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Abstract

Neurodegeneration

Epigenetics defines the persistent modifications of gene expression in a manner that does not involve the
corresponding alterations in DNA sequences. It includes modifications of DNA nucleotides, nucleosomal
remodeling, and post-translational modifications (PTMs). It is becoming evident that PTMs which act singly or in
combination to form "histone codes” orchestrate the chromatin structure and dynamic functions. PTMs of histone
tails have been demonstrated to influence numerous biological developments, as well as disease onset and
progression. Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating and neurodegenerative disease
of the central nervous system, of which the precise pathophysiological mechanisms remain to be fully elucidated.
There is a wealth of emerging evidence that epigenetic modifications may confer risk for MS, which provides new
insights into MS. Histone PTMs, one of the key events that regulate gene activation, seem to play a prominent role
in the epigenetic mechanism of MS. In this review, we summarize recent studies in our understanding of the
epigenetic language encompassing histone, with special emphasis on histone acetylation and histone lysine
methylation, two of the best characterized histone modifications. We also discuss how the current studies address
histone acetylation and histone lysine methylation influencing pathophysiology of MS and how future studies could
be designed to establish optimized therapeutic strategies for MS.
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Background

Epigenetic modifications is the ensemble of mechanisms
of concurrent chromatin modification to modulate glo-
bal patterns in gene expression and phenotype in a herit-
able manner, without affecting the DNA sequence itself,
which can be classified into DNA modifications (methy-
lation and hydroxymethylation) [1], (PTMs) [2], ex-
change of histone variants (e.g., H1, H3.3, H2A.Z,
H2A.X) [3], and as non-coding RNA [4]. Unlike genes,
which remain largely stable across a person’s lifetime,
the epigenome is highly dynamic. To get a better under-
standing of how this works, in 2008, the NIH invested in
an exploration of the epigenome, launching its Roadmap
Epigenomics Mapping Consortium. The project set out
to produce a public resource of human epigenomic data
that would help fuel basic biology and disease research.
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Up to now, the most intensely studied epigenetic
modification is DNA methylation; however, the most di-
verse modifications are on histone proteins. There are at
least eight distinct types of modifications found on his-
tones, including acetylation, methylation, phosphoryl-
ation [5], ubiquitylation [6], sumoylation [7], ADP
ribosylation [8], deamination [9], and prolineisomeriza-
tion [10]. Histone acetylation and histone methylation
are among the most prevalent histone modifications. Re-
searches in the last decades has greatly advanced our
knowledge of not only histone modification but also
modification of non-histone proteins, providing func-
tional diversity of protein-protein interactions, as well as
protein stability, localization and enzymatic activities.
Given the complexity of the topic, in the current review,
we will concentrate specifically on histone acetylation
and histone lysine methylation, of which we now have
the most information.

MS is a chronic debilitating disease that affects the
brain and spinal cord. Familial clustering is one of
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important characteristics of MS, suggesting that a her-
editary factor involved in determining the risk of MS
[11]. However, twin studies showed that monozygotic
twins are genetically identical, but a monozygotic twin
whose co-twin afflicted with MS has only 25% risk of de-
veloping the disease [12]. This suggests that the disease
phenotype results from genetic code itself, as well as the
regulation of this code by other factors. Increasing evi-
dence suggests that epigenetic modifications may hold
the keys to explain the partial heritability of MS risk
[13]. In addition, it is believed that epigenetic mecha-
nisms mediate the response to many environmental in-
fluences including geographic location, month of birth,
Epstein-Barr virus (EBV) infection [14], smoking [15],
and latitude/vitamin D [16], which ultimately affect dis-
ease development. In this review, we propose a view of
MS pathogenesis that specifically involves histone
modulations.

