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Background: Conotruncal heart defects (CTDs) are heterogeneous congenital heart malformations that result from
outflow tract dysplasia; however, the genetic determinants underlying CTDs remain unclear. Increasing evidence
demonstrates that dysfunctional TBX2 and TBX3 result in outflow tract malformations, implying that both of them
are involved in CTD pathogenesis. We screened for TBX2 and TBX3 variants in a large cohort of CTD patients
(n =588) and population-matched healthy controls (n=300) by target sequencing and genetically analyzed

Results: The probably damaging variants p.R608W, p.T249I, and p.R616Q of TBX2 and p.A192T, p.M65L, and
p.A562V of TBX3 were identified in CTD patients, but none in controls. All altered amino acids were highly conserved
evolutionarily. Moreover, our data suggested that mRNA and protein expressions of TBX2 and TBX3 variants were altered
compared with those of the wild-type. We screened PEA3 and MEF2C as novel downstream genes of TBX2 and TBX3,
respectively. Functional analysis revealed that TBX2R608W and TBX2R616Q variant proteins further activated HAS2
promoter but failed to activate PEA3 promoter and that TBX3A192T and TBX3A562V variant proteins showed a reduced

Conclusions: Our results indicate that the R608W and R616Q variants of TBX2 as well as the A192T and A562V variants
of TBX3 contribute to CTD etiology; this was the first association of variants of TBX2 and TBX3 to CTDs based on a large
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Background

Conotruncal heart defects (CTDs) are a group of complex
congenital heart malformations with an estimated preva-
lence of 0.1% of live births and roughly 10-25% in congeni-
tal heart defects (CHD) [1] and are caused by abnormal
development of the outflow tract (OFT) in embryo or
abnormal configuration and arrangement of the ventricle,
septal tissue, and large vessels; CTDs include the tetralogy
of Fallot (TOF), persistent truncus arteriosus (PTA), double
outlet of right ventricle (DORV), transposition of the great
arteries (TGA), single atrium (SA), single ventricle (SV),
and others. CTDs commonly occur in infants and children
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and are chief causes of infant death and childhood disabil-
ity. Most CTD patients require catheter-based or surgical
interventions early in life because without intervention, the
diseases could lead to poor quality of life with mental and
physical retardation, severe cardiac arrhythmias, heart fail-
ure, and even sudden death. Although therapeutic regimens
have increased survival into adulthood in patients with
CTDs, the morbidity and mortality rates remain high in
survivors [2, 3]. In addition, CTDs induce heavy economic
burdens on society, especially as the survival rates and the
number of adults living with CTDs increase [4].

The development of the OFT in the embryonic stage
is an elaborate regulatory process, which includes the
formation and development of the secondary heart field
(SHF) and cardiac neural crest (CNC), during which any
abnormal factor of inheritance or environment can lead
to abnormal proliferation, differentiation, or migration
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of SHF and CNC cells, thereby causing CTDs [5-7]. In-
creasing studies demonstrated that genetic factors played
primary roles in pathogenesis of CTDs, but the genetic
determinants underlying CTDs remain unclear [8, 9].

In genetics, many transcription factors are recognized
as major contributors to normal cardiac morphogenesis,
including the T-box family of transcription factors [10].
TBX2 and TBX3 are members of the T-box family of
transcription factors that are important for early cardio-
genic lineage development as well as formation of cham-
bers and the conduction system [11]. At embryonic day
8-10 mouse heart, Tbx2 was detected in the
non-chamber myocardium, which included the atrioven-
tricular canal (AVC), inner curvature, inflow tract, and
OFT [12]. Tbx2 expression patterns during chick heart
development are consistent with that of mouse [13].
Morphological defects of the heart were observed in
Tbx2 knock-out mouse embryos, including abnormal
atrioventricular morphology and outflow tract septation
defects [14]. Mutations in TBX3 specifically cause
ulnar-mammary syndrome [15]. TBX3 is most closely
related to TBX2. Tbx3-null mouse embryos have atrio-
ventricular alignment and OFT defects and various
kinds of cardiac malformation, such as DORV and TGA.
In addition, Tbx3 is involved in multiple signaling path-
ways that regulate OFT morphogenesis and SHF prolif-
eration [16]. Both Tbx2 and Tbx3 express embryo
mesoderm adjacent to CNC and the SHF [16-18].
Accordingly, overexpression/low expression or abnormal
function of TBX2 and TBX3 causes heart defects and
thus play an important role in heart development.

