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Abstract

Background: Modeling thousands of markers simultaneously has been of great interest in testing association between
genetic biomarkers and disease or disease-related quantitative traits. Recently, an expectation-maximization (EM) approach to
Bayesian variable selection (EMVS) facilitating the Bayesian computation was developed for continuous or binary outcome
using a fast EM algorithm. However, it is not suitable to the analyses of time-to-event outcome in many public databases
such as The Cancer Genome Atlas (TCGA).

Results:We extended the EMVS to high-dimensional parametric survival regression framework (SurvEMVS). A variant of
cyclic coordinate descent (CCD) algorithm was used for efficient iteration in M-step, and the extended Bayesian information
criteria (EBIC) was employed to make choice on hyperparameter tuning. We evaluated the performance of SurvEMVS using
numeric simulations and illustrated the effectiveness on two real datasets. The results of numerical simulations and two real
data analyses show the well performance of SurvEMVS in aspects of accuracy and computation. Some potential markers
associated with survival of lung or stomach cancer were identified.

Conclusions: These results suggest that our model is effective and can cope with high-dimensional omics data.

Keywords: Survival analysis, Bayesian variable selection, EM algorithm, Omics, Non-small cell lung cancer, Stomach
adenocarcinoma

Introduction
With the development of high-throughput sequence tech-
nology, large-scale omics data are generated rapidly for
discovering new biomarkers [1, 2]. The public databases
such as The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) provide great opportunities
to understand complex diseases comprehensively on a
molecular level [3, 4] and subsequently facilitate growing
demanding statistical approaches designed to cope with
these large-scale data [5]. Analyzing biomarkers one at a
time is the most common strategy to detect the

underlying causal markers [6, 7]. However, this
one-by-one method ignores the correlation between bio-
markers and needs multiple corrections for controlling
false positives. Furthermore, multiple regression is per-
formed increasingly because it is powerful to identify
causal markers after the strongest associations have been
accounted for [8–10]. It can also avoid multiple correction
and enable accurate effect estimation [11, 12]. Neverthe-
less, omics data generally have the property of high di-
mensionality, which makes the classical multiple
regression yield unstable parameter estimations with high
standard errors. Due to this limitation, least absolute
shrinkage and selection operator (LASSO) regression and
its variants shrink the effects of noise toward zero while
adding a penalty term to the likelihood function. The ap-
proach can easily be conducted on a large-scale variable
selection analysis [13, 14]. The LASSO can also be ex-
plained from Bayesian perspectives, namely Bayesian
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LASSO (BL) [15]. That is, we can generate the LASSO es-
timators by imposing a Laplace prior on coefficients of ex-
planatory variables. Compared with a frequentist penalty,
Bayesian regression is more flexible to induce different
shrinkage by specifying various priors.
George and McCulloch [16] proposed a two-component

“spike-and-slab” mixture prior, consisting of the “spike” to
be either a point mass at zero or a normal distribution with
a very narrow variance while a “slab” be a normal distribu-
tion with a large variance. Indicator variables are utilized to
denote which component each marker belongs to, which is
known as Bayesian variable selection (BVS). BVS and its ex-
pansions are widely used in genomic studies, including
marker detection and disease risk prediction [11, 12, 17].
But, most Bayesian studies have used a Markov Chain
Monte Carlo (MCMC) algorithm to explore the posterior
distribution of unknown parameters via numerical approxi-
mations in high-dimensional models, which is quite time
consuming for getting a stable chain. For example, the
BayesR model required ~ 18 h to complete an analysis of a
bipolar disorder genome-wide association data with ~ 3800
individuals (80% of whole samples) and ~ 300,000 genotype
markers [12]. In order to facilitate Bayesian computation,
variational inference [18–20] and expectation-maximization
(EM) algorithm are commonly used for Bayesian posterior
inference [21]. Ročková and George [22] proposed EM vari-
able selection (EMVS) for continuous outcomes to rapidly
identify promising high posterior models and parameter esti-
mates. The continuous conjugate spike-and-slab prior
adopted by EMVS leads to fast closed form expression for
the EM algorithm. Nevertheless, there has been considerable
interest in discovering associations between biomarkers and
prognosis.
Analyzing time-to-event data, namely survival analysis,

plays a very important role in statistics, which arises in
many fields, such as medicine, genetics, industrial engin-
eering, sociology, and economics [23–25]. Modeling sur-
vival data using Cox proportional hazards regression is
popular for its robust to the unknown baseline hazard
[26]. Alternatively, being well known for parametric sur-
vival analysis, accelerated failure time (AFT) model
tends to give more precise estimates of interest parame-
ters if the distribution of survival time is chosen cor-
rectly, in addition, the parameter estimates from AFT
are robust to omitted covariates [27]. Under the scenario
of high-dimensional survival analysis, a lot of works have
been done usually by adding a penalty term to likeli-
hood. In a Bayesian framework, we usually need to as-
sign a semi-parametric or nonparametric prior processes
to the (cumulative) baseline hazard function in a Cox
model [28, 29], which does not allow us to naturally
choose a fully parametric survival model for the subse-
quent analyses. As a parametric model, the Weibull re-
gression induces a very flexible model since it is a

unique parametric model which has both AFT and the
proportional hazards properties [30].
In this study, we extended EMVS to parametric sur-

vival model (SurvEMVS) with Weibull distribution as-
sumption. A fast EM algorithm was used to obtain
posterior modes of interested parameters, in which a
variant of the fast cyclic coordinate descent (CCD)
method is nested. We used simulation trials to explore
performance in comparison with an alternative frequen-
tist variable selection strategy, namely Cox LASSO re-
gression. After that, we applied SurvEMVS to a lung
cancer genotype data and a stomach cancer gene expres-
sion data. Further details of this work were given below.