Post-translational histone modifications

Histones are among the most highly conserved proteins
that act as building blocks of the nucleosome, the funda-
mental structural and functional unit of chromatin. The
nucleosome is an octamer, which is wrapped by147 bp
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(H) H2A, H2B, H3, and H4 around, tied together by
linker histone H1 [17]. These five classes of histone pro-
teins, bearing over 60 different residues, constitute the
major protein components of the chromatin and provide
a tight packing of the DNA. Meanwhile, the histones
contain a flexible N-terminus, often named the “histone
tail” [17], which can undergo various combinations of
PTMs, dynamically allowing regulatory proteins access
to the DNA to fine tune almost all chromatin-mediated
processes including chromatin condensation, gene tran-
scription, DNA damage repair, and DNA replication [18]
(Fig. 1). Transcriptionally active and silent chromatin is
characterized by distinct post-translational modifications
on the histones or their combinations. H3K27ac and
H3K4mel are associated with active enhancers [19], and
high levels of H3K4me3 and H3 and H4 acetylation are
found at the promoters of active genes [20, 21]. The
bodies of active genes are enriched in H3 and H4 acetyl-
ation [22], H3K79me3 [23], H2BK120ul, and a progres-
sive shift from H3K36mel to H3K36me3 between the
promoters and the 3" ends [24]. The methylation of
H3K27 and H3K9 have emerged as hallmarks of repres-
sive chromatin and are often found at silent gene loci.
H3K27me3 are associated with the formation of faculta-
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Fig. 1 Schematic presentation of a nucleosome. A nucleosome functions as the fundamental packing unit of chromatin, with a stretch of
double-stranded DNA wrapped around a histone octamer of two H2A-H2B dimers and a (H3-H4) 2 tetramer. Different possible histone
modifications (mainly acetylation and methylation) at core histones and the processes of the modifications are shown
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important roles in the formation of constitutive hetero-
chromatin [25]. H4K20m3 is a novel hallmark of peri-
centric heterochromatin, whereas H4K20m1 regulates
transcription both positively as well as negatively [26],
suggesting that specific histone modifications can have
dual functions. There are many combinations of modifica-
tions that are either occurring together or mutually exclu-
sive, suggesting crosstalk between these marks.
Combinations of PTMs, thus, may be associated with tran-
scription in a manner that was not simply related to their
individual effects. For example, Fischer et al. indicated that
single-code histone acetylation, in particular H3 acetylation
(H3ac), are better predictors of increased transcript levels
than domains containing further modifications [27].
Single-code H3K4dimethylation (H3K4m2) or its combin-
ation with H3K4 tri-methylation (H3K4m3) showed no
positive correlation with transcript levels [27]. It is interest-
ing given that H3K4m3 is known to be associated with
transcription-start sites of actively transcribed genes. The
results from Fischer and his colleague suggested that
H3K4me3 is actually not an optimal marker of active pro-
moters and that the activating effect mainly results from its
frequent colocalization with acetylations [27].

Histone proteins can undergo post-translational modifi-
cations by “writers” and “erasers,” a set of enzymes respon-
sible for the deposition and removal of the chemical
modifications. Through different combinations and
patterns of histone PTMs, they can form the “histone code”
[28]. Then, how are these codes interpreted? There are
several mechanisms that are not mutually exclusive. First,
direct nucleosome-intrinsic effects, particularly by
neutralization or addition of charge, PTMs weaken
histone-DNA interaction and enable generation of a stably
remodeled nucleosome with increased mobility [29]. Such
conventional allosteric regulation usually relies on a highly
specialized population of molecular interactions [30].
Second, in direct nucleosome-extrinsic effects, H4K16 has
been demonstrated to be such a unique histone tail, the
acetylation of which impedes the higher-order chromatin
formation as a result of its modulation of internucleosomal
contacts [31]. Third, the emerging effector-mediated para-
digm posits that histone PTMs are “read” by protein mod-
ules termed as effectors, which translate them into patterns
of gene activation or repression recruiting transcriptional
or chromatin-remodeling machinery [30]. In the past
decade, a wealth of conserved protein-interaction domains
has been characterized as histone effectors, which recognize
and bind histone PTMs specifically in a modification- and
site-specific way. By covalent combinations of PTMs for
binding, modified histone tails may function as integrating
platforms for different chromatin-associated complexes,
permitting them to receive inputs from upstream signaling
cascades and transmit them to the downstream effectors
[32].
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Histone acetylation

Histone acetylation has been shown to be reversible.
The N-terminal domains of histones bear a dozen of ly-
sine residues subject to acetylation, with the exception
of a lysine within the globular domain of H3K56, which
was found to be acetylated in human by GCN5 [33].
This K residue is facing towards the major groove of the
DNA within the nucleosome, so it is in good position to
modulate nucleosome assembly by altering histone-DNA
interactions when acetylated [34].