Current studies for TBX2 and TBX3 have typically
focused on gene knock-out animal models to observe
phenotype and explore mechanism; however, they
have not investigated whether genetic variants were
involved in pathogenesis in populations of CTD
patients. Only Pang et al. reported variants
(g.59477201C>T,  g.59477347G>A,  g.59477353delG,
and g.59477371G>A) located at the TBX2 gene pro-
moter in a cohort of 324 patients with ventricular
septal defects, and the variants reduced the transcrip-
tional activities of the TBX2 gene promoter [19].
Therefore, identifying rare variants of TBX2 and
TBX3 in large CTD cohort is required urgently.

Here, we show several rare heterozygous variants of
TBX2 and TBX3 by target sequencing in a cohort of 588
CTD patients without 22q11.2 deletion, but none in
population-matched healthy controls. Our data shows
that these variants alter mRNA and protein expression
of TBX2 and TBX3. We screen PEA3 and MEF2C as
novel downstream target genes of TBX2 and TBXS3,
respectively. Function analyses reveal that the variants of
TBX2 or TBX3 may regulate PEA3, MEF2C, and HAS2
(the known downstream gene of TBX2) promoting CTD

Page 2 of 13

incidence, first defining the connection between TBX2/
TBX3 variants and CTDs and further elucidating the
genetic pathogenesis of CTDs.

Results

The variants of TBX2 and TBX3 identified in CTD patients
We found variants of TBX2 and TBX3 through target
sequencing in 588 CTD patients and identified three
variants of TBX2 in seven patients and three variants of
TBX3 in six patients, including TOF, TGA, SA, and SV
(Table 1). The variants of TBX2 were p.R608W, p.T249],
and p.R616Q (Fig. 1b, d, and f), and the variants of
TBX3 were p.A192T, p.M65L, and p.A562V (Fig. 2b, d,
and f). The p.R608W, p.T249], and p.R616Q variants of
TBX2 and p.A192T and p.M65L variants of TBX3 in
both control and case groups were in HWE; the
p-A562V variant of TBX3 in control group was in HWE,
but in case group, it was not in HWE (Additional file 1:
Table S1). However, these variants all led to amino acid
substitutions and were predicted to be damaging as per
SIFT, Polyphen-2, or Mutation Taster (Table 1).

Alignment of multiple TBX2 and TBX3 protein sequences
and display of the structure of human TBX2 and TBX3
protein

All variation sites in this study were highly conserved in
vertebrates, as shown in multiple TBX2 and TBX3 pro-
tein alignments (Fig. 3a, b), indicating that these variants
were very important and might result in TBX2 and
TBX3 gene function alterations. The human TBX2 spans
3396 bp, and has been mapped to chromosome 17q23,
which is composed of seven exons and six introns (20).
The T-box DNA-binding domain of TBX2 is located at
amino acids 109-287 (Fig. 3c). The human TBX3
mapped to chromosome 12q24, spans 4814 bp and is
composed of eight exons and seven introns. The T-box
DNA-binding domain of TBX3 is located at amino
acids 107-220 and 241-305 (Fig. 3d) (Uniprot: http://
www.uniprot.org/).

