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Abstract

Background: Studying epigenetics is expected to provide precious information on how environmental factors
contribute to type 2 diabetes mellitus (T2DM) at the genomic level. With the progress of the whole-genome
resequencing efforts, it is now known that 75–90% of the human genome was transcribed to generate a series
of long non-coding RNAs (lncRNAs). While lncRNAs are gaining widespread attention as potential and robust
biomarkers in the genesis as well as progression of several disease states, their clinical relevance and regulatory
mechanisms are yet to be explored in the field of metabolic disorders including diabetes. Despite the fact that
Asian Indians are highly insulin resistant and more prone to develop T2DM and associated vascular complications,
there is virtually lack of data on the role of lncRNAs in the clinical diabetes setting. Therefore, we sought to evaluate
a panel of lncRNAs and senescence-inflammation signatures in peripheral blood mononuclear cells (PBMCs) from
patients with type 2 diabetes (T2DM; n = 30) compared to individuals with normal glucose tolerance (NGT; n = 32).

Results: Compared to control subjects, expression levels of lncRNAs in PBMCs from type 2 diabetes patients showed
significantly (p < 0.05) increased levels of HOTAIR, MEG3, LET, MALAT1, MIAT, CDKN2BAS1/ANRIL, XIST, PANDA, GAS5,
Linc-p21, ENST00000550337.1, PLUTO, and NBR2. In contrast, lncRNA expression patterns of THRIL and SALRNA1 were
significantly (p < 0.05) decreased in patients with T2DM compared to control subjects. At the transcriptional level,
senescence markers (p53, p21, p16, and β-galactosidase), proinflammatory markers (TNF-α, IL6, MCP1, and IL1-β), and
epigenetic signature of histone deacetylase-3 (HDAC3) were significantly (p < 0.05) elevated in patients with type 2
diabetes compared to control subjects. Interestingly, mRNA expression of Sirt1 and telomere length were significantly
(p < 0.05) decreased in patients with type 2 diabetes compared to control subjects. Majority of the altered lncRNAs
were positively correlated with poor glycemic control, insulin resistance, transcriptional markers of senescence,
inflammation, and HDAC3 and negatively correlated with telomere length. Logistic regression analysis revealed
a significant association of altered lncRNA signatures with T2DM, but this association was lost after adjusting for
insulin resistance (HOMA-IR) and senescence markers.

Conclusion: Our study provides a clinically relevant evidence for the association of altered lncRNAs with poor
glycemic control, insulin resistance, accelerated cellular senescence, and inflammation.
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Introduction
According to the latest edition of International Diabetes
Federation Atlas [1], around 425 million people world-
wide have diabetes and India alone harbors more than
73 millions of people with diabetes. While more than
90% of the diabetic population is affected majorly by
type 2 diabetes mellitus (T2DM), it is a complex
multi-factorial disease involving genetic, epigenetic, and
environmental components. Several studies imply that
accelerated aging, cellular senescence, and proinflamma-
tion are closely linked to the etiology of type 2 diabetes
and insulin resistance [2, 3]. Although the association
between the proinflammation and senescence in the de-
velopment of insulin resistance and type 2 diabetes is
well known, the underlying molecular mechanisms and
upstream regulatory networks are only poorly under-
stood. Epigenetics appears to play a major role in the
regulation of inflammation and cellular senescence—the
dual pathological features commonly associated with
type 2 diabetes [4]. Aberrant epigenetic modifications
such as DNA methylation, histone modification, and
non-coding RNA alterations are well-recognized drivers
for the cancer phenotype, but the accumulating evidence
also implies their role in the etiology of diabetes and car-
diovascular diseases.
Of the total genome that is transcribed, only 2% codes