Methods
Statistical framework
Survival times of n individuals in sample are designed by
Ti =min(ti, ci), i = 1, …, n, where ti and ci are lifetime and
fixed censoring time for a specific individual i, respect-
ively. The survival outcome from a follow-up study can be
conveniently represented by pair of random variables (Ti,
δi), where δi indicates whether the lifetime ti corresponds
to an event (δi = 1) or is censored (δi = 0). In this study, we
consider right censoring scheme and non-informative
censoring mechanism for each individual without note
elsewhere. Under parametric framework, f(Ti| θ) and S(Ti|
θ) are defined as probability density and survival function

of survival time Ti, respectively, parametrized by θ. Let L

¼Qn
i¼1 f ðTijθÞδi SðTijθÞð1−δiÞ be the likelihood of the para-

metric model with an i.i.d assumption. Weibull distribu-
tion can be fully parametrized by the parameter pair θ
= (λ, α), where λ and α are scale and shape parameter, re-
spectively. The density and survival function of Weibull
distribution T are f(T| λ, α) = αTα − 1λ exp(−λTα) and S(T|
λ, α) = exp(−λTα), respectively. Typically in a regression
model, the scale parameter is defined as λ = 1/ exp(Zu +
Xβ), where Xn × p represents a column-scaled matrix of
tumor biomarkers such as gene expression, genotype or
DNA methylation, β is a p × 1vector of marker effects,
Zn × (1 + q)is a covariates matrix of intercept and q clinical
variables such as gender, age, and tumor histological
grade, u is a (q + 1)-dimensional effect vector of Zn × (1 + q).
With the condition of p > n(i.e., high dimension), a
penalize term is necessary for inducing a sparse solution
of β. Under the Bayesian framework, we want to impose a
well-known spike-and-slab prior on each βj to facilitate
Bayesian variable selection [16]. A vector of binary latent
variables γ = (γ1,…, γp)

T, γj ∈ {0, 1} are introduced as indi-
cator variables, where γj = 1 donates that jth explanatory
variable is to be included in the model. Conditional on γ,
the continuous prior being assigned to β is,

π βjσ2; γ� � ¼ Np 0;Dσ2;γ

� �
; ð1Þ
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where Dσ2;γ ¼ σ2 diagða1;…; apÞand aj = (1 − γj)υ0 + γjυ1.
As suggested by [22], we set these hyperparameters υ0
and υ1 to be small and large positive values, respectively.
σ2 is a common variance parameter with an inverse
gamma prior π(σ2) = IG(ν/2, νη/2). The binomial prior is

chosen for the indicator variable γ, i.e., πðγjθÞ ¼ Qp
j¼1

θγ jð1−θÞ1−γ j , where θ is a hyperparameter and we im-
pose a Beta(a, b) prior on it. The constant prior is
chosen for α and u, i.e., π(α) ∝ 1 and π(u) ∝ 1.
Generally speaking, MCMC is usually used for simu-

lating the posterior distribution of unknown parameters
β, γ, θ, σ2, α, and u. But here we employ an EM algo-
rithm to seek the posterior mode of each parameter be-
cause this algorithm provides substantial computational
advantage, especially for high-dimensional data analysis.
Concerning about the unknown status γ for variables,
we replace this “missing data” by its conditional expect-
ation given the current estimates for other parameters
and observed data (E-step) [31]. Then, an M-step is
followed by maximizing the expected complete-data
log-posterior with respect to β, θ, σ2, α, and u. As a re-
sult of iterations between the E-step and M-step, each
estimator will converge toward a local maximum of the
posterior distribution. More specifically, the objective
function can be expressed as:

Qðβ; θ; σ2; α;ujT ; δÞ ¼ Eγj�½log πðβ; γ; θ; σ2; α;ujT ; δÞ�
¼ C þ log Lþ Eγj�½log πðβjσ2; γÞ�
þ Eγj�½log πðγjθÞ�;

þlog πðθÞ þ log πðσ2Þ þ log πðαÞ þ log πðuÞ
ð2Þ

where Eγ ∣ ⋅(⋅) denotes the expectation with regard
to γ given estimations in current iteration. Further-

more, Eγj�½ logπðβjσ2; γÞ� ¼ C1−
p
2 logσ2− 1

2σ2
Pp

j¼1β
2
j Eγj�

½ð1−γ jÞυ0 þ γ jυ1�−1 , and Eγj�½ logπðγjθÞ� ¼
Pp

j¼1Eγj�½γ j�
logð θ

1−θÞ þ p logð1−θÞ , both C and C1 are constants.
Next, our EM algorithm for Bayesian Weibull regres-
sion proceeds as follows.