Detection of TBX2 and TBX3 variant expression

To investigate whether the expression of the TBX2 and
TBX3 variants were altered, we performed quantitative
RT-PCR and Western blot. Quantitative RT-PCR analysis
revealed that mRNA expression of R608W, T249I, and
R616Q variants of TBX2 (Fig. 4a) and A192T and M65L
variants of TBX3 (Fig. 4d) were greater than that of the
group of the wild-type plasmid (P < 0.05). On Western blot,
protein expression of R608W and R616Q variants (Fig. 4b,
¢) was distinctly greater than that of the wild-type TBX2 (P
<0.05), consistent with the mRNA expression of these two
TBX2 variants; in contrast, protein expression of A192T
and A562V variants (Fig. 4e, f) were notably lower than that
of the wild-type TBX3 (P<0.05), indicating that TBX3
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Table 1 Clinical information and variant characteristics of TBX2 and TBX3 in patients with CTDs

Patient Gender Age Cardiac Gene Location Function Nucleotide Amino dbSNP ID SIFT  Mutation PolyPhen-2  ExAC
phenotype in gene change acid taster allele
change frequency
1 F 4 months TOF TBX2 exon7 Missense 1822C>T  R608W 15764896880 0.01 Disease 1.000 1.726e—05
causing
2 F 8 months TOF TBX2 exon3 Missense 746C>T T2491  rs778075071 0.02 Disease 0.967 6.633e—05
causing
3 F 5 months SV TBX2 exon3 Missense 746C>T 12491 rs778075071 0.02 Disease 0.967 6.633e—05
causing
4 F 5 years SV TBX2 exon3 Missense 746C>T T2491  rs778075071 0.02 Disease 0.967 6.633e—05
causing
5 M 6 months TOF TBX2 exon7 Missense 1847G>A  R616Q 15191930922 0.01 Disease 0.865 0.0008162
causing
6 F 3 years SA TBX2 exon7 Missense 1847G>A  R616Q 15191930922 0.01 Disease 0.865 0.0008162
causing
7 M 1 year TGA TBX3 exon6 Missense 574G>A A192T 15768160499 0.11 Disease 1.000 2471e-05
causing
8 M 1 year TOF TBX3 exonl Missense 193A>C MesL  / 0.56 Disease 0.734 8.675e-06
causing
9 M 5 months TOF TBX3 exon7 Missense 1685C>T  A562V 15201325654 0.1  Disease 0.849 0.002761
causing
10 M 6 months TOF TBX3 exon7 Missense 1685C>T  A562V 15201325654 0.1  Disease 0.849 0.002761
causing
1 F 5 months TOF TBX3 exon7 Missense 1685C>T  A562V 15201325654 0.1  Disease 0.849 0.002761
causing
12 F 6 months TOF TBX3 exon7 Missense 1685C>T  A562V 15201325654 0.1  Disease 0.849 0.002761
causing
13 M 4 years TGA TBX3 exon7 Missense 1685C>T  A562V 15201325654 0.1  Disease 0.849 0.002761
causing

F female, M male, CTDs conotruncal heart defects, TOF tetralogy of Fallot, SA single atrium, SV single ventricle, TGA transposition of the great arteries

variants might lead to protein degradation. Tbx3 is associ-
ated with SUMOylation (SUMO, small ubiquitin-related
modifier) that may be a conserved mechanism controlling
Tbx3 activity [21, 22]. Therefore, we observed the effect of
ubiquitin-proteasome degradation and found that the
reduction of A192T variant protein expression was res-
cued after adding the protease inhibitor, suggesting that
the A192T variant decreased TBX3 protein stability by
ubiquitin-proteasome degradation (Fig. 4g).

Nuclear localization of TBX2 and TBX3 variants

To detect the cellular distribution of TBX2 and TBX3
variant proteins, we carried out immunofluorescence as-
says that demonstrated that all the TBX2 and TBX3 vari-
ant proteins were expressed in the nucleus, as were
wild-type TBX2 and TBX3 proteins (Fig. 4h, i). The result
suggested that these variant proteins might affect TBX2 or
TBX3 gene function through other mechanisms.

Screening of downstream target genes of TBX2 and TBX3
We selected several genes related to CTDs or OFT de-
velopment from previous studies (BMP2 [13], BMP4
[13], FGF8 [23, 24], HAS2 [25], PEA3 [16]), and the

MalaCards database (CRELD1, DKK1, FOG2, GATA4,
GATA6, HAND2, MEF2C, PLXND1) and then screened
the possible downstream genes of TBX2/TBX3 by
observing mRNA expression alterations of these target
genes after TBX2/TBX3 overexpression (Fig. 5a, b). The
results showed that TBX2 activated HAS2 and PEAS3,
while TBX3 activated MEF2C (P < 0.05), indicating that
these were downstream genes of TBX2/TBX3 in CTD
incidence.