for proteins, whereas the vast majority of it is transcribed
as non-coding RNAs which include long non-coding
RNAs (lncRNAs), microRNAs, and others [5]. Of late,
lncRNAs have gradually come into the spotlight for the
increased appreciation of their functional importance both
in health and disease [6]. lncRNAs were also found next
to protein-coding genes that are under tight transcrip-
tional control, and often, their expression pattern corre-
lates with tissue differentiation, development, and disease
[7]. The widespread dysregulation of lncRNA expression
in several disease states and the finding that many
lncRNAs are enriched for SNPs that associate with human
traits/diseases have highlighted their role as master regula-
tors [8, 9]. Challenging the concept that protein-coding
genes are the sole contributors to the development of hu-
man disease, recent studies emphasize that lncRNAs me-
diate disease pathogenesis and hence should be studied
and targeted for therapeutic benefits [10]. Accumulating
literature on genetic, experimental, and epidemiological
studies also highlights a growing list of lncRNAs that con-
trol glucose homeostasis and contribute to the pathogen-
esis of diabetes and its complications. Despite the fact that
Asian Indians are highly insulin resistant [11] and more
prone to develop T2DM and associated vascular compli-
cations [12], there is lack of data on the role of lncRNAs
in the clinical diabetes setting and this is the rationale
behind our study. Therefore, we planned to study the po-
tential interactions among insulin resistance, cellular

senescence, and proinflammation with a central focus on
lncRNAs so as to better understand the clinical signifi-
cance of these molecular perturbations in type 2 diabetes.

Research design and methods
Recruitment of the study subjects
Study participants with normal glucose tolerance (NGT;
n = 32) and patients with type 2 diabetes (T2DM; n = 30)
were recruited from Dr. Mohan’s Diabetes Specialties
Centre, Chennai, India, and from the ongoing epidemio-
logical cohorts. The study was approved by the institu-
tional ethics committee of the Madras Diabetes Research
Foundation and conducted according to the principles of
Declaration of Helsinki. Written informed consent was
obtained from all the study participants prior to the start
of the study. All the study participants were clinically well
characterized into respective groups according to the
World Health Organization (WHO) classification criteria.
While all the diabetic patients were on oral hypoglycemic
agent (OHA) treatment, < 10% were also on insulin, in
addition to OHA.

Anthropometric measurements
Anthropometric measurements including weight, height,
and waist circumference were obtained using standardized
techniques. Height was noted down with a tape measured
to the nearest centimeter. Weight was measured with
traditional spring balance that was kept on a firm horizon-
tal surface. Body mass index (BMI) was calculated using
the formula: weight (kg)/height (m2). Waist circumference
was measured using a non-stretchable fiber measuring
tape. Blood pressure was recorded from the right arm in a
sitting position to the nearest 2 mmHg with a mercury
sphygmomanometer (Diamond Deluxe BP apparatus,
Pune, India). Two readings were taken 5 min apart, and
the mean of the two readings was represented as the blood
pressure.

Biochemical and clinical investigations
Fasting plasma glucose (glucose oxidase–peroxidase
method), serum cholesterol (cholesterol oxidase–peroxid-
ase–amidopyrine method), serum triglycerides (glycerol
phosphate oxidase–peroxidase–amidopyrine method), and
HDL cholesterol (direct method–polyethylene glycol-pre-
treated enzymes) were measured using Hitachi-912 Autoa-
nalyser (Hitachi, Mannheim, Germany). The intra and
inter assay co-efficient of variation for the biochemical as-
says was < 5%. Low-density lipoprotein (LDL) cholesterol
was calculated using the Friedewald formula [13]. Glycated
hemoglobin (HbAlc) was estimated by high-pressure liquid
chromatography using the variant analyzer (Bio-Rad,
Hercules, Calif., USA). Serum insulin was estimated using
enzyme-linked immunosorbent assay (Calbiotech, CA). In-
sulin resistance was calculated using the homeostasis
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assessment model (HOMA-IR) using the formula: fasting
insulin (μIU/mL) × fasting glucose (mmol/L)/22.5.