Readers of acetyl-lysines
The combinatorial effect of histone acetylation can be
deciphered by two distinct, yet overlapping mechanisms—
direct and effector-mediated readout mechanisms. In the
direct mechanism, histone acetylation neutralizes the posi-
tive charge on lysine residues, thus destabilizing the
DNA-histone interaction [35]. This results in an open,
loosely packed chromatin structure (euchromatin) and
consequently allows access for specific transcription fac-
tors and the general transcription machinery [31].
Alternatively, histone lysine acetylation marks may be
interpreted indirectly via the intermediacy of effectors,
which also generally serve to enhance transcriptional ac-
tivation. The recognition of lysine residues is primarily
initiated by bromodomains (BRD) [36]. In general, iso-
lated BRD has been shown to bind to acetylated histones
with relatively low affinity and relatively poor selectivity
[37], yvet, in the presence of multivalent binding, the
specificity and affinity are frequently increased. For ex-
ample, the tandem BRDs of human TATA-binding
protein-associated factor-1 (TAF1) binds to multiple
acetylated histone H4 peptides with increased affinity,
each BRD engaging one acetyl-lysine mark in the same
peptide [38]. In principle, the apposition of two BD
modules rigidly confined in a relative orientation creates
surfaces that are complementary to the spatial distribu-
tions of their substrates in chromatin. Therefore, the dis-
tances between discrete interactions become additional
determinants in dictating specificity [38]. More recently,
it has been demonstrated that two acetylated lysine resi-
dues might be simultaneously recognized by the same
BRD module with significantly increased affinity. For ex-
ample, a single binding pocket of BD1 of BRDT accom-
modates both acetyl-lysines of H4K5acK12ac and
H4K8acK16ac peptides in a wider hydrophobic pocket,
showing much stronger affinity than binding to either
mark individually [39]. Moreover, the acetylated histone
recognition by BD1 is complemented by a novel
BRD-DNA interaction [40]. Simultaneous DNA and his-
tone recognition enhances BRD’s nucleosome binding
affinity, specificity, and ability to localize to and compact
acetylated chromatin [40].
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Writers and erasers of acetylation

KATs, formally named as histone acetyltransferaces (HATs),
can be generally classified into two categories based on sub-
cellular localization. Type A KATs are located in the nu-
cleus, involved in the acetylation of histones in chromatin,
whereas type B KATs, predominantly cytoplasmic, acetylate
newly translated histones to facilitate their transfer to the
chromatin assembly factors [41]. In eukaryotes, the major-
ity of canonical type A KATs has been grouped into three
major families including p300/CBP, GCN5/PCAE, and
MYST proteins [42] (Table 1). Two subfamilies of histone
deacetylases (HDACs) have been identified in humans so
far—Zn2+-dependent (classes I, II, and IV) and Zn2+-inde-
pendent and NAD-dependent (class III). Generally speak-
ing, class I HDACs are ubiquitously expressed and exhibit
strongest enzymatic activity. Class II HDACs have sequence
similarity to the yeast Hdal protein which seems to be
expressed in a more cell-specific manner [43]. They possess
unique 14-3-3 binding sites at their N-termini. Following
phosphorylation, the N-terminal regions recruit 14-3-3,
with consequent export of the HDAC/14-3-3 complex from
the nucleus to the cytoplasm [44, 45]. Thus, phosphoryl-
ation of class I HDACs provides a mechanism for coupling
external signals to the genome. The class III HDACs, or
sirtuins, display NAD+-dependent deacetylase activity and
may specifically interact with and modify dozens of distinct
substrates in various the biological processes.

Histone lysine methylation

Histone methylation occurs at lysine and arginine resi-
dues. In this review, we only focus on histone lysine
methylation due to its prominence and its array of
well-established roles in epigenetic gene control and

Table 1 Enzymatic mechanisms used for histone acetylation
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chromatin domains organization. Histone lysine methyla-
tions have been found on a range of lysine residues in vari-
ous histones, including K4, K9, K27, K36, and K79
residues in histone H3, K20 in histone H4, K59 in the
globular domain of histone H4 [46], and K26 in histone
H1B [47]. Instead of influencing the net charge of the his-
tone tails, methylation of histone tails contributes to regu-
lation of the transcriptional activity by functioning as a
recognition template to recruit effector proteins to local
chromatin [48]. Thus, histone lysine methylation can be
associated with either activation or repression of tran-
scription ultimately determined by the effectors. When
compared with acetylation, histone lysine methylation is a
relatively stable modification with a generally low turnover
[49]. Moreover, methylation is controlled by histone meth-
yltransferases (KMTs) and demethylases (KDMs) that pos-
sess strong substrate specificity (Table 2) (Table 3).