Transcriptional activity of TBX2 and TBX3 variant proteins
To evaluate the ability of the TBX2/TBX3 variants to
regulate downstream genes, we constructed luciferase re-
porter genes for human HAS2, MEF2C, and PEA3 pro-
moters selected from the mRNA expression screening and
co-transfected them with wild-type or variants of TBX2/
TBX3. Compared with wild-type TBX2, R608W and
R616Q variant proteins were able to activate HAS2 pro-
moter up to approximately 1.7 times (P <0.05) and 2.6
times (P <0.01), respectively (Fig. 6a), whereas the tran-
scriptional activity of R608W and R616Q variant proteins
to activate PEA3 promoter reduced by 45% (P < 0.05) and
55% (P<0.01), respectively (Fig. 6b). Compared with
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wild-type TBX3, A192T, and A562V variant proteins
showed a reduced transcriptional activity over MEF2C
promoter (Fig. 6¢). Therefore, R608W and R616Q variants
of TBX2 and A192T and A562V variants of TBX3 may
affect TBX2/TBX3 regulation on downstream target genes
through transcriptional activity alteration, thereby pro-
moting CTD incidence.

Expression of TBX3 protein in the human embryo

TBX2 has been reported as being expressed at the AVC
and OFT of the heart in animals and human embryos
[12]. However, TBX3 expression has not been identified

in the human embryo; therefore, we selected human em-
bryos in Carnegie 13 stage, which is the crucial period of
the OFT formation to carry out immunohistochemistry.
The results showed that TBX3 was expressed in the nu-
cleus in the OFT (Fig. 7c, d), indicating that TBX3 might
have a function in the development of the OFT.

We show the illustration summarizing our results and
claims (Fig. 8).

Discussion
Identifying rare variants of TBX2 and TBX3 in a large
CTD cohort is required urgently; our study found six



Xie et al. Human Genomics (2018) 12:44

Page 5 of 13

A Ac?ntrol

& & € & &'t TR €& K G

A

ntrol
C contro

G A b i 4 G G & T G
E control-reverse strand

G C A G A G G C C & T G G

| H

i

TBX3

B .,A! 9C21(-: 4 G /4 x A T G
|
|
D ‘M‘65!' i - R
? L
F CA56.’12VT G G < X £ T G C

|

i

AR
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rare heterozygous variants of TBX2 and TBX3 in 13
patients from 588 sporadic patients with CTDs using
target sequencing that included p.R608W, p.T249I, and
p-R616Q variants of TBX2 and p.A192T, p.M65L, and
p.A562V variants of TBX3, all of which were all highly
conserved based on multiple sequence alignment,
suggesting that these variants might have important bio-
logical functions. Among these variants, TBX3M65L was
the novel variant first reported, and TBX2R608W had
not been reported formerly in East Asians. The other
four variants were reported in Ensemble (http://
ensemblgenomes.org/); their functions had never been
studied before. All these variants were predicted as

damaging as per SIFT, Mutation Taster or Polyphen-2.
Moreover, TBX2R608W, TBX2R616Q, TBX3A192T, and
TBX3A562V showed altered expression and function
compared with wild-type TBX2/TBX3. Nevertheless,
none of the six variants affected the subcellular expres-
sion of TBX2 and TBX3 in nucleus, and it is possible
that these variants were not located in the critical region
that influenced the nuclear distribution of TBX2 and
TBX3 [26].

Tbx2 and Tbx3 have common downstream target genes
that have been identified as chamber myocardium-specific
genes, including connexin 40 (Cx40), connexin 43 (Cx43),
and natriuretic precursor peptide type A (Nppa) [27, 28].
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Fig. 3 Conservation and distribution of TBX2 and TBX3 variants. a, b Alignments of TBX2 and TBX3 protein among different species. All variants
were highly conserved in vertebrates. ¢, d Diagram of the TBX2 and TBX3 gene exons and protein with location of variants identified in this study

Locally repressing these chamber specific genes is
required for the formation of non-chamber myocardium
and induction of the development of the AVC, inflow
tract, and OFT [29, 30]. However, mRNA expression of
Cx40, Cx43, and Nppa in HEK293 cells showed no differ-
ence after TBX2 or TBX3 overexpression (data not
shown) probably due to the limitations of the cell line or
the experimental model.