Blood collection and isolation of peripheral blood
mononuclear cells (PBMCs)
Fasting blood (5–8 mL) was collected into the vacutainer
tube and processed immediately for cell isolation within
2 h from the time of collection. Blood was processed for
peripheral blood mononuclear cell (PBMC) isolation using
Histopaque-1077 (Sigma-Aldrich) according to the stand-
ard protocol by overlaying the blood on density gradient
solution and centrifugation at 1500–1800 rpm for 30 min.
The buffy coat layer containing the PBMCs was aspirated,
washed thrice with phosphate-buffered saline (PBS;
pH 7.2–7.4), and aliquoted for various experiments.

RNA extraction and cDNA synthesis
Total RNA was extracted using TRIzol reagent (Invitro-
gen) according to the manufacturer’s protocol. RNA
quantity and quality were assessed by NanoDrop 2000
(Thermo Scientific) instrument. For the first-strand
cDNA synthesis reaction, total RNA (1 μg) was adjusted
with nuclease-free water and mixed with the cDNA syn-
thesis master mix containing 100 units of RevertAid
M-MuLV reverse transcriptase enzyme and 2× buffer,
random hexamer primers (1×), 20 units of RNase inhibi-
tor, and 10 mM dNTP solution mix. The resultant sam-
ples were incubated at 42 °C for 60 min for the
first-strand cDNA synthesis followed by a 5-min incuba-
tion at 95 °C for enzyme deactivation. cDNA reaction
negative control without reverse transcriptase enzyme
(−RT) was also performed.

lncRNA/mRNA expression by Q-PCR
A panel of lncRNAs was chosen for this study based on
their involvement in metabolic disorders as well as their
emerging roles in senescence [14, 15]. The relative expres-
sion of the lncRNA/mRNA signatures were analyzed by
preparing reaction mixer with FastStart Universal SYBR
Green Master (Roche) and the corresponding gene-specific
primers (Sigma) with diluted cDNA and final volume made
up to 20 μL using nuclease-free water. Quantification and
analysis were carried out in LightCycler® 96 real-time PCR
System (Roche). The target gene expression was normal-
ized to the house-keeping gene 18SrRNA (lncRNA) and
β-actin (mRNA), and relative expression was determined
using 2−ΔΔCT method. Non-template control (NTC) was
also performed for each reaction assay plate.

DNA isolation and measurement of telomere length
For the measurement of telomere length, DNA was iso-
lated from the whole blood by phenol–chloroform ex-
traction and ethanol precipitation [16]. Relative telomere
length was determined by real-time PCR approach as

previously described by Cawthon [17] with a minor modi-
fication in the PCR temperature conditions. This method
measures the factor by which the ratio of telomere repeat
copy number to single-gene copy number differs between
a sample and that of a reference DNA sample. PCR ampli-
fication was achieved using telomere (T) and single copy
gene, 36B4 (encodes acidic ribosomal phosphoprotein)
primers (S), which serves as a quantitative control. The
mean telomere repeat gene sequence (T) to a reference
single copy gene (S) was represented as T/S ratio—a re-
flection of relative telomere length [3].

Statistical analysis
All data are represented as mean ± standard error mean
(SEM) unless otherwise mentioned as standard deviation
(SD). Based on our pilot study on the expression levels of
lncRNAs and using the SPSS software, the minimum sam-
ple size required for the study was calculated as 28 in each
group considering the level of significance set at 0.05 and
the statistical power at 0.90. Comparison between groups
was performed using the independent sample Student t
test with p < 0.05 as the criterion for statistical signifi-
cance. Pearson correlation analysis was done between var-
iables and the risk factors. Binary logistic regression
analysis was performed to show the association between
lncRNAs (independent variable) and diabetes (dependent
variable). All analyses were done using SPSS Statistics
(version 20.0) and GraphPad Prism (version 6).