Readers of methylysines

Chromodomain is the founding member of “readers” of
histone methyllysine [50], Besides the well-known
methy-lysine-binding family of chromodomain, a large
family of reader proteins including Tudor, MBT, PWWP,
plant homeodomain (PHD) finger, Ankyrin repeats, and
WD repeats make up the so-called Royal family [51, 52].
Three elements determine the strength and specificity of a
particular methylated lysine reader. The foremost trait of
the methyllysine readers is the presence of an aromatic
cage structure in their binding to methyllysines, consisting
two to four aromatic residues. The exact composition and
size of the pocket make the readers selective in recogniz-
ing mono-, di-, or trimethylated state of lysine. Effectors
for mono- and dimethylation tend to have a small

Canonical members of KAT Former name in human

Histone protein acetylated

Mechanism of catalysis

P300/CBP family

KAT3 Hit-and-run
KAT3A CBP H2A, H2B
KAT3B P300 H2A, H2B
GCNS5 family
KAT2 KAT/Ac-CoA/substrate ternary complex
KAT2A GCN5 H3, H4,H2B
KAT2B PCAF H3
MYST family
KATS Tip60 H4, H2AZ, H2AX Ping-pong mechanism or ternary mechanism
KAT6
KAT6A MOZ/MYST3 H3
KAT6B MORF/MYST4
KAT7 HBO1/MYST2 H4
KAT8 MOF/MYST1 H4
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Table 3 Histone methyltransferases and demethyltransferases

Writers
KMT1
SOV family KMT1A SUV39H1
KMT1B SUV39H2
KMT1C G9a
KMT1D GLP
KMT1E SETDB1
KMT1F SETDB2
KMT2
MLL family KMT2A MLL1
KMT2B MLL2
KMT2C MLL3
KMT2D MLL4
KMT2E MLL5
KMT2F SETTA
KMT2G SET1B
KMT2H ASH1
KMT3
NSD family KMT3A SETD2
KMT3B NSD1
KMT3F NSD3
KMT3G NSD2
SMYD family KMT3C SMYD2
KMT3D SMYD1
KMT3E SMYD3
KMT4 DOTIL
KMT5
KMT5A SET8
KMT5B SUV420H1
KMT5C SUV420H2
KMT6
KMT6A EZH2
KMT6B EZH1
KMT7 SET7/9
KMT8 PRDM2/RIZ1
Erasers
KDM1
KDM1A LSD1
KDM1B LSD2
KDM2
FBXL cluster KDM2A JHDM1A
KDM2B JHDM18B
KDM3
JMID1T cluster KDM3A JMIDTA
KDM3B JMID1B
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Table 3 Histone methyltransferases and demethyltransferases
(Continued)

KDM3C JMID1C
KDM4
JMID2 cluster KDM4A JMID2A
KDM4B JMID28B
KDM4C JMID2C
KDM4D JMID2D
KDM5
JARID1 Cluster KDM5A JARID1A
KDM5B JARID1B
KDM5C JARID1C
KDM5D JARID1D
KDM6
UTX/JMID3 cluster KDMG6A UTX/UTy
KDM6B JMID3
KDM7
KDM7A JHDM1D
KDM7B JHDM1E
KDM7C JHDM1F
KDM8 JMID5

