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Abstract

Background: As one of the most popular data representation methods, non-negative matrix decomposition (NMF)
has been widely concerned in the tasks of clustering and feature selection. However, most of the previously
proposed NMF-based methods do not adequately explore the hidden geometrical structure in the data. At the
same time, noise and outliers are inevitably present in the data.

Results: To alleviate these problems, we present a novel NMF framework named robust hypergraph regularized
non-negative matrix factorization (RHNMF). In particular, the hypergraph Laplacian regularization is imposed to
capture the geometric information of original data. Unlike graph Laplacian regularization which captures the
relationship between pairwise sample points, it captures the high-order relationship among more sample points.
Moreover, the robustness of the RHNMF is enhanced by using the L2,1-norm constraint when estimating the
residual. This is because the L2,1-norm is insensitive to noise and outliers.

Conclusions: Clustering and common abnormal expression gene (com-abnormal expression gene) selection are
conducted to test the validity of the RHNMF model. Extensive experimental results on multi-view datasets reveal
that our proposed model outperforms other state-of-the-art methods.

Keywords: Non-negative matrix decomposition, Hypergraph Laplacian, L2,1-norm, Clustering, Common abnormal
gene selection, Multi-view gene expression data

Background
Due to the development of sequencing technology,
more and more gene expression data have been de-
tected. At the same time, there are many meaningful
biological information in gene expression data. The
effective analysis and research of this information are
of great significance to the prevention and treatment
of diseases. And multi-view data obtained by integrat-
ing data from different sources have gained much
attention in the field of machine learning [1]. It is

well known that gene expression data can be down-
loaded from The Cancer Genome Atlas (TCGA) plat-
form. We then integrated the gene expression data
into multi-view data for different diseases with the
same genes. Multi-view data will provide a new per-
spective to mine the connections between multiple
cancers.
To meet the demand for studying explosive gene

expression data, modern biologists are increasingly
concerned with clustering and feature selection.
Clustering is the process of dividing a series of genes
or samples into different subsets, and the genes or
samples in the same subset are similar [2]. Generally
speaking, feature selection can not only find useful
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information and eliminate noise, but also reduce the
complexity of the computation. In this paper, we
performed the selection of com-abnormal genes to
study the relationship between genes and multiple
cancers [3].
As an effective matrix decomposition method,

non-negative matrix factorization (NMF) [4] is
widely prevalent in bioinformatics [5], image repre-
sentation [6], and other fields [7]. NMF can learn
part-based representations of objects. This is consist-
ent with the human brain’s perception mechanism.
Some extensions to NMF have been proposed from
different perspectives. For example, the non-negative
local coordinate factorization (NLCF) was presented
by imposing the locality coordinate constraint into
the original NMF [8]. Kim et al. presented the sparse
non-negative matrix factorization (NMFs) method in
combination with sparse constraints [9]. In practical
applications, the data are sometimes negative, so semi-
non-negative matrix factorization (Semi-NMF) and
convex non-negative matrix factorization (Convex-NMF)
are derived to solve the problem of positive and negative
data [10].
As we mentioned above, these methods have enhanced

the performance of NMF, but there also exist the follow-
ing limitations: (1) In fact, there is an intrinsic geomet-
rical information in the high-dimensional data. But these
methods ignore the nonlinear low-dimensional geomet-
rical structure in the original data. (2) There are always
noise and outliers in real data. Therefore, we need a ro-
bust NMF-based approach to effectively suppress noise
and outliers.
For the first question, the graph regularized non-nega-

tive matrix factorization (GNMF) was presented to dis-
cover the manifold structure of raw data [11]. However,
graph regularization is based on constructing k-nearest
neighbors in a simple graph, which explores only the
pairwise relationship between two sample points. Zeng
et al. introduced hypergraph regularized non-negative
matrix factorization (HNMF) to encode the relationship
between two or more than two sample points [12]. Un-
like simple graphs, the hyperedge of a hypergraph con-
tains a series of related vertices. Therefore, high-order
relationship of the data can be found. GNMF and
HNMF consider important manifold information, but
they are exceptionally sensitive to noise and outliers. For
the second problem, using the L2, 1-norm when estimat-
ing the residual can be effectively alleviated [13].
Inspired by these work, this paper presents a novel