Results
Clinical and biochemical characteristics of the study
groups
Clinical and biochemical characteristics of the study sub-
jects are depicted in Table 1. BMI and waist circumference
were slightly and significantly higher in patients with type
2 diabetes compared to control subjects. Patients with
type 2 diabetes exhibited significantly (p < 0.001) increased
fasting plasma glucose and HbA1c compared to the con-
trol subjects. T2DM patients were also hyperinsulinemic
and insulin resistant as characterized by significantly ele-
vated fasting insulin levels and HOMA-IR values, respect-
ively. Blood pressure and lipid parameters did not differ
significantly between the groups.

Altered lncRNA signatures in T2DM
Compared to control subjects, expression profiling of
lncRNAs in PBMCs from type 2 diabetes patients showed
significantly (p < 0.05) increased levels of HOTAIR,
MEG3, LET, MALAT1, MIAT, CDKN2BAS1/ANRIL,
XIST, PANDA, GAS5, Linc-p21, ENST00000550337.1,
PLUTO, and NBR2 (Fig. 1). In contrast, lncRNA expres-
sion patterns of THRIL and SALRNA1 were significantly
(p < 0.05) decreased in patients with T2DM compared to
control subjects (Fig. 1).
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Augmentation of HDAC3 and impaired Sirt1 expression in
T2DM
Transcriptional profiling revealed that mRNA expression
of HDAC3 was significantly (p < 0.05) increased while
the Sirt1 level was significantly (p < 0.05) decreased in

patients with type 2 diabetes compared to control sub-
jects (Fig. 2).

Altered senescence, inflammation, and telomere length in
T2DM
At the transcriptional level, senescence markers, viz.,
p53, p21, p16, and β-galactosidase 1 (GLB1), were sig-
nificantly (p < 0.05) elevated in patients with type 2 dia-
betes compared to control subjects (Fig. 3a). As a final
read-out of augmented cellular senescence, patients with
T2DM were also characterized by significantly (p < 0.05)
shortened telomeres compared to control subjects
(Fig. 3b). Interestingly, mRNA expression levels of proin-
flammatory gene mediators, viz. TNF-α, IL6, MCP1 and
IL1-β, were also significantly upregulated (p < 0.05) in
PBMCs from patients with type 2 diabetes, implying an
acquisition state of senescence-associated secretory
phenotype (Fig. 4).

Correlation analysis
A detailed correlation analysis of lncRNAs with various
clinical and biochemical parameters (Additional file 1:
Table S1) and molecular parameters (Additional file 2:
Table S2) of the study subjects were summarized in the
supplement tables. Majority of the altered lncRNAs were
positively correlated with poor glycemic control, insulin
resistance, transcriptional markers of senescence, inflam-
mation, and HDAC3 and negatively correlated with telo-
mere length. In contrast, expression levels of lncRNAs,
viz., SALRNA1 and THRIL, were negatively correlated
to glycemic control, insulin resistance, markers of senes-
cence, inflammation, and HDAC3 and positively corre-
lated to telomere length.

Logistic regression analysis
Logistic regression analysis using type 2 diabetes as
dependent variable revealed that altered expression
levels of lncRNAs, viz., PLUTO, ENST00000550337.1,
CDKN2BAS1, LincRNA-P21, HOTAIR, GAS5, XIST,
PANDA, NBR2, MIAT, MEG3, LET, MALAT1, SAL-
RNA1, and THRIL, were associated significantly with
T2DM, and this statistical significance was persisted
even after adjusting for confounding factors like age and
BMI. Interestingly, this statistical association was lost
when adjusted for HOMA-IR and senescence markers.
This implies that the association between lncRNAs and
T2DM could be closely linked to insulin resistance and
accelerated senescence with downstream inflammatory
signaling (Table 2).