keyhole-like cavity, which leads to steric hindrance to limit
accessibility of a higher methylation state [53]. In contrast,
the binding pockets of effectors for di- and trimethylation
are wider and more accessible, which may also lower the
stringency in the discrimination preferences [53]. Typic-
ally two ways are involved in the recognition of methyl
states. At some lysines, selective effector is recruited to a
specific methylation state. For instance, Pdpl binds to
H4K20mel to facilitate chromatin maturation, whereas
53BP1 in mammals and Crb2 in fission yeast selectively
bind the H4K20me2, required for DNA damage
checkpoint activation [54]. At other sites, methyl states
only influence the binding affinity of the same
histone-methyl-lysine-binding  proteins. For example,
Rpd3S preferentially binds K36me2 and K36me3, with
K36me3 displaying the highest affinity. By contrast, the af-
finity of K36mel to Rpd3S is much lower, similar to that of
the unmodified ones [55]. Secondly, interaction with flank-
ing sequence may impart an additional layer of specificity
for a particular methylated lysine. Free histone peptides are
usually unstructured in aqueous solution. On binding, they
adopt a p-sheet conformation, with extensive contacts with
the flanking sequence of the readers [56]. This pairing inter-
action not only contributes to the overall robustness but
also provides structural basis for functional specificity [53].
At last, methyllysines are located close to the end of a
histone peptide; upon binding, the histone termini can be
buried snugly into a shallow pocket, which greatly facilitates
the overall affinity [53].
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Writers and erasers of histone lysine methylation

KMTs catalyze methylation of lysine residues with high
site- and methyl-level specificity (Table 2). In the last de-
cades, numerous KMTs have been identified and crystal-
lized, which use S-adenosylmethionine (SAM) as a
methyl group donor [57]. Except for KMT4/DOTIL, all
known KMTs contain a conserved SET domain harbor-
ing the enzymatic activity [58]. Based on the similarities
in the sequence within and around the catalytic SET do-
main, as well as homology to other protein modules and
their domain architectures, SET-containing KMTs have
traditionally been categorized into distinct subfamilies
[59].

Histone lysine methylation was previously considered
static and enzymatically irreversible until the first his-
tone KDM—LSD1/KDM1A identified by Shi et al. [60],
which changed our view of histone methylation regula-
tion and ushered in the identification of numerous his-
tone demethylases. Subsequent to the discovery of
KDM1A, a new class of KDM enzymes which comprises
the JmjC domain-containing protein was discovered.
While KDM1A is unable to catalyze the dimethylation
of trimethylated lysine residues owing to its requirement
for imine formation for catalytic activity, the
JmjC-driven demethylase have demethylation activity for
mono-, di-, and trimethylated histone lysine residues. In-
deed, most of the JmjC histone demethylases identified
so far are capable of efficiently catalyzing demethylation
of trimethylated lysines, and in most cases, they prefer-
entially bind the trimethylated substrates [61, 62].

Histone modifications in MS

A core of pathogenetic functions common to both the
immune and neurodegenerative processes of MS has
been characterized by deregulation of MS-risk genes and
resulting dysfunction of their encoding proteins [63].
Epigenetic transcription-regulating mechanisms in nu-
cleated cells including cells of the CNS have been widely
accepted. Therefore, MS-specific alterations in epigen-
etic regulation of chromatin may play a central role in
gene expression and be essential for the initiation and
development of MS. Among which, histone modification
is an important epigenetic mechanism.

Histone modifications in MS susceptibility

Twin studies have established that susceptibility to MS
is partly genetic. One family of major histocompatibility
complex (MHC) genes, the human leukocyte antigen
(HLA) alleles, has identified as a genetic determinant for
MS [64]. In particular, carriage of HLA-DR/DQ serotype
has been identified as a major MS risk allele. Notably,
expression of HLA-DR has been shown to be suppressed
by HDAC1 [65], which suggests that MS susceptibility
loci have histone regulation links.
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Histone modifications in autoimmunity-related
mechanisms

The hallmark of MS and experimental autoimmune en-
cephalomyelitis (EAE) is that myelin injury and axonal
damage driven by an immune-mediated inflammatory
response begins at disease onset. Autoreactive
myelin-specific CD4+ T cells are believed to play a cru-
cial pathogenic role [66]. Upon encountering myelin
antigen, antigen-presenting cells (APCs) acquire a ma-
ture phenotype and migrate to lymph nodes where they
present exogenous antigens to naive CD4+ T cells. Naive
CD4+ T cells may then differentiate into diverse func-
tional subsets, including the T helper (Th) 1, Th2, Th17
cells, and Treg cells [67]. Once activated, CD4+ T cells
are translocated into the CNS by crossing the
brain-blood barrier (BBB) and then are reactivated by
resident APCs (such as microglia) [68], which in turn
initiate the recruitment of other inflammatory cells,
resulting in demyelination and axon injury. While
interferon-y (IFN-y)-associated Thl and interleukin-17
(IL-17)-associated Th17 cells are considered to lead to
disease progression and worsening of symptoms,
IL-4-associated Th2 and transforming growth factor-p
(TGE-p)-associated Treg have been indicated to associ-
ate with inflammation reduction and improvement of
symptoms in MS patients [69].