NMF model called robust hypergraph regularized non-
negative matrix factorization (RHNMF). It adds hyper-
graph regularization and L2, 1-norm to the traditional
NMF. So it has the advantage of considering the higher-
order relationship among samples and controlling the

influences of noise and outliers. The main contributions
of RHNMF are summarized as follows:

(i) To capture high-order relationship between more
sample points, hypergraph regularization is applied
to the objective function. This makes sense for
enhancing the performance of NMF-based
methods.

(ii) The L2, 1-norm instead of the Frobenius norm is
used to estimate the residual approximation, so that
the error term for each data point is no longer
squared form. This will greatly suppress the effects
of noise and outliers. And L2, 1-norm is suitable for
clustering and feature selection because it produces
sparse rows.

(iii)Scientific and comprehensive experiments are
designed on the multi-view datasets to prove the
effectiveness of the RHNMF and achieved
satisfactory results.

The rest of the paper is arranged as follows. In the
“Methods” section, we introduce the NMF, L2, 1-
norm, and hypergraph regularization. The proposed
RHNMF method, the solution process, its conver-
gence, and computational complexity analysis are
also described in detail. Experimental results are
demonstrated in the section “Results and discussion.”
The conclusion is drawn in the section
“Conclusions.”

Methods
Non-negative matrix factorization
In the field of bioinformatics, gene expression data
are usually expressed in the form of a matrix. The
sample is represented by a column of matrices, and
the level of gene expression is represented by the
rows of the matrix. Given a data matrix X = [x1, x2,
…, xn] ∈ Rm × n, the column vector xj is a sample vec-
tor. NMF aims at finding two non-negative matrices
U = [u1, u2,…, uk] ∈ Rm × k and V = [v1, v2,…, vn] ∈ Rk × n

whose products are similar to the data matrix X [14].
U represents a basis matrix, and V represents a coef-
ficient matrix. The minimizing objective function of
the NMF is as below:

min
U;V

X−UVk k2F ¼
Xn
j¼1

x j−Uv j

�� ��2 s:t:U≥0;V≥0;

ð1Þ

where ‖⋅‖F represents the Frobenius norm of matrix. xj
can be seen as a linear combination of columns of U, pa-
rameterized by each column of V [15].
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L2, 1-norm
Given any matrix X ∈ Rm × n, the ‖X‖2, 1 is to first
calculate L2-norm for rows to form a column matrix,
and then calculate L1-norm for column matrix [13],
i.e.,

Xk k2;1 ¼
Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

x2i; j

vuut
¼
Xm
i¼1

xi
�� ��

2

ð2Þ

As shown above, L2, 1-norm will cause row sparsity
[16]. At the same time, the L2, 1-norm is not susceptible
to noise and outliers, so the robustness of the algorithm
can be improved.

Hypergraph regularization
Inspired by the simple graph theory, hypergraph
came into being [17]. In the sample graph, one edge
is connected by two data samples and the weight of
the edge denotes the pairwise relationship between
two sample points [11]. To solve this problem,
hypergraph takes into account the relationships be-
tween multiple vertices and construct hyperedges for
them [12].
Let a triple G = (V, E,W) represent a hypergraph,

where vertex set is represented by V, hyperedge set
is E, and W is the diagonal matrix that represents
the weights of the hyperedges. As shown in Fig. 1a,
this is an example of a hypergraph. There are six
vertices and three hyperedges in this hypergraph.
Then, the hyperedge set E = {e1 = {v1, v2, v3}, e2 = {v3,
v4, v5}, e3 = {v5, v6, v7,v8}}. In Fig. 1b, H ∈ R|V| × |E|

represents the hypergraph’s incidence matrix. Then,
we can calculate it as below:

H v; eð Þ ¼ 1 if v∈e;
0 otherwise:

�
ð3Þ

For any hyperedge ei, its weight Wi is denoted as
follows:

