probabilities was tested using cali-
bration plots produced with the R package caret. The
prediction space was discretized into 11 bins. Cases with
a predicted value between 0 and 0.09 fell in the first bin,
between 0.09 and 0.18 in the second bin, etc. For each
bin, the mean predicted value was plotted against the
true fraction of positive cases, together with the 95% bi-
nomial confidence interval. If the model is well cali-
brated, the points should fall near the diagonal line. We
also used the BS to measure probabilities calibration
[71]. The lower the BS, the more accurate are the prob-
abilistic predictions of a model. Let bpðyijxiÞ be the prob-
ability estimate of sample xi to have class yi ∈ {0, 1}.
Then BS is defined as:

BS ¼ 1
N

X
N

i¼1

yi−bp yijxið Þf g2

Correcting undersampling bias
Undersampling creates an upward bias of the probabil-
ities. To correct for this bias, we used the transformation
suggested in [31] where ps is the probability assigned by
the model learnt on the balanced training set. p’ is the
bias-corrected probability obtained from ps:

p0 ¼ βps
βps−ps þ 1

where β is the probability of selecting a negative instance
with undersampling.
We used this method in two iterations. First, we

adapted our PU classifier. Since we know whether each
gene is positive or unlabeled (“negative”), then the esti-

mation of β is trivial. We set β ¼ Nþ
N− , with N+ = 130 and

N− = 15,076. Second, we adapted the “rerun” classifier,
which used initial, well-calibrated probabilities as input.
The expected number of DGs according to these input

probabilities was E(N+) = 435. We thus set β≅ EðNþÞ
15;206−EðNþÞ.

Correcting positive-unlabeled bias
PU classifiers create a downward bias of the probabilities.
If x is an example, then let y ∈ {0, 1} be a binary label. Let
s = 1 if the example x is labeled and let s = 0 if x is un-
labeled. According to [30], p(y = 1| x) = p(s = 1| x)/c where
c = p(s = 1| y = 1). Our PU classifier estimates p(s = 1| x),
the probability of the example to be labeled. In order to

obtain an estimate for p(y = 1| x), the positivity probability,
we need to divide the first probability by an estimate of c.
Three estimators were suggested for c:

e1 ¼ 1
n

X

x∈P

g xð Þ

e2 ¼
X

x∈P

g xð Þ=
X

x∈V

g xð Þ

e3 ¼ max
x∈V

g xð Þ

where g(x) = p(s = 1|x) is the posterior probability ac-
cording to the PU classifier,V is the validation set, and P
is the subset of examples in V that are labeled. We used
the same set V for validation (estimating c) and for test-
ing (estimating probabilities).
Methods e1 and e2 can give estimated probabilities

higher than 1. For the calibration plots and calculation
of BSs, we truncated them at 1 which gave us 1128 and
1897 probabilities that exceeded 1 for e1 and e2,
respectively.
We note that e1 should theoretically have a lower vari-

ance than e3, since it involves averaging multiple samples
instead of using just one [30]. However, we cannot as-
sume that e1 is necessarily more accurate than e3, espe-
cially as the number of positive samples in a validation
set used for e1 calculations is only 32 whereas the e3 set
has a maximum of 3801 probabilities, and as such, might
be more accurate. In practice, we used all three esti-
mates and chose the one that produced the most cali-
brated probabilities to be e3.

Deafness-associated gene annotation
We downloaded lists of genes that were associated with
hearing loss according to the text mining tools DigSeE
[32], DisGeNET [33], and DISEASES [34]. We searched
the disease terms “Hearing Loss” in DigSeE and DisGe-
NET and the “Sensorineural Hearing Loss” in DIS-
EASES. We then converted the human genes returned
by the searches to mouse orthologs using BioMart [69].
In DisGeNET and DISEASES, an association has a score,
but in DiGSeE, the association of gene g is characterized
by the number of articles ng, a and the number of sen-
tences within articles ng, s supporting it. We assigned
this association the score ng;a þ ng;s

max
x∈G

nx;s þ 1 , i.e., the

number of sentences served as a tie breaker if two genes
had the same number of articles. In order to calculate
the ROC scores and BSs, we treated association as a bin-
ary trait and in order to demonstrate the effect of choos-
ing different thresholds, we used Wilcoxon signed-rank
test to compare the scores of genes with a probability
above the threshold with the rest. The score of a gene
not associated with deafness was set to 0. In this
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analysis, we also used a combined association score,
which is the mean rank across the three lists of scores.
We set the minimum “Combined” score to zero.

Deconvolution of heterogeneous tissue samples
Using RNA-seq expression data from [21], we created an
expression signature for each combination of tissue
(cochlea/utricle), age (E16/P0), and type (GFP+/GFP−;
GFP was specifically expressed in hair cells in the trans-
genic mouse used). For the process of deconvolution of
heterogeneous tissue data, limiting signatures to a few
hundred genes, which best separate the reference cell
types, can provide accurate predictions [72, 73]. We
therefore selected a separate subset of genes for each age
using the following heuristics. First, we ranked the genes
in decreasing order of expression variance across the
four reference samples. Then, we took the first k genes
in the list, with k selected to minimize a specific error in
the deconvolution of our mixed data. The error measure
used provides signatures that differentiate well between
cochlear and vestibular origins of tissue (described
below). Once k was determined, we built the expression
signatures, and used them to assess the proportion of
cells, under two different scenarios. In the first, we limited
the cells composing a tissue to cells that originated from
that tissue, while in the other, we allowed the inclusion of
foreign cells mimicking a contaminated sample. The prop-
erty we minimized in the selection of k was the estimated
percentage of contamination in our mixed data under this
second scenario, i.e., the estimated percentage of cochlear
cells in vestibular samples plus the estimated percentage
of vestibular cells in cochlear samples. We tested all pos-
sible ks in the range 1…1000. For E16.5, we chose the
minimizing k = 453, but for P0, we ignored the first local
minimum, which was narrow (~ 5 genes), and instead
chose k = 193 (Additional file 1: Figure S8).
The expression data of the mixture was given in units

of RPKM, and of the reference in counts per million
(CPM). We did not normalize the reference data to the
gene length, because the technique used in [61] of se-
quencing the 3′ end is not biased by gene length. Before
building a signature, we filtered out genes for which the
CPM was less than 1 in any of the conditions (within an
age). The calculation of the variance in the expression of
a gene was done on log-transformed expression.
We used DeconRNASeq to estimate the mixing pro-

portions [61] with the default setting of the R package,
except that we chose not to scale the data. We per-
formed the deconvolution on the log-transformed ex-
pression. This is not generally recommended, specifically
for microarray data, as it introduces a bias [74]. How-
ever, when we tried to work with the expression in the
linear scale without log transformation, our results devi-
ated extremely from what is known about the ratio of

hair cell to supporting cells in both ages. To be specific,
the estimated percentage of hair cells at E16.5 and P0
were ~ 12.5 and ~ 70% in both tissues. The gap is higher
than expected, and, also, the second estimate is much
higher than parallel quantities in other species. In adult
humans between the ages of 27 and 67, 46.5% of the
cells of the crista ampullaris are hair cells [75], and in
hatched chicks, 28.2% of the cells in the utricular macula
are hair cells [76]. Reference samples from E16 were
used to estimate the proportions in our E16.5 samples.
In addition, reference samples originating from the ut-
ricle were used to estimate the composition of our
whole-vestibule samples. The estimation was done for
each sample separately, and the predictions were subse-
quently averaged across each group.
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