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Abstract

Background: Microbes are greatly associated with human health and disease, especially in densely populated cities.
It is essential to understand the microbial ecosystem in an urban environment for cities to monitor the transmission of
infectious diseases and detect potentially urgent threats. To achieve this goal, the DNA sample collection and analysis
have been conducted at subway stations in major cities. However, city-scale sampling with the fine-grained
geo-spatial resolution is expensive and laborious. In this paper, we introduce MetaMLAnn, a neural network based
approach to infer microbial communities at unsampled locations given information reflecting different factors,
including subway line networks, sampling material types, and microbial composition patterns.

Results: We evaluate the effectiveness of MetaMLAnn based on the public metagenomics dataset collected from
multiple locations in the New York and Boston subway systems. The experimental results suggest that MetaMLAnn
consistently performs better than other five conventional classifiers under different taxonomic ranks. At genus level,
MetaMLAnn can achieve F1 scores of 0.63 and 0.72 on the New York and the Boston datasets, respectively.

Conclusions: By exploiting heterogeneous features, MetaMLAnn captures the hidden interactions between
microbial compositions and the urban environment, which enables precise predictions of microbial communities at
unmeasured locations.
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Background
Metagenomics studies the genomic content obtained
from a human body site or an environment with a goal of
understandingmicrobial diversity. Themicroorganisms in
our environment are greatly associated with human health
and disease.
Human microbiome studies are already rich enough to

uncover the microbial diversity within the human body
[1]. Environmental metagenomics, though falling behind
in the past years, has also become increasingly impor-
tant due to the increasing awareness of its impacts on
public health, especially in densely populated urban areas
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[2–8]. Therefore, the effectiveness of a city’s long-term
disease surveillance and health management relies heav-
ily on how we understand and predict the metagenomics
composition at a fine-grained level.
Many recent research have been devoted to building

up city-scale metagenomic profiles [9, 10]. For exam-
ple, Afshinnekoo et al. [9] created a city-wide metage-
nomic profile for New York City by collecting samples
from different surfaces across the entire New York sub-
way system. Taxonomic assignments were generated by
alignment reading, and the relative abundances were com-
puted at the species level. The profile described the pat-
tern of metagenomic communities and revealed how the
human interacts with new microbes or danger pathogens.
Another study conducted by Hsu et al. [10] provided a
more comprehensive metagenomic profile in the Boston
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transportation system, which described microbial com-
munities across multiple surface types. However, collect-
ing, sequencing, and analyzing the metagenomics data at
every station cost them a great amount of money and
time. Given that, our study focuses on developing a model
to automatically predict the microbial communities for
unsampled locations.
It is challenging to predict the microbial communi-

ties for unsampled locations. First, the characteristics of
microbial communities can vary enormously in a com-
plicated urban system due to various factors like geo-
graphical topology and public transit network. Many
recent works have investigated how network connectivity
affects the similarity ofmicrobiomes. For examples, Leung
et al. [2] conducted a Mantel test of Hong Kong subway
line (MTR), and found that closely connected MTR lines
shared more similar microbial communities than pairs
that are further apart (R = 0.47, P = 0.03), probably
because of distance-dependent dispersal and transferring
commuters. To further evaluate the assumption, we con-
duct a clustering analysis based on microbial community
similarity at different locations. As shown in Fig. 1, differ-
ent microbes are separated by geographical boundaries.
Second, the formation and transmission of microbial

communities are also affected by the material type of sur-
faces where the samples are collected [10]. Lastly, within
each community, the genetic properties of each individual

Fig. 1 There are three groups of subway stations based on the
hierarchical clustering of the microbial community abundance in
each location. We set the number of clusters to be three and use the
Pearson correlation as the distance metric. We observe that the East
river is a clear boundary that separates the three districts: Manhattan
(blue dots), Brooklyn (yellow marks), and the Roosevelt Island (one red
dot at top right)

microorganisms and the correlation between individual
microorganisms also contribute to the complexity. Con-
sidering the mixed effects from various factors, a simple
model for each station along the same subway line should
not be enough.
To address these challenges, we formulate the predic-

tion of microbial communities at unsampled locations as
a multi-label classification (MLC) task. Based on a set of
heterogeneous features extracted from the urban environ-
ment, we aim to predict the presence or absence of a list
of microbes at a nearby location. For MLC, each location
is considered as an instance and each label represents a
microbe.
Since different class labels have to be predicted simul-

taneously [11], MLC is suitable for solving the microbes
inference problem, with their dependencies exploited at
the same time. These properties reflect the nature of
microbial communities.
In the field of urban computing, statistical models like

regression trees have been applied to do real-time air qual-
ity prediction. For example, in U-Air [12], the authors
inferred the fine-grained air quality in a city by using a
semi-supervised learning approach. The model was able
to predict air quality at non-monitored stations based on
the air quality data reported by existing monitor stations.
The spatial classifier for their model was based on an arti-
ficial neural network (ANN). However, this model only
estimated a single value (i.e. the air quality index) for each
location, so it was also inadequate to address theMLC task
we formulated.
In the field of metagenomics, several computational