Wi ¼ W eið Þ

¼
X
v j∈ei

exp −
vi−v j
�� ��2

2

δ

 !
;

ð4Þ
where δ ¼ 1

.
k

X
v j∈ei

kvi−v jk22 , k represents the value of k

nearest neighbors for each vertex. d(v) represents the
degree of vertex v and is expressed as follows:

d vð Þ ¼
X
e∈E

w eð ÞH v; eð Þ: ð5Þ

And the degree of each hyperedge can be denoted as:

f eð Þ ¼
X
v∈V

H v; eð Þ: ð6Þ

The unnormalized hypergraph Laplacian matrix [17] is
defined as:

Lhyper ¼ Dv−E; ð7Þ
where E =HW(De)

−1HT and Dv is a diagonal matrix
composed of d(v). W denotes a diagonal matrix com-
posed of w(e). De used to represent the diagonal matrix
composed of f(e).
Hypergraph regularization [12] can be defined to

minimize the following optimization problem:

Fig. 1 Illustration of the hypergraph. a An example of a hypergraph. b Its corresponding incidence matrix
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min
V

1
2

X
e∈E

X
i; jð Þ∈e

w eð Þ
f eð Þ si−s j

�� ��2
¼ min

V
Tr V Dv−Eð ÞVT
� �

¼ min
V

Tr VLhyperVT
� �

;

ð8Þ
where s

i
and s

j
are low-dimensional representations of

the original data points x
i
and x

j
.

The proposed method: robust hypergraph regularized
non-negative matrix factorization (RHNMF)
Traditional NMF is a good part-based representation al-
gorithm [4]. However, its objective function is a form of
square residual. Therefore, traditional NMF is suscep-
tible to noise and outliers. Moreover, NMF ignores the
low-dimensional manifold embedded in the high-dimen-
sional data.
To overcome the above limitations, we present a

new method called RHNMF. It considers the robust-
ness of the algorithm and the high-order relationship
between the data. In other words, RHNMF method is
the integration of NMF, L2, 1-norm, and hypergraph.
The objective function of RHNMF is defined as
follows:

min
U;V

X−UVk k2;1
þ αTr VLhyperVT

� �
s:t:U≥0;V≥0;

ð9Þ
where Tr(⋅) represents the trace of the matrix and
α ≥ 0 denotes the weighting parameter to balance two
terms.

Solution of RHNMF
By using ‖B‖2, 1 = Tr(BDBT), the objective function in
Eq. (9) is expressed as follows:

Tr X−UVð ÞD X−UVð ÞT
� �

þ αTr VLhyperV
� �

¼ Tr XDXT
� �

−2Tr XDVTUT
� �þ Tr UVDVTUT

� �
þ αTr VLhyperVT

� �
;

ð10Þ
where D denotes the diagonal matrix with ith diagonal
element as

Djj ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi

m¼1
X−UVð Þ2m; j þ γ

r
¼ 1

.
x j−Uv j þ γ
�� ��;

ð11Þ
where γ represents the sufficiently small positive

number infinitely close to 0 but not 0. The multipli-
cation update rule is used to iteratively update the
objective function to minimize the error. Then, the
Lagrangian function f can be expressed as

f ¼ Tr XDXT
� �

−2Tr XDVTUT
� �þ Tr UVDVTUT

� �
þ αTr VLhyperVT

� �þ Tr ψUT
� �þ Tr φVT

� �
;

ð12Þ
where ψ = [ψ

ik
] and φ = [φ

kj
] denote Lagrange multi-

pliers which are constrained to U ≥ 0 and V ≥ 0,
respectively.

The partial derivative of f with respect to U and V can
be defined as follows:

∂ f
∂U

¼ −2XDVT þ 2UVDVT

þ ψ; ð13Þ
∂ f
∂V

¼ −2UTXDþ 2UTUVDþ 2αVLhyper

þ φ: ð14Þ

The iterative formulas of the objective function are
expressed as follows:

uik←uik
XDVT
� �

ik

UVDVT
� �

ik

;

ð15Þ

vkj←vkj
UTXDþ αVE
� �

kj

UTUVDþ αVDv
� �

kj

:

ð16Þ
Then, the corresponding algorithm is given in

Algorithm 1.
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Finally, we use Fig. 2 to illustrate our model. From
Fig. 2, we can see that the original data matrix consists
of different types of data. The RHNMF method with L2,
1-norm constraint and hypergraph regularization has
good robustness. We can perform feature selection on
the basis matrix and perform sample clustering on the
coefficient matrix.

