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Abstract

Background: Gene set analysis is a well-established approach for interpretation of data from high-throughput
gene expression studies. Achieving reproducible results is an essential requirement in such studies. One factor of a
gene expression experiment that can affect reproducibility is the choice of sample size. However, choosing an
appropriate sample size can be difficult, especially because the choice may be method-dependent. Further, sample
size choice can have unexpected effects on specificity.

Results: In this paper, we report on a systematic, quantitative approach to study the effect of sample size on the
reproducibility of the results from 13 gene set analysis methods. We also investigate the impact of sample size on the
specificity of these methods. Rather than relying on synthetic data, the proposed approach uses real expression
datasets to offer an accurate and reliable evaluation.

Conclusion: Our findings show that, as a general pattern, the results of gene set analysis become more reproducible
as sample size increases. However, the extent of reproducibility and the rate at which it increases vary from method to
method. In addition, even in the absence of differential expression, some gene set analysis methods report a large
number of false positives, and increasing sample size does not lead to reducing these false positives. The results of this
research can be used when selecting a gene set analysis method from those available.
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Introduction
The choice of sample size is an important decision to
make when designing a gene expression experiment.
Choosing an appropriate sample size for obtaining a
desired statistical power is feasible for basic statistical
procedures; however, making such choices for complex
procedures such as gene set analysis is not straight-
forward. To the best of our knowledge, there is no
methodological approach to determine the optimal sam-
ple size for reaching a predetermined statistical power
or achieving reproducible results in gene set analysis,
where sample size refers to the number of biological

*Correspondence: farhad.maleki@usask.ca
Department of Computer Science, University of Saskatchewan, 110 Science
Place, Saskatoon, Canada

replicates per treatment, tissue, or condition. Conse-
quently, researchers either use the largest possible num-
ber of samples considering available resources—such as
funding, specimens, and technicians—for conducting the
experiments, or they use an arbitrary sample size—as
small as two or three samples per treatment. Using
unnecessarily large sample sizes wastes resources and
might involve ethical concerns. On the other hand, using
small sample sizes may yield unreliable and irreproducible
results.
The impact of the number of used samples on the

results of differential expression analyses has been stud-
ied. Tsai et al. [1] suggested a methodology for sample size
estimation. They assumed an equal standardized effect
size and a constant gene-gene correlation for differentially
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expressed genes. Relying on these assumptions, they esti-
mated an appropriate sample size as that which led to the
highest number of true positives using a beta-binomial
distribution for the two-sample z-test. Their proposed
approach, as they reported, might underestimate the
number of required samples when the gene-gene correla-
tion is not constant. Stretch et al. [2] reported that using
a small number of samples may lead to irreproducible
results in differential expression studies. Schurch et al.
[3] evaluated 11 tools for differential expression analy-
sis using a dataset with 48 controls and 48 cases. The
results of these methods when using subsets of 3 con-
trols and 3 cases were compared to the results when using
all samples. They reported that for 8 methods only 20
to 40% of the differentially expressed genes were among
the genes reported when using all samples. Furthermore,
they suggested that to increase this percentage to a value
larger than 85%, at least 20 samples per treatment are
required.
Gene expression analysis typically reports several hun-

dred genes as differentially expressed. Biological inter-
pretation of such a large number of genes is laborious
and prone to investigator bias(es) in favour of, or against
the hypothesis under study. The main aim of gene set
analysis—also known as enrichment analysis—is to alle-
viate these problems. Many gene set analysis methods
are available. These methods, unlike basic statistical tests,
are complex procedures; therefore, estimating sample size
for obtaining a predetermined statistical power or repro-
ducible results is challenging.
In this paper, we extend an earlier work on sample size

and reproducibility in the context of gene set analysis [4].
We study a comprehensive list of 13 gene set analysis
methods: PAGE [5], GAGE [6], Camera [7], ROAST [8],
FRY (from the R package limma) [9], GSEA (both gene
permutation (GSEA-G) and sample permutation (GSEA-
S) versions) [10], ssGSEA [11], GSVA [12], PLAGE [13],
GlobalTest [14], PADOG [15], and over-representation
analysis (ORA) [16]. All of the methods can be used for
pairwise comparison of phenotypes or treatments (e.g.
case versus control). Using real datasets, we evaluate the
reproducibility of the results of these methods across
sample sizes that are commonly used in gene expression
studies.
In addition, we assess the specificity of gene set analy-