models, such as BioMiCo [13] and NMF [14] have been
developed to infer microbial community structures. To
estimate the composition of each sample given the abun-
dance profile, BioMiCo uses the supervised Bayesian
model while NMF leverages the matrix factorization.
Nevertheless, these works cannot directly infer the

microbial community for unsampled locations in the
urban environment due to their inability to incorporate
spatial information.
All the models mentioned above either cannot address

the complicated environmental conditions or handle the
intricate relationships between microbial compositions
and the urban environment. In our recent work [15], we
propose MetaMLAnn (MetagenomicMulti LabelArtifical
neural network), a neural network based and super-
vised learning model to predict the microbial commu-
nity for city-scale metagenomics. MetaMLAnn is built
on the widely-used feed-forward neural network model.
But unlike the conventional feed-forward neural network
model that predicts each label individually, it leverages
an extra shared structure to capture the dependencies
among different labels (microbes). To begin with, we train
MetaMLAnn using a state-of-the-art network embedding
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technique to integrate features constructed from different
data sources. Next, we leverage manifold regularization
to extend our model. Our model is robust to the sparse
samples with limited labeled data by incorporating the
domain knowledge. To further improve our model, we
also introduce an ensemble model, MetaMLAnn+, which
can outperform each individual model by leveraging the
diversified information from MetaMLAnn and different
classification models with the strong signal. To our best
knowledge, our work is the initial attempt to predict the
microbial community for urban metagenomics by using
the neural network model. In this paper, we extend our
previous work by presenting detailed theoretical founda-
tions and additional statistical analyses.
We summarize the contribution of this paper as follows:

• This is the first series of in-depth study of microbial
communities inference for unsampled locations. The
inference task is formulated as a multi-label
classification problem and a neural network learning
technique (MetaMLAnn) is proposed to solve it.

• We integrate the manifold regularization into our
framework to guide the training of MetaMLAnn. We
provide detailed theoretical foundations of showing
how the domain knowledge of microbial evolutionary
relationships helps.

• Important features are extracted from multiple data
sources, including city-scale transit features and
surface material. An in-depth feature importance
study has also been provided.

• We evaluate MetaMLAnn on the New York and
Boston subway metagenomic DNA sequencing data
samples. We present detailed discussions about that
MetaMLAnn performs better against five baseline
methods under two datasets with different level of
the taxonomy. We also analyze the importance of
using the ensemble model.

Materials andmethods
In this section, we present the detailed designed of our
framework and describe the dataset used in this work.

Preliminaries and problem definition
We start with formalizing the mathematical notations of
our model. Table 1 summarizes the symbols we use in this
article.

Definition 1 (Microbe Index) Microbe Index is defined
as an alphabetically ordered list of microbial names of
identified organisms. Each element in the list is a taxo-
nomic name.

Definition 2 (Microbial Distribution Matrix) All sam-
ples at different locations are represented as a matrix Y ∈

Table 1 Summary of symbols

Symbol Description

M An alphabetical ordered list of microbial names of identified
organisms

Yi A vector of microbial distribution given location i, where Yij
indicates the existence of microbeMj

Yn∗m An n by m microbial distribution matrix, where Yij represents
whetherMj exists in the location i

F A k-dimensional feature vector

Xn∗k An n by k feature matrix

S A set of locations, where si is the ith location

Pm∗m An m by m pairwise evolutionary (phylogenetic) microbial
similarity matrix

Rn×m, where n is the number of sampling locations, and m
is the total number of microbes in the Microbe Index. Each
row Yi represents the microbial distribution vector of loca-
tion i. Each element Yij represents whether the jth microbe
exists (or its relative abundance meets a threshold γ ) in the
ith location. More specifically,

Yij =
{
0 Yij < γ

1 Yij ≥ γ

Definition 3 (Multi-Label Classification) Given X ∈
Rn×k, a set of n instances, each being a k-dimensional fea-
ture vector, and Y = {y1, y2, . . . , ym} = {0, 1}m, a set of
labels, where each element is 1 if the label is relevant and
0 otherwise.
The classification model is to learn an estimation func-

tion f : Rk → 2m that assigns a subset of labels to a given
instance.

In our microbial community inference case, we extract
feature vectors of n samples and represent them as X. The
Microbe Index created from known locations is used as Y,
where the order of microbes is preserved.
Problem statement. Suppose S = S1 ∪ S2 =

{s1, s2, . . . , sn}, where S1 and S2 are sets of sampled and
unsampled locations, respectively. Each sampled location
si ∈ S1 is associated with a microbial distribution vector
Ysi . Our goal is to predict Ysj of each sj ∈ S2, which is not
sampled.
The framework of MetaMLAnn is shown in Fig. 2.