It is widely accepted that the activation of CD4+ auto-
reactive T cells and their differentiation into a Thl or
Th17 phenotype are crucial events in the initial steps of
MS, though many studies have shown that monocytes
and monocyte-derived macrophages are also the primary
cell types responsible for cellular pathology and tissue
damage. In MS pathology, activated monocytes, which
facilitate the migration of T cells across the blood-brain
barrier (BBB), largely represent the inflammatory infil-
trate [70]. Knowledge on the features of blood mono-
cytes in MS, however, are little understood. Circulating
monocytes, as an important source of cytokines, have
been hypothesized to play a key role in regulating crucial
immune functions. The M1/M2 paradigm is currently
used to categorize the monocyte/macrophage functions
[71], and M1/M2 macrophage balance polarization gov-
erns the fate of an organ in inflammation. Generally, M1
monocytes/macrophages are generally characterized by
an IL-12hi, IL-23hi, tumor necrosis factor (TNF)-ahi,
and IL-10lo phenotype, which produce abundant react-
ive oxygen species and shift the immune response to-
wards a Thl profile [72]. M2 monocytes/macrophages
typically have IL-12lo, IL-23lo, TNF-alo, and IL-10hi re-
sponses to stimulation, which are thought to drive Th2
responses [73].

HDACs have been shown to be closely tied to regula-
tion of CD4+ T cells differentiation and various cyto-
kines production through regulating the changes in
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chromatin structure which then influence gene expres-
sion. Correspondingly, HDAC inhibitors have also been
demonstrated to elicit control over the immune re-
sponse, which in turn suppress systemic and local in-
flammation [74]. Several recent studies have shown the
potential for the use of HDAC inhibitor therapy to in-
hibit the proliferative response of CD4+ T cells and ab-
rogated IFN-y production [75]. A growing literature
indicated that HDAC inhibitors inhibit the proinflamma-
tory cytokine IL-2 expression, which is secreted by Thl
cells, and IL-2 mediated gene expression as well. More-
over, HDAC inhibitors reduce macrophage production
of pro-demyelinating cytokines involved in T helper
(Th) cell differentiation, including IL-12, IL-6, and
TNE-a. Consequently, HDAC inhibitors cause a Thl to
Th2 dominance shift [76], and expanding Tregs, which
by virtue of its immunosuppressive role, may help ameli-
orate MS.

Actually, dysregulated Th cell responses are not
unique for MS pathology, but also a characteristic of a
wide variety of several other inflammatory diseases, in-
cluding inflammatory bowel disease, arthritis, diabetes,
asthma, and allergies [77]. Therefore, compounds that
inhibit HDAC:sS, especially, class I, II, and IV enzymes,
have been pursued as therapeutic agents for a wide
range of inflammatory diseases. However, treating cells
with HDAC inhibitors has also been shown to increase
the expression of cytokines IL-10 [76], contributing to
pro-humoral and protective role in EAE, which, in sys-
temic lupus erythematosus (SLE) cells, actually downreg-
ulated expression of IL-10 and other anti-inflammatory
cytokines [78]. The contrasting effects might reflect
disease-specific effects of these compounds and further
studies are needed.

It is suggested that chromatin remodeling, via histone
lysine methylation, is mechanistically important in the
acquisition of the M2-macrophage phenotype. Ishii et al.
demonstrated that at the promoters of the M2 marker
genes, H3K4me3 was significantly upregulated, whereas
H3K27me2/3 was significantly decreased. Increased
Jmjd3 contributes to the decrease of H3K27me2/3 marks
and skews macrophages to an M2 phenotype [79].
Therefore, target gene regulation by histone Lysine
methylation is a dynamic process that modulates inflam-
matory responses in the development of a variety of
autoimmune diseases, including MS.