sis methods across sample sizes. Tarca et al. [17] evaluated
the specificity of gene set analysis methods by calculat-
ing the number of false positives for datasets generated
from permutations of sample/phenotype labels of actual
expression datasets. Since after permutation of sample
labels there should be no association between differen-
tial enrichment of gene sets and phenotypes, all gene
sets predicted as differentially enriched by a method were
considered as false positives. However, each group of

samples corresponding to a condition (case or control)
in their generated datasets contained a mixture of both
case and control samples from the original dataset; there-
fore, the characteristics of the generated dataset could
be different from that of the original dataset. Further-
more, they did not evaluate the specificity of gene set
analysis methods across sample sizes. To avoid the short-
coming of the approach used by Tarca et al., we conduct
an experiment by generating datasets of various sizes,
where case and control samples for each generated dataset
are the result of sampling without replacement from
control samples of an actual expression dataset. Since
in the generated datasets control and case samples are
from actual controls, any gene set predicted as differen-
tially enriched by a method can be considered a false
positive.

Methods
Data
Repositories such as Gene Expression Omnibus (GEO)
[18] and ArrayExpress [19] make large scale expression
datasets publically available. In this research, three such
case-control datasets with unrelated phenotypes from
the Affymetrix GeneChip Human Genome U133 Plus
2.0 microarray platform were obtained from GEO: 1)
renal cell carcinoma tissue (77 controls and 77 cases,
GSE53757) [20], 2) gingival tissues (64 controls and 183
cases, GSE10334) [21], and 3) skin tissue in psoriasis
patients (64 controls and 58 cases, GSE13355) [22]. The
raw data were preprocessed with the GEOquery v2.46.15
R package and normalized with justRMA normalization
from the affy v1.56.0 package.
MDS (multidimensional scaling) plots in Additional

file 1: Figures S1, S2, and S3 visualize the similarity
between samples, respectively, for datasets GSE53757,
GSE10334, and GSE13355. These plots illustrate that
dataset GSE10334 has the lowest intra-class similarity and
less distinction between control and case samples, while
dataset GSE13355 has highest intra-class similarity and
shows a clear distinction between case and control sam-
ples. All visualizations in this paper are produced for
the dataset with intermediate characteristics, GSE53757,
unless otherwise noted.
Probe IDs were converted to their corresponding Entrez

gene identifiers using the hgu133plus2.db v3.2.3 R pack-
age. To avoid over-emphasizing genes with a large number
of probes on the arrays, it is a common practice in gene set
analysis to collapse duplicate IDs. This was accomplished
by using the collapseRows function from WGCNA v1.61
with theMaxMeanmethod that selects the probe that has
the maximum average value across samples when multi-
ple probes map to the same gene. Collapsing the probes
resulted in 20,514 genes in each experiment from an initial
54,675 probes.
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Methodology
A proper study of the effect of sample size on the results of
gene set analysis methods requires conducting expression
studies with datasets of various sizes. These studies must
be conducted while all potentially confounding factors
such as phenotype under study, the platform for mea-
suring gene expression, experiment protocol, laboratory
technician skill level, and environmental conditions stay
constant. Datasets of various sizes for which these factors
are constant is not currently available. In this research,
we utilize a systematic, quantitative approach to study the
effect of sample size on the reproducibility and specificity
of gene set analysis methods using large scale publically
available gene expression datasets.
Assume that D is a dataset containing nC control sam-

ples and nT case samples, where both nC and nT are
relatively large numbers (> 50). Given an integer n, where
n < nC , and n < nT , we generate a balanced case-control
dataset by randomly selecting n samples from the nC con-
trols of D and n samples from the nT case samples of
D. The random sampling is performed without replace-
ment; therefore, the chosen samples are unique within the
generated dataset. Hereafter, we refer to such a balanced
case-control dataset as a replicate dataset of size 2×n and
the entire process for assembling a replicate dataset as the
data generation procedure. Also, to avoid confusion, we
refer to D as the original dataset.
To obtain results that do not depend on a specific com-