Discussion
Recent literature implies that the dysregulation of
lncRNA expression and functionality contributes to sev-
eral pathophysiological states as several lncRNAs get

Table 1 Clinical and biochemical characterization of the study
subjects

Parameter Normal glucose
tolerance [NGT]
(n = 32)

Type 2 diabetes
mellitus [T2DM]
(n = 30)

p value

Age (years) 44 ± 8 46 ± 8 0.218

Gender—male (female) 18 (14) 18 (12) –

Body mass index (kg/m2) 25 ± 3.1 27 ± 4 0.015

Waist circumference (cm) 85 ± 8 94 ± 9 < 0.001

Fasting plasma glucose
(mg/dL)

87 ± 9 136 ± 24 < 0.001

Glycated hemoglobin—
HbA1c (%)

5.6 ± 0.34 8.1 ± 1.9 < 0.001

HOMA-IR 1.8 ± 0.8 6.9 ± 3 < 0.001

Fasting insulin (μIU/mL) 8.6 ± 3.5 22 ± 7.2 < 0.001

Systolic blood pressure
(mmHg)

120 ± 25 131 ± 21 0.079

Diastolic blood pressure
(mmHg)

79 ± 13 80 ± 8 0.795

Total cholesterol (mg/dL) 174 ± 28 169 ± 37 0.545

Serum triglycerides (mg/dL) 132 ± 71 138 ± 49 0.737

HDL cholesterol (mg/dL) 41 ± 10 39 ± 7 0.352

LDL cholesterol (mg/dL) 107 ± 21 102 ± 34 0.568

VLDL 27 ± 14 28 ± 10 0.732

Data represented as mean ± SD. Italicized value represents statistically
significant compared to NGT

Fig. 1 Quantitative real-time PCR analysis of a panel of lncRNA
expression levels in PBMCs from the study groups (NGT vs T2DM).
Bars represent the mean ± SEM; *p value < 0.05 compared to
control subjects
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Fig. 2 Quantitative real-time PCR analysis of HDAC3 and SIRT1 in PBMCs from the study groups (NGT vs T2DM). Bars represent the mean ± SEM;
*p value < 0.05 compared to control subjects

Fig. 3 Quantitative real-time PCR analysis of senescence marker gene expression levels, viz., GLB1, P53, P21, and P16 (a), and telomere length (b)
in PBMCs from the study groups (NGT vs T2DM). Bars represent the mean ± SEM; *p value < 0.05 compared to control subjects
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validated as bona fide prognostic/diagnostic markers and
drug targets [9, 18, 19]. The role of lncRNAs in the
pathogenesis of type 2 diabetes mellitus and related
complications has only recently been recognized, but
there is already some evidence for their involvement in
many of the pathophysiological mechanisms that are
linked to the genesis and progression of disease [20, 21].
Despite the fact that Asian Indians are highly insulin re-
sistant [10], more prone to develop type 2 diabetes

mellitus (T2DM) and associated vascular complications
[11], and exhibit increased susceptibility to early β-cell
dysfunction [22], there is virtually lack of data on the
role of lncRNAs in the clinical diabetes setting. Our
study is the first report from India to show an associ-
ation of altered signatures of lncRNAs in T2DM with
pathological connectivity reflected by poor glycemic
control, insulin resistance, accelerated cellular senes-
cence, and meta-inflammation.

Fig. 4 Quantitative real-time PCR analysis of inflammatory signature gene expression levels, viz., TNFα, IL6, MCP1, IL1β, and SOCS3 in PBMCs from
the study groups (NGT vs T2DM). Bars represent the mean ± SEM; *p value < 0.05 compared to control subjects

Table 2 Binary logistic regression analysis using type 2 diabetes as dependent variable

Unadjusted Adjusted for age
and BMI

Adjusted for
HOMA-IR

Adjusted for senescence markers
(GLB, P53, P21, P16, and TL)

Adjusted for inflammatory markers
(TNF-α, IL6, MCP1, IL1-β, and SOCS3)