Convergence and complexity analysis
In this subsection, the computational costs of the
RHNMF are presented. The general method to de-
scribe the computational complexity is to use arith-
metic operations. Multiplicative iterative update rules
guarantee U ≥ 0 and V ≥ 0. So we can iteratively up-
date U and V until RHNMF’s objective function value
is less than a sufficiently small number or the number
of iterations exceeds the set maximum. It guarantees
the convergence of the algorithm. Based on (15) and
(16), we specifically analyze the arithmetic operations
of each iteration of the RHNMF method. Assume that
the original data matrix Xm × n, m represents the
number of genes, the number of samples is repre-
sented by n, k denotes the number of factors, g repre-
sents the number of nearest neighbors when
constructing hyperedges in our algorithm. Therefore,
we need 2mnk + 2(m + n)k2 + n(g + 3)k additions,
2mnk + 2(m + n)k2 + (m + n)k + n(g + 1)k multiplications,

and (m + n)k divisions for (15) and (16). The overall
costs of RHNMF method are O(mnk).

Results and discussion
In this section, we apply the RHNMF model to cluster
samples and select com-abnormal expression genes. To
verify the validity of RHNMF, we compare it to other
methods on multi-view dataset. These comparison
methods include K-means, PCA, NMF [14], NMFL2, 1

[13], GNMF [11], HNMF [12], SHNMF [18], and
RGNMF [19].

Datasets
The Cancer Genome Atlas (TCGA) program applies
high-throughput sequencing technology to under-
stand the mechanisms of the occurrence and devel-
opment of cancer cells [20]. In this experiment, we
testify the performance of the RHNMF method in
four multi-view datasets, including pancreatic cancer
(PAAD_GE), head and neck squamous cell carcin-
oma (HNSC_GE), esophagus cancer (ESCA_GE), and
cholangiocarcinoma (CHOL_GE). The datasets are
downloaded from the TCGA. Any three of the four
gene expression data are processed into multi-view
datasets. Therefore, a total of four multi-view data
have been formed. It is the gene expression data that
after normal samples are removed are our data used

Fig. 2 The whole framework of RHNMF

Table 1 Summary of four multi-view datasets

Datasets Samples Genes Classes Views Pv

PAAD_HNSC_CHOL_GE 610 20502 3 3 20502, 20502, 20502

PAAD_ESCA_CHOL_GE 395 20502 3 3 20502, 20502, 20502

PAAD_HNSC_ESCA_GE 757 20502 3 3 20502, 20502, 20502

HNSC_ESCA_CHOL_GE 617 20502 3 3 20502, 20502, 20502

Note: Datasets are different multi-view data. Classes represent the number of data categories (the type of cancer), views represent the number of data views (the
type of cancer), and PV represents the dimension of each view
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in this paper. Table 1 lists the detailed information
for the multi-view datasets.

Parameter setting
In our proposed RHNMF method, the balance param-
eter α affects the experimental results. Because the
value of the regularization parameter represents the
degree of consideration of high-order relationship
among data points, the value of the appropriate
regularization parameter will contribute to the experi-
mental results. So fivefold cross-validation is used to
select the optimal parameters. The scope of the selec-
tion is {10r : r ∈ {−5, −4, −3,…, 3, 4, 5}}. Figure 3 depicts
the effect of parameter changes on RHNMF clustering
performance. We can see from Fig. 3 that the hyper-
graph regularization parameters α are 105, 105, 100,
and 104 on PAAD_HNSC_CHOL_GE, PAAD_ESCA_
CHOL_GE, PAAD_HNSC_ESCA_GE, and HNSC_
ESCA_CHOL_GE, respectively.