It contains two major components and one model: the
blue component for learning and the red component for
inference, together with the MetaMLAnn model. In the
following subsections, we introduce how MetaMLAnn is
constructed, explain the regularization framework, dis-
cuss how feature extraction has been done to train
MetaMLAnn, and present the ensemble model.
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Fig. 2 Our general framework. Starting from the map, we simulate the inference task by splitting the samples into the training set (blue dots) and
test set (red dots). We use Metaphlan2 [16] to obtain the microbial distribution profiles from the raw sequencing data. We first extract and integrate
features for both training and test data. We also construct the evolutionary (phylogenetic) microbial similarity matrix, using the 16s rRNA of the
bacteria as a regularizer. Then, we feed the training data’s features and the similarity matrix into MetaMLAnn, which will perform microbial
inference based on the features of test dataset. Our model can also be integrated with other classification models trained with same features as an
ensemble model

Model: MetaMLAnn
We start with introducing the one hidden layer feed-
forward neural network model [17]. In the neural network
model, there are p hidden units. The input layer x ∈ Rk×1

is connected to hidden layer h ∈ Rp×1 with weights
W (1) ∈ Rp×k and biases b(1) ∈ Rp×1. The hidden nodes
are then connected to output nodes o ∈ Rm×1 via weights
W (2) ∈ Rm×p and biases b(2) ∈ Rm×1.
We denote fθ : x → o as the feed-forward neural

network below:

fθ (x) = fo
(
W (2)fh

(
W (1)x + b(1)

)
+ b(2)

)
, (1)

where, θ = {
W (1),W (2), b(1), b(2)}. fo and fh are activation

functions in the output layer and the hidden layer respec-
tively. Specifically, the function fθ (x) can be simplified by
using vector representation as follows, where z(1) and z(2)
are the vector representations of the weighted sums of
inputs and hidden activation functions as follows:

z(1) = W (1)x + b(1), h = fh
(
z(1)

)
, (2)

z(2) = W (2)h + b(2), o = fo
(
z(2)

)
(3)

Given the cost function J(θ ; x, y), we seek for a param-
eter vector θ which minimizes it. J(θ ; x, y) measures the
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difference of given targets y and predictions of the net-
work. Here, we choose Cross-Entropy [18] as our cost
function:

JCE(θ ; x, y) = −
∑
i

(yi log oi)+ (1− yi) log(1− oi), (4)

where yi and oi are the ground truth and the predicted
scores for label i, respectively. The sigmoid activation
function o = σ(z) = fo(z) = 1/(1+ exp(−z)) is applied in
the output layer.
In MetaMLAnn, we extend the basic form feed-forward

neural network by leveraging a heterogeneous architec-
ture. Figure 3 depicts the detailed design of MetaMLAnn.
Instead of using multiple hidden nodes of the same type
in the hidden layer, we denote two different types of
sub hidden layers which we call blocks (B). The first
set of blocks are called individual blocks, B1 to Bm
where m is the number of labels. The second type of
block, Bshare, is a shared block that connects to all out-
put neurons. Therefore, each output neuron connects
to a corresponding individual block and a commonly
shared block. All blocks contain one hidden layer with
p neurons.

Therefore, we replace the p units hidden layer withm+
1 blocks B. Each block consists of a hidden layer with p
hidden neurons. For each i, the input layer x ∈ Rk×1 is
connected to each block Bi ∈ Rp×1 with weights W (1)

i ∈
Rp×k and biases b(1)

i ∈ Rp×1. Then, the blocks Bi and Bshare
are connected to output node oi ∈ R via weights W (2)

i ∈
R1×p and biases b(2) ∈ R.
We use stochastic gradient descent (SGD) [19] to effi-

ciently optimize the cost function in Eq. 4. We randomly
sample a location i and a unit from yi to compute Bi for
each individual block. We randomly sample a location i
and a unit from all the classes among y1 and ym to cap-
ture the global properties shared by all microbes for the
shared block Bshare,. The updating rules for different vari-
ables W and b can be derived by taking the derivatives
of the above objective function and applying SGD. Train-
ing ourmodel is efficient with SGD and back-propagation.
More specifically, the time complexity of training our
model is O(t · n· | θ |), where t is the number of train-
ing epochs; n is the number of training examples; θ is the
set of parameters in the model. To demonstrate the con-
vergence of the proposed algorithm, we plot the values
of the loss function over different optimization epochs in
Fig. 4.