(1) Initialize the unknown parameters: β(0), θ(0), σ2(0),
α(0), u(0).

(2) E-step:

As can be seen from the formula (2) above, there are
two parts that need further evaluation, namely Eγ ∣ ⋅[γj]
and Eγ ∣ ⋅[(1 − γj)υ0 + γjυ1]

−1. In particular, Eγ ∣ ⋅[γj] is a
conditional expectation of γj and depends on observed
data (T, δ) only by means of current parameter estimates
β(k), θ(k), σ2(k) because of the hierarchical structure of γ;
therefore, we have

Eγj� γ j

h i
¼ P γ j ¼ 1jβ kð Þ; θ kð Þ; σ2 kð Þ

� �
¼ p�j ; ð3Þ

where p�j ¼
πðβðkÞj jσ2ðkÞ;γ j¼1ÞPðγ j¼1jθðkÞÞ

πðβðkÞj jσ2ðkÞ;γ j¼1ÞPðγ j¼1jθðkÞÞþπðβðkÞj jσ2ðkÞ;γ j¼0ÞPðγ j¼0jθðkÞÞ
;
meanwhile, the second part will be easily derived as

Eγj� 1−γ j

� �
υ0 þ γ jυ1

h i−1
¼ 1−p�j

υ0
þ p�j

υ1
¼ d�

j : ð4Þ

(3) M-step:

Next, we derive the M-step for the objective function
Q(β, θ, σ2, α, u| T, δ).

1) Differentiating Q(⋅| T, δ) with regard to β needs to
solve the following expression

β kþ1ð Þ ¼ arg minβ − logLþ 1
2σ2

D�1=2β
�� ��2� �

; ð5Þ

where D∗1/2 is the square root of the p × p diagonal
matrix D� ¼ diagðd�

1;…; d�
pÞ . It can be shown that the

formula (5) above for Weibull model is convex, and a
wide variety of numerical optimization algorithms can
be applicable. For generalizing our algorithm to high-
dimensional data, the commonly used multidimensional
Newton-Raphson method is not recommended because
of large memory requirements and intensive computa-
tions. In this research, we employ the cyclic coordinate
descent (CCD) algorithm due to its efficiency and ease
of implementation, which makes one-dimensional
optimization available [32]. Briefly, the CCD minimizes
the objective function with regard to βj, holding all other
variables constant. Similar to the combined local and
global (CLG) algorithm of [33, 34], we modify the up-
date for βj in two ways. First, in order to avoid big steps
in Newton iteration, we specify a positive value Δj for
the jth maker to restrict the maximum change of βj be-
tween two adjacent iterations. Second, for one-
dimensional optimization, we update βj only once in-
stead of multiple iterations till convergence before up-
dating βj + 1. Moreover, considering that it is unnecessary
to take much time to update the amount of possible
neural markers (that is, their minuscule effects contrib-
ute less to outcome, with no need for accurate estima-
tions) when p is large, we partially update those markers
with “large” effect (|βj|is greater than a threshold β′, e.g.,
1E−08) after a small number (k′) of full iterations for all
makers, which speeds up computation considerably.
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2) Differentiating Q(⋅| T, δ) with regard to uj, j = 1, …,
q + 1one-by-one using one-dimensional
optimization reveals the following form

u kþ1ð Þ
j β kþ1ð Þ;α;σ2;θ;u kþ1ð Þ

j− ;u jþ

				 ¼ uj−
∂ logL
∂uj

∂2 logL
∂u2j

 !−1

;

ð6Þ
with all other parameters being fixed at current
estimates.

3) Differentiating Q(⋅| T, δ) with regard to α derives
the following form

α kþ1ð Þ
β kþ1ð Þ;u kþ1ð Þ;σ2;θ

			 ¼ α−
∂ logL
∂α

∂2 logL
∂α2


 �−1

: ð7Þ

4) For σ2, we have

σ2 kþ1ð Þ ¼
Pp

j¼1β
kþ1ð Þ2
j d�

j þ νη

pþ νþ 2
: ð8Þ

5) For θ, we have

θ kþ1ð Þ ¼
Pp

j p
�
j þ a−1

aþ bþ p−2
: ð9Þ

(4) Iterations between the E-step and M-step are in
progress. SurvEMVS will be terminated if the con-
vergence criterion is satisfied as follows:

Pn
i¼1jXT

i ð
βðkÞ−βðk−1ÞÞj=ð1þPn

i¼1jXT
i β

ðkÞjÞ < ξ, where Xβ(k)

is predictive vector at kth iteration, and ξ is a small
value (say 10− 4). Summarizing, Additional file 1:
Figure S1 presents pseudocode for our implementa-
tion of SurvEMVS.