Clustering results
In the experiment, we perform 50 times for each method.
To illustrate the superiority of our algorithm, we compare
it with other methods in the clustering of multi-view data.
Then, we employ the K-means algorithm on the decom-
posed coefficient matrix for sample clustering.

Evaluation metrics
In the experiment, we employ two evaluation metrics to
evaluate the clustering results [21, 22]. The first evaluation
metric is accuracy (AC), which is the percentage of sam-
ples that are correctly clustered. The second evaluation
metric is normalized mutual information (NMI), which in-
dicates the similarity between the cluster set we obtained
and the actual cluster set. Then, the AC is calculated by

AC ¼
Pn

i¼1δ si;map rið Þð Þ
n

� 100%; ð17Þ

where si denotes the ground truth label and ri represents
the cluster label that is obtained in the clustering

Fig. 3 Performance of the RHNMF set with different values of α

Table 2 Comparison of clustering performance in multi-view datasets

Datasets PAAD_HNSC_CHOL_GE PAAD_ESCA_CHOL_GE PAAD_HNSC_ESCA_GE HNSC_ESCA_CHOL_GE

AC (%) NMI (%) AC (%) NMI (%) AC (%) NMI (%) AC (%) NMI (%)

K-means 57.19 ± 0.21 20.71 ± 0.74 52.24 ± 0.33 6.67 ± 0.48 46.79 ± 0.07 14.35 ± 0.30 54.62 ± 0.09 15.93 ± 0.10

PCA 57.71 ± 0.02 18.38 ± 0.32 47.02 ± 0.12 1.00 ± 0.01 46.98 ± 0.08 13.63 ± 0.32 48.95 ± 0.04 10.70 ± 0.06

NMF 48.28 ± 0.28 15.95 ± 0.08 52.56 ± 0.17 6.05 ± 0.15 46.41 ± 0.00 13.27 ± 0.02 48.87 ± 0.14 9.74 ± 0.09

GNMF 53.46 ± 0.24 17.23 ± 0.37 47.68 ± 0.01 1.52 ± 0.01 44.82 ± 0.10 14.18 ± 0.28 52.95 ± 0.09 15.29 ± 0.10

NMFL2,1 58.69 ± 0.00 26.19 ± 0.00 57.17 ± 0.09 21.58 ± 0.03 50.21 ± 0.14 22.38 ± 0.26 51.70 ± 0.18 15.62 ± 0.09

HNMF 65.70 ± 0.02 32.18 ± 0.19 51.36 ± 0.07 25.64 ± 0.02 64.63 ± 0.08 26.90 ± 0.15 58.63 ± 0.09 19.32 ± 0.05

SHNMF 66.40 ± 0.03 35.62 ± 0.31 52.10 ± 0.07 26.01 ± 0.01 63.85 ± 0.04 36.93 ± 0.01 58.96 ± 0.06 19.07 ± 0.04

RGNMF 79.33 ± 0.83 60.42 ± 0.19 75.44 ± 0.76 60.52 ± 0.69 79.98 ± 0.81 53.74 ± 1.25 72.49 ± 1.35 38.36 ± 1.17

RHNMF 82.34 ± 0.71 62.26 ± 0.34 77.04 ± 0.65 63.96 ± 0.20 85.23 ± 0.62 60.05 ± 1.19 84.29 ± 0.98 52.72 ± 1.19

Note: The best experimental results are highlighted in italics

Yu et al. Human Genomics Page 6 of 10Yu et al. Human Genomics 2019, 13(Suppl 1):46



experiment. map(ri) denotes the mapping function that
maps label ri to the label si using the Kuhn–Munkres al-
gorithm [23]. Then, δ(x, y) denotes a delta function.
When x = y, δ(x, y) is 1; otherwise, δ(x, y) is 0. In
addition, n represents the number of samples.
NMI represents the degree of similarity between two

cluster sets and it has been widely used. For two cluster
sets C and C', NMI is expressed as:

NMI C;C
0

� �
¼ MI C;C

0� �
max H Cð Þ;H C

0� �� � ; ð18Þ

where H(C) and H(C') represent the entropies of C and
C'. MI(C,C') represents the mutual information between
two cluster sets.