We screened 12 genes selected from previous stud-
ies and the MalaCards database (http://www.mala-
cards.org/) as candidates for TBX2 or TBX3
downstream genes and found that mRNA expression
of HAS2 and PEA3 in HEK293 cells were elevated
substantially after TBX2 overexpression, while TBX3
transfection upregulated MEF2C abundance signifi-
cantly. The activity of HAS2, MEF2C, and PEA3
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luciferase reporter genes was dramatically increased
by wild-type TBX2/TBX3 compared with that of
blank vectors, providing further evidence that the ex-
pression of HAS2, PEA3, and MEF2C was regulated
by TBX2 or TBX3. HAS2 has conserved T-box

binding sites among promoter regions and encodes
hyaluronan synthases 2, the major enzyme responsible
for hyaluronan (HA) production in the heart [31],
and it is expressed in the OFT [20]. However, excess
HA deposition may cause hemodynamic alterations
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and may block cardiomyocyte differentiation. Tbx2
contributes to the expansion of the extracellular
matrix (ECM) and epithelial-mesenchymal transform-
ation (EMT) by inducing Has2 myocardial expression
and increasing HA deposition to drive endocardial
cushion formation and altered cardiogenic lineage
specification in embryonic hearts [25]. Overexpression
of HAS2 leading to HA deposition may hinder car-
diomyocyte differentiation. We found that TBX2 vari-
ants activated HAS2 and caused CTDs and were
similar to this report. PEA3 (polyomavirus enhancer
activator 3, currently called ETV4, ETS variant 4) is a
transcription factor belonging to the PEA3 family and
is involved in chromosomal translocation associated
with Ewing tumors, whose overexpression promotes
cell proliferation, motility, and invasion. The evi-
dences suggest that PEA3 plays a role in cellular pro-
liferation, differentiation, and migration [32, 33]. A
previous study reported that Pea3 was associated with
Tbx3 involved in regulating OFT morphogenesis [16].
However, in the present study, TBX3 did not affect
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mRNA expression of PEA3, whereas TBX2 markedly
increased PEA3 mRNA abundance and promoter ac-
tivity; meanwhile, the wild-type TBX2 protein was
able to significantly activate its promoter and the
TBX2 variant proteins failed to activate its promoter,
indicating that PEA3 was a novel downstream gene of
TBX2 causing CTDs. TBX2 contributes to oncogen-
esis and cell cycle regulation [34], analogous to the
functions of PEA3 [32, 33]. Therefore, we inferred
that TBX2 and PEA3 may engage in crosstalk during
cell cycle regulation and that more studies are needed
to determine whether they take part in cardiac devel-
opment through the regulation that these pathways
require. MEF2C (MEF2 polypeptide C) is a member
of the MADS box transcription enhancer factor 2
(MEF2) family of proteins, which play roles in myo-
genesis. Previous studies demonstrated that MEF2C is
required for proper OFT alignment [35]. Moreover,
MEF2C has also been involved in congenital OFT de-
fects in humans [36]. Our results showed that MEF2C
was a novel downstream gene of TBX3 and that vari-
ants of TBX3 might regulate MEF2C to cause CTDs.

Previous studies reported Tbx2 and Tbx3 were tran-
scriptional repressors [22, 23]. In contrast, TBX2 and
TBX3 in our study were activators; we showed that
wild-type TBX2 activated the HAS2 gene promoter
and wild-type TBX3 activated the MEF2C gene pro-
moter. On the one hand, TBX2 has the capacity to
activate a promoter including multiple T-box elements
by a weak activation domain located within the T-box
[37]. We presumed that the regulating domain of
TBX3 resembles that of TBX2. On the other hand, it
can also be explained by the presumption that tran-
scriptional repression of TBX2 and TBX3 may depend
on the cell line and the primary cardiomyocyte; there-
fore, our results are limited by the single cell line we
used.