Recent studies demonstrated that KDM6 modulate
immune functions by determining Th cell maturation
and egress from the thymus [80], as well as CD4+ Th
cell lineage differentiation [66], thereby significantly af-
fecting immune responses in multiple biological systems.
It is reported that Jmjd3 positively regulate the differen-
tiation of Th17 cells, which play critical roles in proin-
flammatory reactions in autoimmue disorders, such as
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rheumatoid arthritis and systemic lupus erythematosis
[81]. Jmjd3-deficient mice were demonstrated to be re-
sistant to the induction of EAE [66]. Correspondingly,
H3K27 demethylase-specific inhibitor GSK-J4 markedly
inhibited Th17 cell differentiation in vitro [66]. However,
another independent research demonstrated that while
Thl and Th17 differentiation were not affected, 10 or
25 nM GSK-J4 significantly increased differentiation of
anti-inflammatory Treg cells in vivo, which could partly
explain the beneficial effects of GSK-J4 on EAE. GSK-J4
promoted Treg differentiation was proposed to be
dependent on its direct effect on the maturation status
of dendrite cells (DCs). DCs, the professional APC, be-
ing the key players in maintaining immune tolerance,
now have gained increasing attention [82]. Specifically,
H3K27me3 demethylase activity would skew DC differ-
entiation towards a tolerogenic phenotype [83]. Accord-
ingly, through altering the permissive H3K4me3/
repressive H3K27me3 ratio at specific gene promoters,
GSK-J4 induced a tolerogenic phenotype on DCs and
subsequently inhibited the development of EAE [83].

Moreover, T cell anergy is thought to be a critical
mechanism for preventing autoimmunity and failure of
this tolerance mechanism causes MS [84]. The upregu-
lated Sirtl protein has been demonstrated to suppress T
cell activation and lead to anergy induction in mice.
Conversely, Sirtl deficiency was reported to result in in-
creased T cell activation and failed to maintain CD4+ T
cell tolerance and increased susceptibility to EAE [85].
Mice with DC-specific deletion of SIRT1 showed re-
markable resistance to EAE through enhanced IL-27 and
IEN-B activation, two anti-inflammatory cytokines that
negatively regulate Th17 cell differentiation [86]. These
findings make the role of HDAC in MS quite controver-
sial (Fig. 2).

Histone modifications in myelin destruction

Another cardinal feature of multiple sclerosis is the fail-
ure of remyelination caused by impaired differentiation
of endogenous oligodendrocyte progenitor cells (OPCs).
Unlike other neuronal lineages, in the oligodendrocyte
lineage, high levels of histone acetylation are important
in undifferentiated progenitor cells [87], which favor the
expression of transcriptional repressors of myelin gene
expression. Increased histone H3 acetylation in oligo-
dendrocytes is associated with high levels of transcrip-
tional inhibitors of oligodendrocyte differentiation which
subsequently might lead to impaired remyelination in
patients with MS [88]. Conversely, histone deacetylation
enables expression of an oligodendrocyte transcriptional
profile during developmental myelination, as well as
remyelination [87]. While a large number of oligoden-
drocytes with deacetylated histone was observed in early
MS lesions, a shift towards high levels of histone
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acetylation has been detected in oligodendrocyte lineage
cells within normal-appearing white matter (NAWM) in
the brain of patients with chronic MS [89]. The data
suggested negative correlations between histone deacety-
lation efficiency and duration of disease.

Histone modifications in neurodegeneration

For decades, MS research has heavily focused on inflam-
matory white matter pathology. However, recent studies
have discovered neurodegenerative components of the
disease such as insidious axonal degeneration and neur-
onal atrophy, which seem to be the histopathological
correlates of progressive clinical disability in MS patients
[90]. Mitochondrial injury and subsequent energy failure
are indicated as key factors in the induction of neurode-
generation. Betaine, a methyl donor, was found to be de-
creased in MS cortex, which was correlated with
decreased H3K4me3 in neuronal (NeuN+) nuclei in MS
cortex, in comparison to controls [91]. Mechanistic
studies demonstrated that reduced methylation of
H3K4me3 may result in the downregulation of oxidative
phosphorylation genes and defects of respiratory chain
enzymes in MS cortex [91]. A recent study showed that
variant carriers of certain HDAC genes, including
mitochondrial-related gene variants in SIRT4 and SIRTS5,
have been linked to more pronounced brain volume loss

(atrophy) during the clinical course of MS [92]. These
results indicate that the histone modifications might be
centrally linked with neurodegenerative processes in MS.