Simulation studies
In this section, we used simulations to validate the per-
formance of proposed SurvEMVS. Cox LASSO model
[35] was considered as a benchmark for comparison.
The effect sizes and directions of Cox LASSO estimates

were adjusted for consistency with our parametric
model, which made the direct comparison between two
methods. For each simulation scenario, we replicated the
simulation 50 times and then summarized these results.
Marker values were simulated from a multivariate nor-

mal distribution N50(0,∑), where ∑ is a variance-covariance
symmetric matrix with ∑jj = 1 and ∑ij = 0.6|i− j|, i ≠ j. For
large pmarkers, we repeatedly sampled from the above dis-
tribution and then combined them by column. Thus, we
obtained an n × p matrix with multiple independent blocks
and 50 makers in each block were correlated. Assuming
λi ¼ expð−Pp

j xijβ jÞ, we simulated survival time ti for

each subject from an exponential distribution ti~exponen-
tial(λi) , and random censoring time ci from a uniform dis-
tribution ci~U(0, K), and chose K such that on average
40% subjects were right censored. The observed censored
survival time Ti was generated by min(ti, ci). Furthermore,
additional simulations where survival times are generated
from Weibull distribution (with α = 2) were used to show
effectiveness of our method. As is well-known, the true
distribution of survival time in a real data is unclear and
does not coincide with the Weibull assumption exactly.
Therefore, we simulated a vector of Gamma-distributed
survival time on purpose, thus assigning weakness setting
to SurvEMVS. The shape and rate parameters of gamma
distribution were set to be 0.8 and 1/λi, respectively. We
randomly sampled six causal markers and set coefficients
to be {0.2, − 0.2, 0.3, − 0.3, 0.4, − 0.4}. Sample size
(n) was set to be 500, and number of makers is set to be
1000 or 5000. Moreover, we generated 100 samples as a
test dataset in each replication to appreciate the predictive
performance of two approaches. The detailed simulation
scenarios were summarized in Table 1.

Hyperparameters tuning and performance metric
The performance of SurvEMVS depended on the hyper-
parameters υ0 and υ1, which made us be interested in a run-
ning model based on more than one combination of υ0 and
υ1. The speed of the EM algorithm made it feasible to con-
sider a sequence of models as (υ0, υ1) varied over many can-
didates, from which we could select an optimal
combination based on some criteria. According to [22],
large υ1 and small υ0 could accommodate all plausible βj. In
order to acquire sparse solution in large p data, we set a se-
quence of candidates {1/10p, 1/5p, 1/2p, 1/p, 2/p, 5/p, 10/p,
0.05} (0.05 was reserved if p > 500) to υ0 unless otherwise
noted, which was dynamic with p. Three candidates from
{10, 100, 500} were assigned to υ1. Therefore, there were
24 combinations for hyperparameter tuning. The procedure
of fitting Cox LASSO by widely used R package glmnet
gave the similar parameter tuning as we did here.
On account of making parameter selection from the

24 combinations of υ0 and υ1, we needed a metric to
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measure the performance of the fitted models.
Cross-validation partial likelihood (CVPL) was generally
used for parameter selection in Cox model [35, 36],
while some employed cross-validation score in paramet-
ric survival model [36]. Subsequently, one candidate of
hyperparameters was chosen to minimize one of these
metrics. However, these metrics involving random
cross-validation (CV) make the hyperparameter selec-
tion not stable as well as time demanding, and depend
on the folds. Other criteria without CV like the Akaike
information criterion (AIC), the Bayesian information
criterion (BIC), and the generalized cross-validation
(GCV) tend to select many spurious variables especially
in high-dimensional problem [37, 38]. In this paper, we
considered a metric, namely extended Bayesian Informa-
tion Criteria (EBIC), which was utilized for model selec-
tion at first [39]. The constant prior behind the BIC
assigns high probabilities to the models with a larger
number of markers, which was apparently unreasonable
and strongly against the principle of parsimony. The
EBIC was proposed to take away this disadvantage of the
BIC. The EBIC is defined as,

EBICγ ¼ −2 logLþ pm logn

þ 2τ
p
pm


 �
; 0≤τ≤1; ð10Þ

where pm is the number of selected variables in a fitted
model. The EBIC with τ = 0 reduces to the original BIC.
Minimizing the EBIC with larger τ will get a much more
parsimonious model. Thus, EBIC1, EBIC2, and EBIC3
were served as metrics for hyperparameter tuning with
regard to τ = 0, 0.5, 1, respectively.
In simulation studies, the optimal SurvEMVS model

selected by the EBIC was compared with Cox LASSO in
aspects with variable selection, effect estimation, and
model prediction. We utilized false positive rate (FPR),
true positive rate (TPR), and false discovery rate (FDR)
as evaluation indicators for variable selection. Note that

Pðγ j ¼ 1jβ̂ j; θ̂; σ̂
2Þ≥0:5 meant the jth maker was se-

lected. Mean square error (MSE) denoted by
Pp

j¼1

ðβ̂ j−β jÞ
2
=p was used to appreciate effect estimations for

makers. The predictive accuracy of the fitted model be
applied to test dataset was evaluated by Harrell’s c statis-
tic [40], as known as the area under the ROC curve
(AUC).