β p β p β p β p β p

PLUTO 1.721 0.005 1.827 0.003 23.673 0.063 1.848 0.210 2.204 0.025

ENST00000550337.1 2.023 0.004 1.925 0.013 2.984 0.132 33.73 0.184 4.026 0.038

CDKN2BAS1 3.173 0.006 4.925 0.002 4.188 0.068 2.741 0.100 2.995 0.044

lincRNA-p21 1.867 0.021 1.970 0.033 3.492 0.096 2.283 0.311 6.395 0.013

HOTAIR 4.348 0.001 5.256 0.001 2.556 0.342 1.651 0.524 8.125 0.015

GAS5 10.642 0.001 14.054 0.001 20.820 0.226 22.512 0.128 12.214 0.069

XIST 0.388 0.003 3.824 0.004 3.677 0.145 2.318 0.386 3.166 0.024

PANDA 7.960 0.003 15.737 0.002 30.052 0.041 27.726 0.151 3.548 0.253

NBR2 2.045 0.041 1.728 0.159 1.496 0.522 1.869 0.443 2.675 0.141

RNCR3 1.464 0.144 1.650 0.065 1.795 0.394 1.582 0.410 1.740 0.225

MIAT 6.591 0.002 5.293 0.012 8.383 0.235 8.753 0.181 5.388 0.118

MEG3 5.669 0.013 6.444 0.017 17.060 0.141 12.830 0.063 57.903 0.023

LET 7.116 0.014 5.806 0.036 6.736 0.068 4.399 0.534 2.079 0.584

MALAT1 9.945 0.008 5.156 0.046 4.712 0.193 12.858 0.343 33.033 0.086

GM4419 2.468 0.104 2.142 0.242 3.254 0.232 4.832 0.293 1.937 0.433

SALRNA1 0.161 0.013 0.114 0.009 0.029 0.127 0.072 0.057 0.092 0.100

THRIL 0.047 0.001 0.529 0.001 0.013 0.084 0.063 0.139 0.333 0.271

Sathishkumar et al. Human Genomics  (2018) 12:41 Page 6 of 9



Our study is in consistent with the recent literature of
several lncRNAs upregulated in diabetes state. In sup-
port of our findings, increased expression of GAS5 [23]
and lncRNA ENST00000550337.1 [24] was reported in
type 2 diabetes even with high diagnostic claim and bio-
marker value. A role for lncRNAs XIST [25] and
GM4419 [26] was implicated in diabetic nephropathy
while alterations in PANDA [27] and NBR2 [28] P21
[29] were linked to cellular senescence, AMPK regula-
tion, and liver fibrosis, respectively. Expression levels of
lncRNA-LET was shown to be decreased in a certain
type of cancers [30], but we observed it to be upregu-
lated in patients with type 2 diabetes. MIAT is identified
to be involved in various diseases, particularly myocar-
dial infarction, diabetic retinopathy, and various other
microvascular complications [31]. Similarly, lncRNA
RNCR3 was shown to be increased in retinal vasculature
of an animal model as well as in vitro cell model [32].
While lncRNA PLUTO has been shown to be downreg-
ulated in islets from donors who are patients with type 2
diabetes and pre-diabetes subjects [33], our study
observed a highly significant upregulation of PLUTO in
patients with type 2 diabetes. Previous studies also re-
ported that upregulated expression of lncRNA MALAT1
was linked to hyperglycemia-induced inflammation and
endothelial dysfunction [34], diabetic nephropathy [35],
and gestational diabetes mellitus [36]. In vitro studies
demonstrated that HOTAIR interacts with the various
chromatin-modifying enzymes and thereby participates
in the regulation of gene expression [37]. A functional
role for HOTAIR in the diabetes pathogenesis is yet to
be established; however, its role has been hinted to be
associated with regional adiposity [38]. lncRNA MEG3
has an important regulatory role in beta cell function [39],
and the knock-down of MEG3 has been shown contribut-
ing to the pathology of diabetic microvascular complica-
tion [40]. In contrast, MEG3 gene expression was shown
upregulated in the hepatocytes from mice fed with
high-fat diet as well as in ob/ob mice and this has been
linked to increased hepatic gluconeogenesis [41].
Our study provides the first preliminary evidence that