Dysfunction of Tbx2 and Tbx3 leading to heart de-
fects has been verified in animals, providing strong
evidence that TBX2 and TBX3 are significant for hu-
man cardiac morphogenesis and the underlying eti-
ology of CTDs. There were some limitations to our
study; for example, the lack of parental samples lim-
ited our ability to study the genetic background of
these variants. Nevertheless, this study provided the
first genetic evidence of an association between mal-
functioning TBX2 and TBX3 and CTDs based on a
large population, contributing to prenatal diagnosis
and prenatal consultation in favor of the early
prophylaxis and allele-specific therapy of CTDs.

Conclusions
We found that the variants of TBX2 and TBX3 contrib-
uted to the occurrence of CTDs, and we explored the
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Fig. 6 The activity of HAS2, PEA3, and MEF2C luciferase reporter genes regulated by TBX2 or TBX3. HEK 293T cells that were co-transfected with
vector or wild-type or variant plasmid and a luciferase reporter; transcriptional activity was measured by a luciferase reporter gene detection system.
pRL-TK was used as an internal control. a, b Luciferase activity of HAS2, PEA3 promoter regulated by blank vector, and wild-type and variants of TBX2
(n = 3). ¢ Luciferase activity of MEF2C promoter regulated by blank vector, wild-type, and variants of TBX3 (n = 3). P < 0.01 versus pCDNA or GV141
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interesting downstream genes of TBX2 and TBX3 to il-
luminate the mechanisms of CTD etiology. Meanwhile,
our findings open new fields of investigation into CTD
genetic pathogenesis.

Methods

Study population

Our study population included 588 sporadic nonsyn-
dromic CTD patients diagnosed by echocardiogram, car-
diac catheterization, or surgery from Shanghai Xin Hua
Hospital. The participants are from the Chinese Han
population and included 388 males and 200 females,
with ages ranging from 0.1 to 17 years (Table 2). Patients
with known syndromes or chromosomal abnormalities,
such as 22q11.2 deletion, were excluded from our study.
The controls were 300 healthy children without heart
disease. Both patient and control groups gave informed
consent for inclusion, and then, peripheral blood was
collected for DNA extraction. The genomic DNA of

participants was extracted by using the QlAamp DNA
Blood Mini Kit (QIAGEN, Germany) following the man-
ufacturer’s instructions and was then stored at — 80 °C.

Target sequencing and variant analysis

Target sequencing was performed using the Illumina
HiSeq 2000 platform for variants in TBX2 (GenBank ac-
cession number NC_000017.11, NM_005994.3) and
TBX3 (GenBank accession number NC_000012.12,
NM_016569.3). The candidate variants were validated by
Sanger sequencing, and the primers were designed for
PCR amplification of TBX2 and TBX3. To predict the
effects of nonsynonymous variants, we used several bio-
informatics criteria including SIFT (http://sift.jcvi.org/
www/SIFT_enst_submit.html), Mutation Taster (http://
www.mutationtaster.org/), and Polyphen-2 (http://genet-
ics.bwh.havard.edu/pph2/). Amino acid substitutions
were predicted as damaging when the score was <0.05
in SIFT or >0.85 in Polyphen-2. In our study, variants
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TBX3

Negative
Control

Fig. 7 Immunohistochemistry of TBX3 in human embryos in Carnegie 13 stage. a, b Negative control. ¢, d Wild-type TBX3. Scale bar 20 pm
.

with a minor allele frequency (MAF) <0.5% were de-
fined as rare [38].

Multiple TBX2 and TBX3 protein sequence alignment

TBX2 and TBX3 protein sequences from Homo sapiens
(human), Mus musculus (house mouse), Gallus gallus
(chicken), Bos taurus (cattle), Canis lupus familiaris (dog),
Pan troglodytes (chimpanzee), and Sus scrofa (pig) were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/
protein/) and were aligned with ClustalX software to con-
firm the conservation of TBX2 and TBX3 sequences.