Implementation
We considered a = b = 1 in beta prior for θ which yielded
a uniform distribution. As noted in [22], we had inverse
gamma prior for σ2 with ν = η = 1 to make this prior
relatively non-influential. We ran all analyses using R
software (v3.41) on a machine with Intel® Xeon® X5690
3.46-GHz processors. Cox LASSO model was imple-
mented with the glmnet package in R. Tenfold
cross-validation was used to choose an optimal penaliza-
tion parameter λlasso in glmnet, which determined an op-
timal Cox LASSO model. Two LASSO models selected
by “minimum cvm” and “1 standard error” of λlasso were
considered as LASSO.min and LASSO.se, respectively.
We employed the PLINK tool for quality control of
genotype data [41].

Results
Simulation studies
Iteration and tuning plot
By analogy with LASSO solution path plot that shows
the estimates change with an increasing penalty param-
eter, here we want to investigate the impact of parame-
ters tuning for υ0. Figure 1a displays a solution path of
SurvEMVS under Scenario 1 with υ1=10. Large effects
(red dots) will be firstly incorporated into the fitting
model with υ0 increasing, and a remarkable separation
between the positive and negative effects appears when
υ0 is larger than 0.03. However, the estimated effects for
zeros inflate because of less shrinkage at large υ0. We
also present the iteration plot to detect the convergence
property of our approach. From Fig. 1b, SurvEMVS
makes a fast convergence to posterior estimates only in
several steps. Moreover, neutral effects (black dot line)
get close to zero in the fourth iteration, which means
that we can concentrate iterations on large effects after a

Table 1 Parameters settings for simulation studies

Parameter Scenario

1 2 3 4 5 6

Censoring rate 40%

Causal effects − 0.2, 0.2, − 0.3, 0.3, − 0.4, 0.4

Replications 50

Sample size of test dataset 100

Distribution of survival time (shape) Exponential Weibull (2) Gamma (0.8)

Sample size (n) / No. of makers(p) 500/1000 500/5000 500/1000 500/5000 500/1000 500/5000
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number of full iterations for all makers and further ac-
celerate the posterior computation.

Variable selection
In SurvEMVS, conditional posterior probabilities are
used to guide variable selection. Table 2 shows compari-
son results between SurvEMVS and Cox LASSO in vari-
able selection for Scenarios 1 and 2. For Scenario 1 with
p = 1,000, all models except LASSO.min can reduce
noise markers with low FDRs, and all of three models
with regard to SurvEMVS acquire high TPRs. When
simulated p increases to 5000 (Scenario 2), FPR and
FDR of BIC (i.e., EBIC1) inflate seriously. These indicate
that proper extra penalty on the BIC of SurvEMVS
brings to a moderate result of variable selection. We
summarize the results of Scenarios 3 and 4 with Weibull
distribution in Additional file 1: Table S1, and the results
of Scenarios 5 and 6 with gamma distribution in Add-
itional file 1: Table S2. Each of them presents a similar
trend with scenarios of exponential distribution.

Parametric estimation
Figure 2 and Additional file 1: Figures S2-S6 show the par-
ameter estimations of five models for all scenarios. Aver-
aged estimated effects (black vertical lines) of estimated
effects for all makers are calculated over 50 trials. Trian-
gles in all figures label the locations and effect sizes of the
pre-specified causal makers. In all scenarios, SurvEMVS
gives a lower bias than Cox LASSO. Biases of all models
increase with number of variants. Two models of Sur-
vEMVS (i.e., EBIC2 and EBIC3) present a similar estima-
tor, while the estimated effects in EBIC1 for zeros inflate
under scenarios with p = 5,000 (rough X-axis in Add-
itional file 1: Figures S2, S4 and S6). In order to make a
comprehensive evaluation of bias and variance, we use the
MSE metric and present the results in the left panels of
Fig. 3 and Additional file 1: Figures S7 and S8. Both the
EBIC2 and EBIC3 are well performed under all scenarios,
whereas the EBIC1 model get a high MSE with p = 5,000.
There is no apparent difference between the results of ex-
ponential, Weibull, and gamma distribution.

Prediction accuracy
In order to appreciate prediction accuracy of the fitted
models, we summarize AUC results by box plot in the
right panels of Fig. 3 and Additional file 1: Figures S7 and
S8. Generally speaking, the EBIC2 model performs best
under our simulation settings, while the LASSO.min pre-
sents similar prediction but with larger variance. In ac-
cordance with the conclusion of “Parametric estimation”,
prediction accuracy of the BIC model descends with p
varying from 1000 to 5000. Moreover, SurvEMVS with ex-
ponential or Weibull settings gain slightly larger AUC
than those with the gamma settings. Furthermore, the

Fig. 1 Solution path and iteration path of the proposed SurvEMVS under Scenario 1. Red dots represent the changes of estimated effects for the
true signals. a Solution path. b Iteration path (υ0 = 0.05)