Fig. 3 The architecture of our proposed model MetaMLAnn. Starting from the left, the input layer with k nodes will receive k features respectively.
Then, every input node will connect to all blocks, where each block contains p hidden units. The shared block (Bshare) is connected to every output
label, and every other individual blocks (B1 . . . Bm) is connected to its corresponding output label. It is regularized by the evolutionary (phylogenetic)
microbial similarity matrix

Zhou et al. Human Genomics 2019, 13(Suppl 1):42



Zhou et al. Human Genomics Page 6 of 13

Fig. 4 The values of the loss function over different numbers of optimization epochs with the New York dataset

Finally, the heterogeneous neural network model fθ :
x → o can be reformatted as follows:

z∗(1) =
[
z(1)1 , . . . , z(1)m+1

]
, where z(1)i = W (1)

i x + b(1),

B∗ = fB
(
z∗(1)

)
=[B1, . . . ,Bm+1] , where Bi = fB

(
z(1)i

)
,

z∗(2) =
[
z(2)1 , . . . , z(2)m+1

]
, where

z(2)i = W (2)
i Bi + W (2)

m+1Bm+1 + b(2), o = fo
(
z∗(2)

)

Manifold regularization
Neural networks tend to suffer from limited training
examples. However, with only a few instances of each
label, it is challenging to train MetaMLAnn. One potential
solution to compensate for the data sparsity is to incorpo-
rate prior knowledge. Inspired by the general observation
that evolutionary relationships are expected to be asso-
ciated with patterns of community composition [20], we
presume that the groups of microbes tend to co-occur in
the same community when they are closely related to each
other in the taxonomy.
The taxonomy here is referred as the identification,

naming, and classification of organisms. We choose to

use the evolutionary similarity as the domain knowledge,
which is then fed into our regularizer. This is because
taxonomy is often informed by the evolutionary relation-
ships among different microbes (i.e., phylogenetic). To
incorporate suchmicrobial similarity, many regularization
techniques can be used. We choose one of the most pop-
ular techniques, Graph Laplacian regularizer, to build our
regularization frameworks [21–25].

Definition 4 (Graph Laplacian matrix L) Given a pair-
wise similarity matrix P ∈ Rm×m, the Graph Laplacian
matrix is defined as L = D − P, where D is a diagonal
matrix with jth diagonal element Dj,j = ∑m

j′=1
(
Pj,j′

)
.

By minimizing

�(β) = 1
2

∑
1≤i,i′≤I

Pi,i′ ‖βi − βi′ ‖22 , (5)

the regularizer can preserve the local geometrical struc-
ture of a parameter vector β with length I. According to
the definition, we observe that L has the following prop-
erty that makes it suitable for regularization. Given the
trace operator tr(·):
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�(β) =
∑

1≤i,i′≤I
Pi,i′βT

i βi −
∑

1≤i,i′≤I
Pi,i′βT

i βi′

= tr
(
βTDβ

)
− tr

(
βTPβ

)
= tr

(
βTLβ

)
(6)

From the above equations, the two parameters βi and
βi′ are enforced to be similar, which can be incorporated
into the cost function. The regularized cost function is
defined as:

JCEreg (θ ; x, y) = −
∑
i

[(
yi log oi

) + (1 − yi) log (1 − oi)
]

+ λtr
(
βTLβ

)
,

(7)

where yi and oi are the ground truth label and the pre-
dicted score for sample i.
The Graph Laplacian regularizer can represent any pair-

wise relationships between parameters. Here we discuss
how to use the evolutionary similarities as priors and
the corresponding Laplacian regularizers to incorporate
structured domain knowledge. The Laplacian matrix L is
firstly obtained by constructing the pairwise evolutionary
similarity matrix (P) of different microbes.
Upon obtaining the predicted microbial distribution

vector Y ∗
i for given location i from the blocks, each vector

is regularized by feeding Y ∗
i into Eq. 5, where β refers to

the predicted vector Y ∗
i and βi, βj refers to microbe i and

microbe j at this location, respectively.

Feature extraction
Here we describe howwe extract the features from various
data sources. These feature extraction methods can serve
as a general pipeline for any urban-scale metagenomics
study.
We define a feature vector as F : Rk , where R is a k

dimensional feature.
For this work, we extract the following features: subway

station information, inter-station connections, and sam-
pling surface materials. All features are concatenated into
a feature vector for each sample and are used to train
MetaMLAnn.
Subway station features (Fs): The first set of features

that we extracted is the subway station information. We
obtain the MTA and MBTA subway station data for New
York and Boston. Each location is associated with the clos-
est stations within a predefined radius, r = 0.01 miles.
This radius value is an empirical parameter and can be
tuned. The feature vector is then created based on the
lines that pass through the current station. If there is no
station information available in this range, we will find the
2 nearest stations and see if their subway line informa-
tion matches. If they do match, we will align the subway
line to this location. Otherwise, we will not assign any
subway line information to this location. This process is

specifically for dealing with sampling locations which are
not stations, but in between two subway stations on the
same line.
It has been shown that the number of riders is positively

correlated with the amount of DNA collected in a sta-
tion [9]. Therefore, we also retrieve the public MTA data
with the turnstiles usage information at each station. The
corresponding node vector is then weighted by the aver-
age number of riders within DNA collection date at each
station.
For example, there are in total 25 different subway lines