Comparison of clustering performance
To illustrate the effectiveness of RHNMF, we perform
the clustering experiment on the multi-view datasets.
Then, we use AC and NMI to evaluate the clustering
result. Finally, the details of clustering results are sum-
marized in Table 2. According to Table 2, we can easily
draw the following conclusions:
(i) On these four multi-view datasets, the HNMF and

SHNMF outperform the GNMF method, and the
RHNMF also is higher than the RGNMF method. This is
because the graph regularization only considers the in-
trinsic geometric relationships between pairs of samples.
Hypergraph regularization and sparse hypergraph
regularization, on the other hand, consider the manifold
structure among more samples. That is, hypergraph
Laplacian is able to find geometric information between
multiple samples with similar embedding. This shows
that the method of applying the hypergraph
regularization term constraint has higher clustering
accuracy.
(ii) According to whether there is L2, 1-norm con-

straints in the error function, we divide the seven
methods based on NMF into three groups for compari-
son. The NMFL2, 1 is approximately 5% and 10% bigger
than the NMF on AC and NMI, respectively. RGNMF
exceeds GNMF by 27% and 41% on AC and NMI.
RHNMF is higher than HNMF and SHNMF, by about
22% and 30% on the mean of AC and NMI. We can see
that the methods with L2, 1-norm have better clustering
results. This is because multi-view data has more
samples, so there will be more noise and outliers.

Fortunately, L2, 1-norm can enhance the robustness of
the algorithm.
(iii) The NMF clustering results on the PAAD_ESCA_

CHOL_GE and PAAD_HNSC_ESCA_GE datasets are
not the worst. The reason may be that the improvement
of traditional NMF will cause the loss of useful informa-
tion and affect the clustering results. The clustering
result of K-means is obtained by directly clustering the
original data set without dimensionality reduction. From
Table 2, we can see that its clustering results are accept-
able because it considers all the information in the
datasets without losing any information.
(iv) In Table 2, we can observe that our RHNMF

method outperforms other methods. The clustering
accuracy is increased by at least 5% and 6% on all data-
sets. Therefore, it is reasonable that the combination of
the hypergraph structure and L2, 1-norm makes the clus-
tering effect obviously.
The development of single-cell RNA sequencing

(scRNA-seq) technology has enabled the measurement
of gene expression in individual cells. This gives us an
unprecedented opportunity to study biological mecha-
nisms at the cellular level. The main single-cell analysis
is to study the heterogeneity of cells, that is, to cluster a
large number of cells into different groups. Therefore, in
this subsection, we perform clustering experiments on
single-cell datasets using the nine methods described
above. The single-cell dataset for lung epithelial cells is
available in the NCBI’s Gene Expression Omnibus (GEO
GSE84147), including 540 cells (215 control, 275 idio-
pathic pulmonary fibrosis patients, and 50 interstitial
lung disease patients) [24]. Table 3 lists the experimental
results of the different methods on the lung epithelial
cell dataset. Table 3 shows that the RHNMF method
gives the best clustering performance. Specifically, our
method’s AC and NMI are about 1% and 0.5% better
than the second best result. The reason is that our
method considers the robustness of the algorithm and
the high-order relationship between the data. And this
also shows that our approach applies not only to TCGA
datasets but also to single-cell datasets.

Com-abnormal gene selection results
Cancer is the most common type of modern diseases,
and it is a serious threat to human life and health.
Changes in the genome often lead to cancer [25, 26].
Therefore, we select com-abnormal genes on the
PAAD_ESCA_CHOL_GE dataset (to save space, we only

Table 3 The clustering performance of the nine methods on single-cell dataset

Methods K-means PCA NMF GNMF NMFL2,1 HNMF SHNMF RGNMF RHNMF

AC (%) 76.16 ± 0.18 76.89 ± 0.64 77.19 ± 0.64 78.57 ± 0.47 78.15 ± 0.32 79.19 ± 0.26 78.36 ± 0.45 79.76 ± 0.13 80.94 ± 0.07