Plasmid construction and site-directed mutagenesis

The TBX2 and TBX3 cDNA plasmid was purchased from
Genomeditech. Mutated primers were designed to amplify
human TBX2 and TBX3 ¢DNA according to the protocol pro-
vided by the QuikChange SiteDirected Mutagenesis Kit (Strata-
gene, USA), and then, variant TBX2 cDNAs were cloned into
a pCDNA3.1-3xFlag vectors while variant TBX3 cDNAs were
cloned into GV141-3xFlag vectors. For recombining luciferase
reporter plasmid, a 5’-flanking region of downstream gene pro-
moter was subcloned into Kpn I and Bgl II sites of the pGL3
luciferase reporter-basic vector (Promega, USA).

TBX2

1822C>T  1847G>A

TBX2
R608W R616Q

AAAAAA AAAAAA
TBX3
A192T AS562!

TBX3

574G>A 1685C>T

Protein

Downstream
genes promoter

Downstream genes

Conotruncal heart defects
(TOF, TGA, SA, SV)

Fig. 8 The diagram of the regulation TBX2 and TBX3 variants involved in CTD pathogenesis
.
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Table 2 Cardiac diagnoses for study population of patients with

CTDs

Diagnoses Number Gender/number Age

TGA 20 F18M72 1 day-16 years
TOF 234 F83M151 1 month-13 years
DORV 98 F32M66 1 month-17 years
PA/NSD 97 F36M61 3 months-12 years
IAA 13 F7M6 7 days-1 year

PTA 10 F5M5 3 days-2 years
SA/SV 46 F1o9M27 1 month-13 years
Total 588 F200M388 1 day-17 years

TGA transposition of the great arteries, TOF tetralogy of Fallot, DORV double
outlet of right ventricle, PA/VSD pulmonary atresia with ventricular septal
defect, IAA interruption of aortic arch, PTA persistent truncus arteriosus, SA
single atrium, SV single ventricle, F female, M male

Cell cultures and transfection

HEK 293T cells (Human embryonic kidney cells) were
maintained in Dulbecco’s modified Eagle’s medium
(HyClone, USA) with 10% fetal bovine serum (MP Bio-
medicals, USA) and 1% penicillin-streptomycin (Gibco,
USA). pcDNA3.1-3xFlag-TBX2 and GV141-3xFlag-
TBX3 including wild-type and variants were transfected
into 293T cells with FuGene HD (Promega, USA)
according to the manufacturer’s protocol after seeding
24 h.

Quantitative RT-PCR

Plasmids were transfected into HEK 293T cells that were
seeded in 12-well plates. Cells were harvested 36 h after
transfection. Total RNA was extracted with TRIzol
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reagent (Invitrogen, USA), and then, reverse transcrip-
tion of cDNA was performed using Prime Script RT
Master Mix (Takara, Japan) and was followed by
quantitative RT-PCR using SYBR Premix Ex Taq
(Takara, Japan) on an Applied Biosystems 7500 sys-
tem (Applied Biosystems, USA). The relative quantifi-
cation of expression was determined using the
27-28Ct method [39], and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, human) was used as an in-
ternal control. Primer sequences of TBX2, TBXS3,
GAPDH, and candidate downstream genes are listed
in Table 3.

Western blot

HEK 293T cells were transfected with 1 pg of wild-type
and variant plasmid DNA. Cells were harvested 48 h
after transfection. For protein degradation experiments,
HEK 293T cells were cultured in the presence of 10 mM
MG132 solution dissolved in DMSO for 8-10 h before
harvest. Then, cells were lysed in RIPA lysis buffer
(Beyotime, China) with PMSF (1:100). The proteins
were subjected to 10% SDS-PAGE and were then
transferred onto nitrocellulose membranes (Millipore,
USA) and immunostained with rabbit anti-FLAG anti-
body (1:1000, Sigma-Aldrich, USA) and mouse
anti-B-actin antibody (1:5000, Sigma-Aldrich, USA) at
4 °C overnight. The membranes were incubated with
horseradish peroxidase-conjugated anti-rabbit second-
ary antibody (1:10000) and anti-mouse secondary
antibody (1:10000). Immobilon Western Chemilumin-
escent HRP Substrate (Millipore, USA) was used for
chemiluminescent immunodetection.