inNewYork, thus we create a binary vector of size 25, each
element in the vector indicates whether this line will pass
this location or not. For example, for station l, the subway
line feature vector is defined as Fsl = (v1, v2, . . . v25). If
vi = 1, then line i passes through this location. Finally, Fsl
will be weighted based on the busyness of station l.
Note that it is possible one location is associated with

multiple lines or no lines. For themultiple lines’ case, there
will be more than one vi equal to 1. For the case of no
line, we will simply remove such location since we focus
on the inference at stations. Therefore, all locations will be
associated with a subway line feature as a vector.
Interconnection features (Fc): We first describe how

we construct the subway system network. Each subway
station is denoted as a node and each interaction between
two stations is drawn an edge. The weight of edge(i, j) is
computed by the minimum number of stops from station
i to station j. We also consider the case of express trains
and if there exist express trains directly connecting two
stations, we assign 1 as the weight to that edge.
Upon obtaining the station network, we apply the net-

work embedding algorithm Node2Vec [26]. Each node is
embedded into a low dimensional vector based on the
generated network.
Surface materials features (Fm): The surface materials

are strongly correlated with the microbial communities,
as discussed in [10]. Therefore, we represent such infor-
mation by using another set of vectors. Based on the type
of materials it was collected from, a vector of length equal
to the number of material types is constructed. For the
New York dataset, each element represents one type of
material: ‘concrete’, ‘metal’, ‘plastic’,‘water’ or ‘wood’ and
the vectors are of length 5. As for the Boston dataset, the
vector is of length 4 with four types of materials: ‘glass’,
‘polyester’, ‘PVC’, and ‘steel’.

Ensemble with hybrid prediction
To alleviate the lack of training data, in addition to the
regularization, we also propose to construct an ensemble
of MetaMLAnn with any other model that needs fewer
training samples.
For each label i, let oi be the predicted score of

MetaMLAnn. Given the score from the other model m as
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omi , we conduct a linear hybrid prediction for ensemble as
follows:

oh = α · oi + (1 − α) omi , (8)

where 0 ≤ α ≤ 1 is a parameter to decide the weights of
two models. When α = 1 the prediction is MetaMLAnn,
and when α = 0 the prediction is the modelm.
We denote the ensemble approach as MetaMLAnn+.

Sample collection and data preprocessing
We apply our model on the New York and Boston datasets
obtained from the MetaSUB Inter-City Challenges track
of the 2017 CAMDA Contest.
They both contain mass-transit metagenomic raw reads

data, supplemented with sample descriptions.
The New York dataset contains 1572 samples, repre-

senting different sites. These samples were collected from
open subway stations for all 24 subway lines of the NYC
Metropolitan Transit Authority (MTA). At subway sta-
tions, samples were collected in triplicate, with one sam-
ple taken inside a train at the station and two samples
from the station itself, as reported by [9]. DNA samples
collected from each site were sequenced using Illumina
platform, with a total of 10.4 billion paired-end DNA
sequencing reads.
In addition, each sample is also associated with meta

information, including the latitude and longitude showing
where the sample was collected, and surface materials. All
these information are indispensable for the enrichment of
feature generation.
Similarly, there are 141 samples in the Boston dataset,

which have been also collected from the local subway sys-
tem, consisting of 5 lines (red, orange, blue, green, and
silver) that extend from downtown Boston into the sur-
rounding suburbs. Asmentioned in [10], most samples are
16S rRNA gene amplification sequence data, and a sub-
set of the samples are subjected to shotgun metagenomic
sequencing. Each sample is also supplemented with addi-
tional information, which describes the date of collection,
station information, and surface type. For the 16S rRNA
samples, the corresponding abundances profiles are also
provided.
For each sample in the New York dataset and sam-

ples subjected to shotgun metagenomic sequencing in
the Boston dataset, we conduct the following preprocess-
ing steps:

1) To be consistent with the processing procedure in [9]
from which the New York data is collected, We use
MetaPhlan2 [16] to perform microbial profiling. Each
profile contains the relative abundances as a
percentage from the kingdom level to the species
level.

2) There are 48.3% of the reads that do not match to
any known organism in the New York dataset, as
described in [9]. Therefore, when we construct the
microbial distribution vector, those unknown
microbes are removed and the relative abundances of
the remaining known microbes are recomputed.