NMI (%) 38.29 ± 0.22 36.34 ± 0.77 38.27 ± 0.73 39.63 ± 0.53 41.05 ± 0.10 40.39 ± 0.26 39.12 ± 0.57 40.78 ± 0.04 41.19 ± 0.03

Note: The best experimental results are highlighted in italics
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list the experimental results on the PAAD_ESCA_
CHOL_GE dataset.). From the consideration of the con-
nection among multiple cancers, pancreatic cancer
(PAAD), esophagus cancer (ESCA), and cholangiocarci-
noma (CHOL) are studied.
In the experiment, the gene selection method used is in-

troduced in [5]. We select 100 genes from each method
for comparison. GeneGards (http://www.genecards.org/)
can analyze the selected genes. GeneCards is a searchable
comprehensive database that succinctly provides genomes,
proteomics, and all known and predicted human genes.
Tables 4, 5, and 6 list the detailed experimental results.
In Table 4, the N is obtained by matching the differen-

tial genes selected by each method to the virulence gene
pool of every integrated dataset. The RHNMF method
gives the largest N. This is because L2, 1-norm is not
sensitive to noise and outliers. And the row sparsity pro-
duced by the L2, 1-norm constraint will contribute to the
selection of com-abnormal genes. Therefore, our method
is effective for the selection of com-abnormal genes.
The com-abnormal expressed genes selected by

RHNMF and not selected by other methods are listed in
Table 5. The relevant score refers to the correlation be-
tween genes and diseases. The higher relevance score
means that abnormal expression of the gene is more
likely to cause malignant tumor production. And we can

see that the relevance scores of KRT18 with PAAD,
ESCA, and CHOL are 11.99, 11.76, and 2.61, respect-
ively. KRT18 (Keratin 18) is a protein-coding gene. It
encodes the type I intermediate filament chain keratin
18. KRT18 has been shown to be associated with the ap-
pearance of PAAD, ESCA, and CHOL [27–29]. HSPA5
probably plays a role in facilitating the assembly of mul-
timeric protein complexes inside the endoplasmic
reticulum. The relevance scores of HSPA5 with PAAD,
ESCA, and CHOL are 11.46, 9.13, and 0.88, respectively.
HSPA5 has to do with the occurrence of PAAD, ESCA,
and CHOL [30–32]. This suggests that biologists need
to further study KRT18 and HSPA5 to better understand
the link among PAAD, ESCA, and CHOL. And it shows
that the RHNMF method is useful in selecting the com-
abnormal genes.
Table 6 lists the same com-abnormal genes discovered

by these eight methods. Table 6 is similar to Table 5. As
we all know, a gene may be linked to a variety of dis-
eases, and the emergence of a disease is the result of
multiple genes acting together. KRT19 has the highest
correlation score in these three diseases. Together with
KRT8, it helps to link the contractile apparatus to dys-
trophin at the costameres of striated muscle. KRT19’s
related diseases are lung cancer and thyroid cancer.
Some literature has shown that KRT19 is related to

Table 4 Performance comparison of com-abnormal gene selection in multi-view datasets

Methods N Com-abnormal genes

PCA 25 KRT19, SPINK1, PRSS1, MUC6, VIM, HLA-A, SERPINA1, CTSB, KRT8, GNAS, ANXA2, HSPB1, HLA-C, KRT5, S100A6, PKM, HSP90AA1, ENO1,
KRT17, MALAT1, COL1A1, ALDOA, LIPF, TMSB10, RPLP0

NMF 15 KRT19, SPINK1, PRSS1, HLA-A, SERPINA1, CTSB, KRT8, SPP1, GNAS, KRT5, S100A6, SERPINA3, COL1A1, TMSB10, RPLP0

GNMF 24 KRT19, PRSS1, MUC6, VIM, HLA-A, SERPINA1, CTSB, KRT8, GNAS, ANXA2, HSPB1, HLA-C, KRT5, S100A6, PKM, HSP90AA1, ENO1, KRT17,
MALAT1, COL1A1, ALDOA, LIPF, TMSB10, RPLP0