Table 2 TPR, FPR, and FDR in variable selection with 50
replications (exponential distribution)

Method Scenario 1 (p = 1000) Scenario 2 (p = 5000)

TPR FPR FDR TPR FPR FDR

LASSO.se 0.657 1.25E−03 0.239 0.327 1.36E−04 0.258

LASSO.min 0.920 2.11E−02 0.792 0.713 4.60E−03 0.843

EBIC (τ = 0) 0.743 1.19E−03 0.209 0.703 5.78E−03 0.872

EBIC (τ = 0.5) 0.730 7.85E−04 0.151 0.480 1.48E−04 0.204

EBIC (τ = 1.0) 0.710 6.24E−04 0.127 0.377 2.00E−05 0.042

Abbreviations: TPR, true positive rate; FPR, false positive rate; FDR, false
discovery rate
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LASSO.se model almost provides the lowest AUC among
simulation scenarios. All the above results indicate that
the BIC is not suitable for large p scenario.
In summary, the EBIC2 model works best under almost

all scenarios in terms of variable selection, parameter esti-
mation, and prediction accuracy. Besides, Additional file 1:
Table S3 shows the time consumption in different scenar-
ios. In comparison with Cox LASSO, SurvEMVS takes
more computational time but is still fast enough. Note
that time used in Additional file 1: Table S3 is for refer-
ence only, as it varies depending on context, such as con-
vergence criterion, programming language, computer
performance, and algorithm optimization.

Real data analysis
Harvard lung cancer data
This dataset from The Harvard Lung Cancer Susceptibility
Study GWAS includes 526 late-stage (III and IV) patients
with non-small cell lung cancer (NSCLC) recruited from
Massachusetts General Hospital (Boston, MA). More de-
tails about participants’ recruitment have been described
previously [42]. We note that it is appropriate to assess an
association study restricted to late-stage cancer because
some gene functions work primarily in the late stage and
are not present in preinvasive stages of cancer [43]. DNA
was genotyped using Illumina 610K Quad chip. After

quality control protocol described by [44], there were
512,885 SNPs remaining. Those patients with more than
5 years of overall survival were considered as right cen-
sored, and finally, the censor rate was equal to 20.27%. We
assumed an additive genetic model and imputed missing
genotypes by mean of each SNP. We adjusted for age, sex,
smoking status, cell type, stage, surgery (yes vs. no), and the
top four principal components in the subsequent analysis.
Considering that the number of SNPs related to NSCLC
survival was not expected to be too large, we filtered the
SNPs by a commonly used single locus Cox model. This fil-
ter yielded a de-noising of outcome so that the subsequent
analyses became more efficient. By setting a threshold of P
value less than 5E−3, 3911 SNPs were left for the subse-
quent analysis.
The EBIC2 was used to choose an optimal model from the

candidates we noted above. Finally, 14 SNPs were detected
by the proposed EBIC2 model with υ1 = 100 and
υ0=2.56E-03. We further analyzed and annotated these SNPs
by TCGA (with an online tool UALCAN [45]), KEGG path-
way, and PubMed database. Interestingly, seven of all listed
in Table 3 may have potential functional influence on car-
cinogenesis or prognosis. For example, rs1506943 is located
at ~ 33 kb downstream of RXRG (retinoid X receptor
gamma) on Chromosome 1. This gene is expressed at signifi-
cantly lower levels in TCGA-LUAD (lung adenocarcinoma)

Fig. 2 Averaged estimated effect (black vertical lines) for each marker over 50 replications under Scenario 1. Red triangles label true effect sizes
and locations of the causal markers
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and TCGA-LUSC (lung squamous cell carcinoma) tumor
samples and samples of other research [46]. Additionally, it
also participates in non-small cell lung cancer path-
ways and other cancer-related pathways. rs2074986 is
located at DNase I hypersensitive site (DHS) of
GFRA1 on Chromosome 10. GFRA1 released by
nerves enhances cancer cell perineural invasion [47],
whose expression is reduced in tumor samples of
TCGA-LUAD and TCGA-LUSC compared with nor-
mal samples. In addition, the high expression level in
TCGA-LUAD tumor samples may contribute to good
prognosis (P = 0.0025). We also provided the esti-
mated effects of 14 SNPs by SurvEMVS in Add-
itional file 1: Table S4 along with classical Weibull
regression estimations for them (that is, only 14 SNPs
and clinical variables are fitted by Weibull regression).
In this way, SurvEMVS applied in high-dimensional

data can also generate approximate estimates with
Weibull regression. We plotted Kaplan-Meier (KM)
survival curve of patients with high, moderate, and
low risk defined by tertiles of risk scores −

Pp
j xijβ j

(Additional file 1: Figure S9). The log-rank test was used
to compare the survival estimates among the three groups,
and the results show that higher prognostic risk score is
significantly associated with shorter survival (P < 1E−16).
However, Cox LASSO models did not identify any SNP.