Supplemental data sources
We use the New York subway station data and the Boston
subway station data from the MTA and MBTA website
respectively to construct the subway line features. They
contain geographic locations, subway station names, and
subway lines that pass each station. We also obtain the
turnstile data of MTA and MBTA to count the busyness
of all stations. The detailed descriptions can be found in
Table 2.
To capture the underlying microbiota structure, we con-

struct a pairwise similarity matrix to represent the evolu-
tionary relationship between two species. We retrieve the
16S ribosomal RNA sequence for bacteria and archaea,
5S ribosomal RNA for eukaryotes, and the whole DNA
sequences for viruses from the NCBI [27–29] and the
Silva [30, 31] database. We perform sequence alignments
to compute the pairwise similarity within each kingdom.
We normalize the similarity values to the range of 0 to
1 and we assign 0 to their similarity for cross-kingdom
species pairs. Finally, we take the mean of all species’ sim-
ilarity scores under that level and aggregate them as the
new score for each genus pairs (Eq. 9). In this way, we can
obtain the similarity matrix between genus level.
Given two genus ga and gb as sets of species, the similar-

ity score between the pair of genus can be computed as:

sim(ga, gb) = 1
|ga| · |gb|

∑
spa∈ga

∑
spb∈gb

sim(spa, spb), (9)

where spa and spb are the species of ga and gb, respectively.

Table 2 Supplemental data sources

Data Description Reference

MetaSub Metagenomic subway
station datasets for New
York and Boston

http://camda2017.bioinf.
jku.at/doku.php/contest_
dataset

MTA New York subway
station and lines

http://web.mta.info/
developers/data/nyct/
subway/Stations.csv

MBTA Boston subway station
and lines

https://d3044s2alrsxog.
cloudfront.net/sites/
default/files/2017-11/
subway-1.txt

Turnstile of MTA Turnstile entry and exit
of MTA

http://web.mta.info/
developers/turnstile.html

Turnstile of MBTA Turnstile entry and exit
of MBTA

https://github.com/
mbtaviz/mbtaviz.github.
io/releases/download/
data/turnstile_data.csv.gz
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Results
To demonstrate the effectiveness of MetaMLAnn, we con-
duct comprehensive experiments by using both the New
York and Boston datasets. In this section, we will discuss
the experiment setup, evaluation metrics, baselines and
results.

Experimental settings
After we conduct data processing, each sample is associ-
ated with an abundance vector.
It is observed that many species are seriously under-

represented (i.e. appearing at only one location) for the
abundance at all levels. We choose to focus on the genus-
level abundance to alleviate the issues including under-
represented microbes, missing species-level taxonomy,
and very similar microbial species.
Together with the number of features obtained, the

detailed microbial composition of both dataset can be
found in Table 3.
We use k-fold cross-validation for all experiments. Set-

ting the value of k to be three, we randomly and equally
split the data into three non-overlapping subsets. Each
subset has a chance to train the model and to test the
model.
The average performance of each method from these

three folds is reported. In addition, we also justify the
effectiveness of our feature construction by comparing the
performance of individual features and their combination
with the same classifier.

Evaluation metrics
We assess the performance of our classifier in sev-
eral ways. While accuracy is the simplest and the most
straightforward measure, it is biased toward classes with
a larger sample size. Instead, we report precision, recall,
and F1 score as our evaluation metrics. These metrics are
defined as:

precision =
m∑
i=1

tpi/
( m∑

i=1
tpi +

m∑
i=1

fpi

)
(10)

Table 3 Description of New York and Boston datasets

New York Boston

Number of features 46 43

Number of labels (Microbes) Bacteria 232 209

Eukaryotes 15 7

Archaea 8 5

Viruses 14 15

Number of features obtained and number of labels at genus level, grouped by four
different kingdoms

recall =
m∑
i=1

tpi/
( m∑

i=1
tpi +

m∑
i=1

fni

)
(11)

F1 score = 2 ∗ precision ∗ recall
precision + recall

(12)

where given m labels, tpi, tni, fpi and fni represents true
positives, true negatives, false positives and false negatives
for ith label respectively.
Finally, we also use ranking loss, which averages over

n samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score (f̂ ) than false
labels, weighted by the inverse number of false and true
labels, as shown below:

rankingloss = 1
n

n∑
i=1

1
|yi|(m − |yi|)

∣∣∣{(k, l) : f̂ik < f̂il, yik

= 1, yil = 0}∣∣
(13)

Baselines
As we formalize the inference problem as a multi-label
classification (MLC) problem, we adopt several widely
used MLC algorithms as the baseline methods, including
Inverse Distance Weighting (IDW) interpolation, k Near-
est Neighbor (kNN) [32], Support Vector Machine (SVM)
[33], Random Forest [34], and Neural Network [35].

• Inverse Distance Weighting (IDW): Inverse distance
weighting is a deterministic, nonlinear interpolation
technique that uses a weighted average of the
attribute values from nearby sample points to
estimate the magnitude of that attribute at
non-sampled locations. The weight a particular point
is assigned depends upon the sampled point’s
distance to the non-sampled location.

• K-Nearest Neighbor: This classifier will compute
classification from a simple majority vote of the
nearest neighbors of each point: a query point is
assigned the data class which has the most
representatives within the nearest neighbors of the
point.