Potential treatment methods based on epigenetic
mechanisms

Disturbance of transcriptional balance may promote dys-
regulation of immune system and neurodegeneration,
both of which contribute to the clinical profile of MS.
Animal model experiments support that deliberate epi-
genetic reprogramming for oligodendrocyte, immune
cells, and neurons to perform properly may be a poten-
tial therapeutic strategy for MS.

There is a growing list of pharmacological agents that
affect histone PTMs, among, which the most studied
and used are histone deacetylase inhibitors (HDACI).
For example, Camelo et al. showed that intraperitoneal
administration of the HDACI, Trichostatin A (TSA) at-
tenuated inflammation, reduced demyelination and
axonal loss, and thus decreased disease severity in mice
with spinal cord homogenate induced EAE [74]. The
HDACI, vorinostat (SAHA), was shown to suppress DCs
function and ameliorate EAE in C57BL/6 female mice
[93]. VPA administration suppresses systemic and local
inflammation to improve outcome of EAE in Lewis rats
[94]. Likewise, curcumin, which inhibits the activity of
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KATs, has been shown to ameliorate EAE through sup-
pression of inflammatory cells infiltration in the spinal
cord [95]. As previously mentioned, systemic administra-
tion with the epigenetic drug GSK-J4 prevented the de-
velopment of EAE in mice [83]. Thus, the inhibitors of
histone deacetylation or demethylation may be promis-
ing agents for MS treatment. However, systemic use of
HDAC:s negatively affects the generation of new myelin
since histone deacetylation is important for progenitor
cell differentiation into myelin-forming oligodendrocytes
[96] and is critical for remyelination efficiency in adults
[88], as we reviewed previously. The potential detrimen-
tal consequence on myelin might counteract the beneficial
effects, thus cautioning against the use of broad inhibitors
of histone deacetylases in MS. Therefore, more targeted
therapy that specifically epigenetically modifies certain
pathogenic loci need to be developed. In the recent years,
the CRISPR-dCas9 system is poised to become the most
promising targetable epigenome-editing tools. The results
of two recent seminal studies have strongly supported the
capability of epigenome editing by a CRISPR-Cas9 to acti-
vate or silence transcription by targeting histone PTMs
[97, 98]. Moreover, CRISPR-dCas9 epigenome-editing ap-
proach has been demonstrated to produce long-lasting
changes in expression of targeted genes both in vitro and
in vivo. Its simplicity and efficiency may facilitate the
clinical application of this technology by avoiding repeti-
tive or chronic administration. However, the research on
CRISPR-mediated technology is still in its early stage, and
it is important to continue to probe for its feasibility and
safety for clinical purposes. An additional challenge for
treating MS with these inhibitors is the lack of specificity,
which would cause a relatively high risk of adverse effects.
Correspondingly, successful epigenetic therapy would be
the tissue specificity of the therapeutic effect.
Receptor-coated nanoparticles or microvesicles as highly
effective drug carriers pertaining to BBB may hold great
promise in MS therapy. Several studies have recently
demonstrated that treatment of mice with nanoparticles
effectively decreased EAE progression [99]. Collectively,
translational use of epigenetics might offer hope for a new
class of therapeutics to treat MS and the development of
targeted epigenetic therapies open new avenues for
effective personalized treatment of patients with MS.

Conclusion

MS is the most prevalent autoimmune disease with highly
variable clinical course and disease progression, in which
the main common pathogenetic pathway involves an
immune-mediated cascade [100]. Recently, huge steps
have been made in the field of MS immunotherapy. More-
over, emerging evidence has shed light on the epigenetic
mechanisms contributing MS. Several epigenetic drugs
which are in clinical trials or under investigation in human
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diseases have been proven to have immunomodulatory ef-
fects [101]. In addition, other expected changes also may
occur in response to epigenetic treatment. In particular,
histone PTMs in regulation of myelination and degener-
ation gene associated with MS and amelioration of EAE
symptoms by drugs with PTM effects, such as HDAC in-
hibitors and KDM inhibitors, all emphasize the critical
role of histone PTMs in the pathogenesis of MS. The
amalgamation and crystallization of histone PTMs re-
search and MS promises novel pleiotropic treatment
strategies. However, given the potential for off-target po-
tential to cause deleterious effects from HDAC and KDM
inhibitors with broad activity, the endeavor to completely
understand molecular mechanisms governing histone
modifications and their precise molecular targets will hold
the key to successfully translate the drug candidates to
clinical practice.
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