position of samples, for each given n, we repeat the dataset
generation procedure m times to construct m replicate
datasets of size 2 × n. These replicate datasets are then
used for downstream analysis. Due to the nature of ran-
dom sampling, these replicate datasets are different.
The dataset generation procedure assembles replicate

datasets from an original dataset; therefore, confounding
factors remain almost invariable. For instance, all these
replicate datasets have the same platform and use the
same experiment protocol; they also have been made by
the same technician(s). This makes it possible to study
the effect of sample size on the result of gene set analy-
sis methods while keeping the confounding factors nearly
constant.
Different gene set analysis methods then are applied to

replicate datasets of various sample sizes and their results
are used to investigate the effect of sample size on the
reproducibility and specificity of gene set analysis.
In this research, 13 widely used gene set analysis

methods are studied—PAGE [5], GAGE [6], Camera [7],
ROAST [8], FRY [9], GSEA [10], ssGSEA [11], GSVA [12],
PLAGE [13], PADOG [15], GlobalTest [14], andORA [16].
The following R packages are used for conducting gene

set analysis. PLAGE, GSVA, and ssGSEA are obtained
from GSVA package version 1.18.0; the phyper method
from the stats package version 3.4.4 is used to implement

ORA; the GSEA.1.0.R script downloaded from the Broad
Institute software page for GSEA are used to run GSEA-
S and GSEA-G; ROAST, FRY, and Camera are run using
the limma package version 3.34.9; GAGE and PAGE are
obtained from the gage package version 2.20.1. For each
sample size n (n ∈ {3, . . . , 20}), m = 10 replicate datasets
of size 2×n are generated. Then a gene set analysis method
is applied to each replicate dataset. For all gene set analysis
methods the default parameters are used. A Benjamini-
Hochberg correction [23] with a false discovery rate of
0.05 is performed for a fair comparison across methods.
Also, the GO gene sets are extracted from MSigDB ver-
sion 6.1 [10] and used as the gene set database for all
experiments. Hereafter, this database is referred to as G.
After generating D(2×n)

1 , . . . ,D(2×n)
m , each replicate

dataset D(2×n)
i (1 ≤ i ≤ m) and the gene set database

G are used as inputs to a gene set analysis method ψ ,
and the results after correction for multiple comparisons
are stored in a vector Rψ

D(2×n)
i

. The kth component of this
vector is the adjusted p-value resulting from testing the
differential enrichment of the kth gene set of G; therefore,
the length of Rψ

D(2×n)
i

is equal to the number of gene sets in
G.
The differential enrichment status of the kth gene set

in G is determined by comparing the kth component of
Rψ

D(2×n)
i

against a significance level α = 0.05. For each ele-

ment of Rψ

D(2×n)
i

that is less than α, the corresponding gene
set in G is considered as differentially enriched, and non-
differentially enriched otherwise. We denote the set of all
gene sets predicted as differentially enriched by Sψ

D(2×n)
i

.
We use the Jaccard similarity coefficient, also known as

Jaccard index [24], to quantify the reproducibility of the
results of a gene set analysis method ψ when applied to
replicate datasets D(2×n)

i and D(2×n)
j . The Jaccard similar-

ity coefficient is defined as follows:

J
(
SD(2×n)

i
, SD(2×n)

j

)
=

SD(2×n)
i

∩ SD(2×n)
j

SD(2×n)
i

∪ SD(2×n)
j

(1)

A Jaccard similarity coefficient of 0 indicates no over-
lap, i.e. no agreement, between Sψ

D(2×n)
i

and Sψ

D(2×n)
j

, and a

value of 1 indicates complete overlap, i.e. Sψ

D(2×n)
i

= Sψ

D(2×n)
j

.

Hereafter, we refer to the Jaccard similarity coefficient as
the overlap score.
For each pair of replicate datasets D(2×n)

i and D(2×n)
j

(1 ≤ i, j ≤ m), we calculate J
(
SD(2×n)

i
, SD(2×n)

j

)
, the

overlap between the sets of gene sets predicted as differ-
entially enriched by method ψ when analysing D(2×n)

i and
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D(2×n)
j . The resulting overlap score is stored in position

(i, j) of an upper triangular matrix, which is called an over-
lap matrix and visualized in the “Results” section. Since

J
(
SD(2×n)

i
, SD(2×n)

j

)
= J

(
SD(2×n)

j
, SD(2×n)

i

)
, for each sample

size 2 × n we need to calculate m×(m−1)
2 overlap scores.