• SVM with one-vs-all: This baseline assumes all the
label prediction are independent. Binary
decomposition is used, on each binary classification
task (one for each label). SVM is used as the base
classifier. Then the one-vs-all is used, which consists
of fitting one classifier per class. For each classifier,
the class is fitted against all the other classes. Then
the predictions of SVMs for all labels are combined to
make the final prediction.

• Random Forest: This baseline method is an ensemble
of decision tree classifiers. Based on various
sub-samples of the dataset random forest will use
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averaging to improve the predictive accuracy and
control over-fitting. In this baseline, we feed all the
features equally into a decision tree.

• Single-layer Perceptron classifier (Vanilla Neural
Network): We choose the single-layer feed-forward
neural network model in the experiments for its
simplicity and generality. It is the most similar
classification model as MetaMLAnn.

Performance of MetaMLAnn
Using the combined features, Tables 4 and 5 show the
performance of MetaMLAnn and other aforementioned
baselines on New York and Boston datasets, respectively.
As discussed in experimental settings, we focus on the
genus level inference. We observe that MetaMLAnn and
MetaMLAnn+, outperform all baselines on F1 score and
ranking loss.
In theNewYorkdataset, MetaMLAnn and MetaMLAnn+

perform the best in terms of F1 score and ranking loss,
though the precision and recall of MetaMLAnn rank sec-
ond among other baselines. IDW achieves the highest
recall but its precision is the lowest, which offsets its
high recall. As an unsupervised learning model using the
inverse distance weighting of surrounding microbial dis-
tribution vectors, IDW tends to predict more microbes
than others. However, most of them are false positives.
On the other hand, SVM shows a slightly higher precision
than all methods but results in a poor recall. This implies
that SVM based methods tend to be conservative in pre-
dicting the “presence” of species, which do not meet our
expectation. MetaMLAnn tends to have the best balance
of both precision and recall, which results in the best over-
all F1 score. In addition to MetaMLAnn, we also report
the result of the ensemble model with IDW where we use
α = 0.7 as MetaMLAnn+ after parameter tuning.
As can be seen from the table, the F1 score can be fur-

ther boosted by more than 1%, which is better than either
of the single model.

Table 4 Evaluation of all the methods by cross validation on
New York dataset at genus level

Evaluation metric

Methods Precision Recall F1 score Ranking loss

IDW 0.5669 0.6686 0.6129 0.1790

kNN 0.7203 0.5109 0.5977 0.1273

SVM 0.7510 0.4787 0.5845 0.0725

Random Forest (RF) 0.7288 0.5026 0.5941 0.1365

Neural Network 0.7419 0.5110 0.6050 0.0718

MetaMLAnn 0.7456 0.5325 0.6212 0.0682

MetaMLAnn+ IDW 0.6578 0.6170 0.6363 0.0688

Higher precision, recall, F1 score, and lower ranking loss indicate better
performance. Bold entries indicate best performance among different methods

Table 5 Evaluation of all the methods by cross-validation on
Boston dataset at genus level

Evaluation metric

Methods Precision Recall F1 score Ranking loss

IDW 0.5316 0.6177 0.5691 0.1929

kNN 0.7359 0.6266 0.6723 0.1837

SVM 0.7583 0.5366 0.6282 0.1473

Random Forest (RF) 0.7318 0.6214 0.6682 0.1630

Neural Network 0.7228 0.5594 0.6214 0.1297

MetaMLAnn 0.7674 0.6706 0.7095 0.1270

MetaMLAnn+ RF 0.7744 0.6862 0.7229 0.1283

Higher precision, recall, F1 score, and lower ranking loss indicate better
performance. Bold entries indicate best performance among different methods

As for the Boston dataset, our model outperforms all
the baseline models in terms of precision, F1 score and
ranking loss. Even though Random Forest achieves a bit
higher recall than our model, its precision suffers from the
issue of predicting too many microbes. However, after we
leverage the Random Forest model as part of our ensem-
ble model with the same parameter as New York, α =
0.7, MetaMLAnn+ achieves the best score in all metrics
against other baselines.

Discussion
Feature analysis
As feature extraction is crucial for inferring microbial
communities in a complicated urban system with het-
erogeneous data sources, we first demonstrate the effec-
tiveness of our feature construction. Recall that we have
three groups of features: subway station features (Fs),
interconnection features (Fc), and surface material fea-
tures (Fm). As shown in Table 6, a random forest model
is used to compare the performance of individual features
and their combinations. Overall, the complete features
set have the best performance in precision, F1 score, and
ranking loss. Note that we intentionally choose to use

Table 6 Performance of random forest using different feature set
at genus level

Evaluation metric

Features Precision Recall F1 score Ranking loss

Fs + Fm + Fc 0.7288 0.5026 0.5941 0.1365

Fs + Fc 0.7285 0.4654 0.5679 0.1422

Fs + Fm 0.6751 0.5283 0.5927 0.1649

Fc + Fm 0.6930 0.5113 0.5861 0.1440

Fc 0.7063 0.4611 0.5576 0.1376

Fs 0.6498 0.5227 0.5791 0.1855

Fm 0.6328 0.5258 0.5725 0.2552

Higher precision, recall, F1 score, and lower ranking loss indicate better
performance. Bold entries indicate best performance among different methods
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Fig. 5 The performance of all approaches on the New York dataset over different metrics at different taxonomic ranks

Random Forest instead of our model, MetaMLAnn, to
conduct experiments. This is to demonstrate that our fea-
ture extraction techniques are beneficial in general to the
microbial community inference problem without favoring
our model.