TCGA stomach adenocarcinoma (TCGA-STAD) expression
data
We accessed this RNA-seq transcriptomic data from
TCGA database by R/Bioconductor package TCGAbio-
links [48], which was used to do subsequent quality con-
trol, normalization, differential expression analysis

Fig. 3 MSE of parameter estimation and AUC of prognosis prediction for Scenarios 1 and 2. a, b The results of Scenarios 1 and 2, respectively
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(DEA), and visualization. The clinical information is
summarized in Additional file 1: Table S5. Similar to the
first real data analysis, we built final models only using
filtered expression markers by DEA rather than all
markers. There were 2711 markers left passing a selec-
tion threshold defined at fold change (FC) > 2 and test-
ing FDR < 0.01. Due to the relative high missing rate, we
made use of multivariate imputation by chained equa-
tions (MICE) to deal with missing clinical covariates
[49]. After removing the patients with missing or zero
survival time, we apply SurvEMVS and Cox LASSO to a
matrix with 390 rows and 2716 columns (including 5
clinical covariates listed in Additional file 1: Table S5).
We used the EBIC2 to select best model from the candi-

dates above. Three markers were identified by the pro-
posed model (υ0 = 3.69E-03 and υ1 = 500) including
CTLA4, NACAD, and SERPINE1, mapped to 2q33.2,
7p13, and 7q22.1, respectively. Meanwhile, the LASSO.-
min detected ALG11, GAMT, and PLCXD3 in addition to
the overlap genes CTLA4 and SERPINE1. Estimated ef-
fects of the selected markers in both two models are pro-
vided (Additional file 1: Table S6) along with classical
Weibull regression and Cox model estimations for them
(like the first application). We can see that many effects
estimated by Cox LASSO are small while SurvEMVS

presents similar estimations with its counterpart in the
low-dimensional Weibull regression. According to tertiles
of risk scores, we equally divided the patients into high-,
moderate-, and low-risk groups. Figure 4 presents the KM
curves of SurvEMVS (left panel) and Cox LASSO (right
panel), respectively, and both of them show a higher risk
score which is significantly associated with shorter survival
(Log-rank test P = 3.87E−07 for SurvEMVS and P = 1.02E
−04 for Cox LASSO).
Furthermore, in order to validate the results, we used

external data from GEO database. Five datasets
(GSE14210, GSE15459, GES29272, GSE51105, and
GSE62254) are included for their proper sample sizes.
Table 4 presents the estimated hazard ratios along with
95% confidence intervals (CI) and P value extracted
from an online tool (KM plotter, Web resource). We also
show the combined results using meta-analysis. As a re-
sult, CTLA4 and NACAD were successfully validated
and have the same direction of the effects on prognosis
with those estimated by SurvEMVS in TCGA-STAD
data. Interestingly, CTLA4 encodes CTLA-4 (cytotoxic
T-lymphocyte-associated protein 4) which inhibits T cell
activation and downregulates immune response. Antag-
onistic antibody against CTLA has become a targeted
drug (Ipilimumab, approved by FDA for melanoma in

Fig. 4 Kaplan-Meier survival curve of patients with high, moderate, and low risk. P value is calculated using log-rank test
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2011), which is the first approved and popular immune
checkpoint blockade therapy [50, 51]. Some research
also indicates CTLA4 may have influence on gastric can-
cer germination and progression [52, 53]. GAMT and
PLCXD3 detected by Cox LASSO display strong hetero-
geneity on effects (81.8% and 82.1%, respectively) with
five datasets and no significant association in the com-
bined analysis. Note that ALG11 is not identified in the
five data. Although we acquire a negative consequence
of SERPINE1 (also known as plasminogen activator
inhibitor-1, PAI-1) in validation analysis; interestingly, it
has been widely studied and is well known for participat-
ing p53 signaling pathway and playing a crucial role in
tumor progression and angiogenesis [54, 55].

Discussion
High-throughput sequencing technology, which has be-
come cheaper, promotes the development of precision
medicine [56]. Picking up underlying markers affecting
disease prognosis from thousands of candidates calls for
high-dimensional survival model besides generally used
one-by-one Cox proportional hazards model. In this
paper, we propose a parametric survival counterpart of
EMVS, namely SurvEMVS, which employs a fast EM al-
gorithm to fit all candidate biomarkers simultaneously
and to explore posterior distribution of the unknown pa-
rameters, consequently to identify important signals and
make effect estimations.
Much work has concentrated on developing new Bayes-

ian methods on high-dimensional parametric survival
model in application to medical or genetic data. For ex-
ample, Sha et al. built AFT models with less common dis-
tribution (i.e., log-normal and log-t) for microarray data
using a discrete spike-and-slab prior, where a time-con-
suming MCMC procedure was employed to simulate pos-
terior distribution [57]. Mittal et al. developed four
parametric models, i.e., exponential, Weibull, log-logistic,
and log-normal distribution, by assigning Gaussian and
Laplace prior to effects, where maximum a posterior
(MAP) was used to acquire posterior modes of effects;
however, this work lacked numerical study to evaluate
their models, as well as discussion on variables selected in
real data analysis from medical reasonability [58]. New-
combe et al. imposed a discrete spike-and-slab prior on
coefficients of Weibull regression, where reversible jump
MCMC being used for the posterior computation is inef-
fective. Moreover, it is unrepresentative of their applica-
tion to a low-dimensional breast cancer data [59].
SurvEMVS imposes a continuous spike-and-slab mix-