NMFL2, 1 31 CEACAM5, KRT19, VIM, HLA-A, SERPINA1, CTSB, KRT8, CEACAM6, GNAS, ANXA2, HSPB1, HLA-C, KRT5, LAMC2, S100A6, ITGB1, PKM,
HSP90AA1, ENO1, KRT17, MALAT1, MMP11, ITGB4, COL1A1, HSPG2, ALDOA, LDHA, LGALS3BP, S100A11, TMSB10, RPLP0

HNMF 32 CEACAM5, KRT19, VIM, HLA-A, SERPINA1, CTSB, KRT8, CEACAM6, GNAS, ANXA2, HSPB1, HLA-C, KRT5, S100A6, ITGB1, PKM, HSP90AA1,
ENO1, S100A9, KRT17, LCN2, MALAT1, ITGB4, COL1A1, HSPG2, ALDOA, HSP90B1, LDHA, LGALS3BP, S100A11, TMSB10, RPLP0

SHNMF 31 CEACAM5, KRT19, VIM, HLA-A, SERPINA1, CTSB, KRT8, CEACAM6, GNAS, ANXA2, HSPB1, HLA-C, KRT5, S100A6, ITGB1, PKM, HSP90AA1,
ENO1, S100A9, KRT17, LCN2, MALAT1, COL1A1, HSPG2, ALDOA, HSP90B1, LDHA, LGALS3BP, S100A11, TMSB10, RPLP0

RGNMF 33 EGFR, CCND1, KRT19, CD44, PRSS1, VIM, SLC2A1, CTSB, GNAS, ANXA2, HSPB1, HLA-C, KRT5, LAMC2, S100A6, ITGB1, PKM, HSP90AA1,
ENO1, S100A9, H19, KRT17, ANXA1, MALAT1, ITGB4, COL1A1, ALDOA, HSPA1A, TNC, LDHA, LGALS3BP, S100A11, TMSB10

RHNMF 34 CEACAM5, KRT19, VIM, HLA-A, SERPINA1, CTSB, KRT8, CEACAM6, SPP1, GNAS, ANXA2, HSPB1, HLA-C, KRT5, KRT18, S100A6, ITGB1,
PKM, HSP90AA1, ENO1, KRT17, HSPA5, LCN2, MALAT1, ITGB4, COL1A1, HSPG2, ALDOA, HSP90B1, LDHA, LGALS3BP, S100A11, TMSB10,
RPLP0

Note: Bold genes denote that they are selected simultaneously by these eight methods. Underlined genes denote that they can be selected by RHNMF. N
represents the number of com-abnormal genes selected for every method

Table 5 Detailed analysis of the com-abnormal genes selected only by the RHNMF method

Gene
ID

Gene
ED

Related GO annotations Related diseases Relevance score

3875 KRT18 Poly(A) RNA binding and scaffold protein binding Cirrhosis, cryptogenic, and nonalcoholic
steatohepatitis

11.99, 11.76,
2.61

3309 HSPA5 Calcium ion binding and ubiquitin protein ligase
binding

Borna disease and Wolfram syndrome 11.46, 9.13, 0.88
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PAAD, ESCA, and CHOL [33–35]. The com-abnormal
genes in Table 6 are found in all eight methods, implying
the importance of these genes. The com-abnormal gene
selection by considering the links among different can-
cers is of great significance to PAAD, ESCA, and CHOL
research.

Conclusions
In this paper, we design a novel non-negative matrix
factorization model called RHNMF for sample clustering
and the selection of com-abnormal genes. On the one
hand, considering the low-dimensional manifold infor-
mation existing in the high-dimensional data, the hyper-
graph regularization term is applied to the objective
function of RHNMF. On the other hand, we use L2, 1-
norm on the error function to enhance the robustness of
the algorithm. Experimental results on the multi-view
datasets demonstrate the superiority of the RHNMF in
comparison with other representative methods.
However, the proposed method inevitably has limita-

tions. For example, our method uses a traditional hyper-
graph, which does not capture high-order discriminant
manifold information. For future work, we will introduce
sparse hypergraph to solve the above problem.
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