Analysis on different taxonomic levels
To further demonstrate the generality of our model, we
compare the performance of MetaMLAnn with other
aforementioned baselines under different taxonomic lev-
els from phylum to species. We ignore Kingdom level due
to few numbers of classes.

As seen in Fig. 5, with the level of taxonomy becoming
more specific, the performances of all methods decrease
due to the increase of complexity. Against all competi-
tors, MetaMLAnn and MetaMLAnn+ IDW constantly
achieve the highest F1 score and the lowest ranking loss
across all taxonomic levels. The advantage of MetaMLAnn
becomes more obvious with a finer granularity of
taxonomic level.

Parameter selection of the ensemble model
Here, we analyze how the ensemble weight α affects the
prediction performance.

Fig. 6 The F1 score and ranking loss performance on the New York dataset at genus level for the ensemble model MetaMLAnn+ that aggregates
MetaMLAnn and IDW over different weights α

Zhou et al. Human Genomics 2019, 13(Suppl 1):42
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Figure 6 shows the F1 score and the ranking loss
over different ensemble weights α of MetaMLAnn and
IDW under the New York dataset. On the left verti-
cal axis, we have F1 score (the larger the better) and
on the right vertical axis, we have the ranking loss (the
smaller the better). Recall that our ensemble model is
defined in Eq. 8, where alpha closer to 1 means more
weight on MetaMLAnn and closer to 0 means more
weight on the additional model. The results suggest that
with a good mixture of two models (i.e. α = 0.7 for
this case), the ensemble model can achieve the best
for both F1 score and ranking loss. This is because
the additional model (IDW) contains orthogonal infor-
mation, which can compensate for the missing infor-
mation from the training of MetaMLAnn. Without the
ensemble model, MetaMLAnn tends to be conservative
due to the sparsity of dataset. On the contrary, IDW
tends to predict more microbes, which boosts the overall
performance.

Ablation study of the shared block Bshared
Table 7 shows the results of the ablation study of the
shared block Bshared and individual blocks Bi, where i =
1 . . .m. Bshared + Bi. In the New York dataset, remov-
ing the shared block slightly decrease the F1 score and
increase the loss while using only the shared block will
downgrade the F1 score by around 3% and double the
ranking loss. In the Boston dataset, dropping any of the
two units largely impair the performance of MetaMLAnn.
These results reflect the importance of having both the
individual and shared hidden blocks in our model for
predicting microbial communities.

Conclusions
Profiling city-scale microbial diversity is important for
urban long-term disease surveillance and health manage-

Table 7 The results of ablation study of using different
components of MetaMLAnn by cross validation on New York
and Boston datasets at genus level

Evaluation metric

Precision Recall F1 score Ranking loss

New York dataset

Bshared only 0.7388 0.4986 0.5952 0.1299

Bi only 0.7339 0.5379 0.6204 0.0765

Bi + Bshared 0.7456 0.5325 0.6212 0.0682

Boston dataset

Bshared only 0.6002 0.5920 0.5890 0.1896

Bi only 0.7574 0.5660 0.6428 0.1316

Bi + Bshared 0.7674 0.6706 0.7095 0.1270

Higher precision, recall, F1 score, and lower ranking loss indicate better
performance. Bold entries indicate best performance among different methods

ment. The great efforts to collect DNA samples in densely
populated cities still cannot meet the challenge to obtain
the metagenomic profiles at fine-grained geo-spatial res-
olutions. To address this issue, we first define the task
of inferring microbial community for city-scale metage-
nomics as a multi-label classification problem. We then
propose MetaMLAnn, a neural network based approach
to infer microbial communities of unsampled locations
given the information from multiple data sources in
the urban environment, including subway line informa-
tion, sampling materials, and microbial compositions in
sparsely sampled locations. The model captures the inter-
actions between microbes and the urban environment by
a shared hidden layer, and fuses the heterogeneous urban
transit information with embedding for feature extraction.
Additionally, by incorporating signals from other strong

models, the ensemble technique MetaMLAnn+ further
improves the performance of the model. Extensive exper-
iments demonstrate the effectiveness of our approach. In
this work, we mainly focus on New York and Boston sub-
way stations due to the limitation of data availability. In the
future, with more cities being sampled, we plan to extend
our model to the regional scale to solve the inter-city
metagenomic inference problem.
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