ture prior on effects to facilitate the separation of differ-
ent effect sizes. This two-component prior can provide
an indicator vector to guide variable selection whereby
using a local version of the median probability model
[22, 60]. In contrast, the EM algorithm or variational

approximation employing one-component prior such as
Laplace or t distribution does not involve variable inclu-
sion indicators, and consequently makes variable selec-
tion indirectly [20]. Due to the unavailable closed form
of maximization about maker effects in M-step, a variant
of CCD algorithm serves to be feasible for obtaining ap-
proximate solutions. Consequently, our EM steps in-
corporating this fast CCD make the fitting much
effective. One focus of this study is how to choose an
optimal model from the hyperparameter tuning process.
The EBIC, an extension of the BIC, is adopted with rea-
son as follows: in comparison with the EBIC, the nor-
mally used AIC, BIC, or GCV would generate more
spurious signal when applied to high-dimensional data,
while CV-based metrics demand more computation and
are unstable since the folds in CV are selected randomly.
This is, to our knowledge, the first application of EBIC
to the high-dimensional parametric survival analysis.
Over a range of simulation scenarios, our method with

EBIC2 generally performs better than Cox LASSO in
variable selection, parameter estimation, and prediction.
In contrast, owing to imposing a single penalty on all ef-
fects, Cox LASSO yields high biased estimators. Our
simulations also show the EBIC is appropriate for model
selection, while the BIC (i.e., EBIC1) perform worst in
situation with very large number of markers. For p > n
problem in omics data, we recommend τ = 0.5 for EBIC
in multi-stage study because it offers a good trade-off
between the well-controlled FDR and the TPR and pro-
vides more opportunity to new findings. However, if one
is strict to control false discovery, τ = 1, is recom-
mended. Subsequently, we conducted two real data ap-
plications. In the first study with a lung cancer genotype
data, 14 SNPs were detected by SurvEMVS, and further
validation analyses using external data or function anno-
tation resulted in 7 outstanding SNPs. In order to widen
the application range of SurvEMVS considerably, we uti-
lized a stomach cancer expression data in the second
study. Expression levels of three genes are associated
with cancer prognosis, and two of them are validated by
extra GEO datasets along with one (namely SERPINE1)
involved in tumor progression. The identification of
well-known CTLA4 illustrates the availability of Sur-
vEMVS. However, further functional experiments are
needed for evidence of biologic plausibility of those
identified markers.
Although we did not directly compare our EM algo-

rithm with its MCMC counterpart, the speed advantage
is apparent, according to the results of our EM algo-
rithm under each optimal model converge needing 174
and 238 iterations in the two real data applications,
which is much less than the chain length being set up
for MCMC (usually > 10,000 for stable estimation). The
model thus resembles a distinct iteration increase of real
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data application relative to a simulation study. We can
explain that ideal conditions (e.g., sparse structure with
independent markers) along with strong shrinkage of
candidate hyperparameters (producing a parsimonious
model) favor rapid convergence, but generally are not
available under real data applications, which leads to
more iterations demanding (but still fast enough) not
only for SurvEMVS but also for other model [20].
However, we acknowledge that there are several limita-

tions of the present study. First, SurvEMVS incorporating
the EM, which seeks for a posterior mode rather than a
whole posterior distribution of the parameter, cannot pro-
vide uncertain measure for estimators. We can directly
disentangle this disadvantage by the bootstrap method,
but have to bear expensive computations. Actually, an-
other compromise may be adopted: the estimates of Sur-
vEMVS can be considered as initial values of a following
MCMC algorithm, which makes the MCMC procedure
avoid the burn-in stage and finally yield fast and accurate
estimators with uncertain measurement. Second, the most
worrying thing of the parametric model is a situation of
going against the parametric assumption for survival dis-
tribution. We show that SurvEMVS is robust for the sta-
tus with moderately deviating from the Weibull premise.
However, we believe that SurvEMVS will be less effective
if the real survival time distinctly violates the Weibull dis-
tribution. We can bypass this limitation using a non-para-
metric AFT model like in [61], in which a Dirichlet
process is used to make the model robust over a wider
range of unknown baseline hazard. In addition, a lot of
new directions for methodological work will arise from
the current study. One obvious extension to our method
will consider multivariate “g-priors” to reflect the effect
correlations within the correlated markers [62]. Another
interesting extension will involve introducing a newly de-
veloped spike-and-slab Laplace prior [63]. Going forward,
the meaningful extension of SurvEMVS will integrate
functional annotations or multi-omics data to powerfully
mine association signals in future work.

Conclusions
We present a new implementation of the EM algorithm
for Bayesian variable selection under a Weibull survival
model. Both of our simulation studies and two real data
analyses show that the proposed method is effective and
can cope with high-dimensional omics data.
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