expression of the long non-coding RNAs, THRIL, and
SALRNA1 were decreased in patients with type 2
diabetes and negatively correlated with hyperglycemia,
senescence, and inflammation. THRIL was shown to
regulate TNF-α expression through an epigenetic
mechanism, and TNF-α can also reduce THRIL ex-
pression via a negative feedback action [42]. Similarly,
SAL-RNA1 was earlier identified as putative age-
delaying lncRNA, since its reduction with small inhibi-
tory RNAs (siRNA) induced rapid aging changes of
the fibroblasts, such as large cell morphology, positive
β-galactosidase activity, and upregulation of p53 [43].
Notably, lncRNA ANRIL shown upregulated in our

study was also linked to CDKN2A/B, a strong type 2
diabetes risk gene variant [44, 45].
It is interesting to note that the majority of differentially

expressed lncRNAs in patients with type 2 diabetes ob-
served in our study are involved in cell cycle regulation
and senescence and their expression levels correlated to
poor glycemic control, insulin resistance, accelerated sen-
escence, and inflammation. Several lncRNAs were re-
ported to influence the molecular processes that underlie
age-associated phenotypes and play an important role in
accelerated aging [4, 46]. Type 2 diabetes has been linked
to cellular senescence, senescence-associated secretory
phenotype (SASP), and accelerated aging [47, 48], and our
lab was the first one in the world literature to report an
association of increased telomere shortening in patients
with type 2 diabetes [2, 3]. Earlier, we have also shown in-
creased HDAC3 epigenetic signature in patients with type
2 diabetes [49], and in the present study, there was a posi-
tive correlation of HDAC3 mRNA expression with major-
ity of the lncRNAs and this endorses the concerted and
coordinated interactions between lncRNAs and histone
modifications [50].
Our work offers an avenue for several translational ap-

plications including a role of lncRNAs in lifestyle changes.
Recent findings suggest a putative role of non-coding
RNAs in physical activity and several miRNAs have been
identified as modulators of exercise-induced adaption at
both systemic and tissue levels [51]. Contrast to miRNAs,
little is known about the role of long non-coding RNAs
(lncRNAs) in exercise. Identification of the role of
lncRNAs in exercise will improve our understanding of
exercise physiology and has the potential to enhance the
application of current therapeutic approaches. In fact, a
micropeptide encoded by a putative lncRNA has been
shown to regulate muscle performance [52]. Although
very little is known about the relationship between
lncRNAs and dietary factors, it appears that dietary ma-
nipulation could also beneficially alter the expression of
lncRNAs and thereby ensure health [53].
One of the limitations of our study is of its cross-sec-

tional nature as well as small sample size, and hence, the
findings of the study and its conclusions should be
interpreted with caution. From this pilot study, we could
not extrapolate causal link of alterations in lncRNAs
with type 2 diabetes, and it needs replication and pro-
spective follow-up studies. Secondly, considering the
tissue-specific and heterogeneous actions of lncRNAs,
the alterations seen in PBMCs might only mirror
disease-pathology directionality. However, the altered ex-
pression profile of lncRNAs in PBMCs has been shown
to reflect the pathophysiology in different disease states
including multiple sclerosis [54], myocardial infarction
[55], and rheumatoid arthritis [56]. In fact, a recent
study of deep RNA sequencing uncovered a repertoire
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of human macrophage lncRNAs modulated by macro-
phage activation and closely linked it to the pathophysi-
ology of cardiometabolic diseases [57].

Conclusion
To conclude, our study is of its first kind in India to re-
port altered lncRNA profiles linked to poor glycemic
control, insulin resistance, senescence, and proinflamma-
tion in patients with type 2 diabetes. A better under-
standing of the mechanisms underlying the functions of
lncRNAs will help us to understand the ever-expanding
pathophysiology of diabetes and its complications and
thereby adapt to prevention strategies as well as to de-
velop novel therapeutic agents.
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