Table 3 Sequences of the primers used for real-time quantitative PCR

Gene Forward (5'—3) Reverse (5'—3"

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
TBX2 CACGGCTTCACCATCCTAAAC TGCGGAAGGTGCTGTAAGG
TBX3 GAGGCTAAAGAACTTTGGGATCA CATTTCGGGGTCGGCCTTA
BMP2 GAGGTCCTGAGCGAGTTCGA ACCTGAGTGCCTGCGATACA
BMP4 ATGATTCCTGGTAACCGAATGC CCCCGTCTCAGGTATCAAACT
CRELD1 GCTCCTATGAGTGCCGAGAC CTACACTTCTTACAGCGACCTG
DKK1 ATAGCACCTTGGATGGGTATTCC CTGATGACCGGAGACAAACAG
FGF8 GACCCCTTCGCAAAGCTCAT CCGTTGCTCTTGGCGATCA
FOG2 GGCCTGAAAATCTGAGCTGC CAGTCGTCTGTCTCAACTCCA
GATA4 CGACACCCCAATCTCGATATG GTTGCACAGATAGTGACCCGT
GATA6 CTCAGTTCCTACGCTTCGCAT GTCGAGGTCAGTGAACAGCA
HAND2 CGCCGACACCAAACTCTCC TCGCCATTCTGGTCGTCCT
HAS2 CTCATCATCCAAAGCCTGTT GCTGGGTCAAGCATAGTGTC
MEF2C CCAACTTCGAGATGCCAGTCT GTCGATGTGTTACACCAGGAG
PLXND1 AATGGGCGGAACATCGTCAAG CGAGACTGGTTGGAAACACAG
PEA3 GAGAAACCTCTGCGACCATT GCCCGTCCAGGCAATGAAAT




Xie et al. Human Genomics (2018) 12:44

Luciferase assays

HEK 293T cells were transfected with 200 ng of
wild-type or variant plasmid DNA, 200 ng of luciferase
reporter plasmid, and 8 ng of an internal control
reporter plasmid (pRL-TK) (Promega, USA) in a 48-well
plate. The luciferase activity was measured on the
Dual-Glo luciferase assay system (Promega, USA) fol-
lowing the manufacturer’s protocol after 48 h.

Immunofluorescence assay

HEK 293T cells were seeded onto a 24-well plate cov-
ered with slips coated with poly-L-lysine (0.1 mg/mL)
for 24 h and were then transfected with wild-type or
variant plasmid DNA. Cells were harvested 24 h after
transfection. Cells were incubated with rabbit anti-Flag
antibody (1:100, Sigma-Aldrich, USA) diluted in PBS
containing 5% BSA and 0.1% Triton X-100 at 4 °C over-
night and followed by incubation with Cy3-conjugated
goat anti-rabbit secondary antibody (1:250). Cell nuclei
were stained by 4,6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories, USA). A Leica SP8 microscope
was used for image analysis.

Tissue collection and immunohistochemistry

Human embryos of Carnegie 13 stage were acquired after
medical termination of pregnancy at Shanghai Xin Hua
Hospital. The medical ethics committee of Xin Hua Hospital
approved the study. Embryos were fixed overnight in 4%
paraformaldehyde in PBS, embedded in paraffin, and sec-
tioned at a thickness of 7 pum. For immunolocalization of
TBX3, paraffin sections were incubated with a primary
rabbit anti-TBX3 antibody (1:50, Protein-tech), followed by
horseradish peroxidase-conjugated secondary anti-rabbit
antibody and DAB (Abcam, UK).

Statistical analysis

Each assay was performed for three independent bio-
logical replicates. The data are shown as the mean +
standard deviation (SD). Statistical differences were evalu-
ated by one-way ANOVA and two-tailed unpaired ¢ test.
A P value < 0.05 was considered statistically significant.

Additional file

Additional file 1: Table S1. Frequencies of alleles and genotypes of
TBX2 and TBX3 variants in CTD patients and controls. (DOCX 19 kb)
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