Overlap scores J
(
SD(2×n)

i
, SD(2×n)

j

)
(1 ≤ i, j ≤ m) indi-

cate the extent to which the results of a gene set analysis
method is reproducible when analyzing replicate datasets
of size 2 × n. High overlap indicates that method ψ using
datasets of size 2 × n yield reproducible results. For each
method ψ , we conduct a Kruskal-Wallis test to statisti-
cally assess if there is a significant difference between the
overlap scores across sample sizes (3 ≤ n ≤ 20). The over-
lap scores for each sample size 2 × n is represented as a
multiset Pψ

(2×n), which is a set but with repetition allowed.
Pψ

(2×n) is defined as follows:

Pψ

(2×n) =
{
J
(
Sψ

D(2×n)
i

, Sψ

D(2×n)
j

)
| 1 ≤ i < j ≤ m

}
(2)

The adjusted p-values resulting from the gene set analy-
sis of a given expression dataset are often sorted based on
their adjusted p-values. Then gene sets with the smallest
adjusted p-values are considered for further investiga-
tion and interpretation. Therefore, not only is the dif-
ferential enrichment status of gene sets important but
also the order of their significance. To assess the agree-
ment in the order of gene sets reported as differentially
enriched when analyzing replicate datasets of the same
size using a methodψ , we use Kendall’s coefficient of con-
cordance [24]. The Kendall’s coefficient of concordance
ranges between 0 and 1, with 0 indicating no agreement
and 1 indicating complete agreement, i.e. the same order
of gene sets when sorted by their adjusted p-values. Since
we aim to quantify the agreement in the order of gene
sets predicted as differentially enriched across replicate
datasets of the same size, we only consider gene sets that
are predicted as differentially enriched for at least one
replicate dataset.
Further, we compare the overlap between the results

of a gene set analysis method ψ when applied to dataset
D2×n and D. This is done to evaluate if the dataset with
the smaller sample size is enough to reproduce the results
when using the whole dataset D. Therefore, we construct
a multisetWψ

(2×n) ofm overlap scores, as follows:

Wψ

(2×n) =
{
J
(
Sψ

D(2×n)
i

, Sψ
D

)
| 1 ≤ i ≤ m

}
(3)

High overlap scores suggest that a sample size of 2 × n
might be enough for obtaining equivalent results as those
achieved using the whole dataset.

Also, to evaluate the specificity of gene set analysis
methods, we conduct an additional experiment, referred
to as the control-control experiment. The procedure for
generating control-control replicate datasets in this exper-
iment is similar to that of the balanced case-control repli-
cate datasets with the sole difference being that only actual
control samples are used for constructing the replicate
datasets. In other words, each replicate dataset for the
control-control experiment is made by random sampling
(without replacement) of n samples from the nC controls
of D (where n <

nC
2 ) and another n samples from the nC

control samples of D. The former group of n samples are
considered controls in the replicated dataset and the latter
group are considered cases.

Results
To visualize the change in reproducibility of a gene
set analysis method across sample sizes, we utilize an
arrangement of modified heat maps, hereafter referred
to as a pine plot. Each triangular heat map in a pine
plot—referred to as a layer—represents values above the
diagonal in an overlap matrix (as described in “Method-
ology” section). Each layer visualizes the overlap scores
calculated based on the results of the gene set analy-
sis of replicate datasets of the same sample size. The
colour intensity of a cell (i, j) in each layer represents

J
(
SD(2×n)

i
, SD(2×n)

j

)
, which is the overlap between the

result of gene set analysis of two replicate datasets (SD(2×n)
i

and SD(2×n)
j

). When i = j, a value of 1 is assigned to the cell

(i, i) of the overlap matrix, which is represented with a red
colour and serves as a visual reference point.
The pine plots in Figs. 1 and 2 depict the change in

reproducibility of results from GSEA-S, GSEA-G, ORA,
and GAGE for replicate datasets of size 2×3, 2×5, 2×10,
2 × 15, and 2 × 20, where 2 × n represents the size of a
dataset with n controls and n cases. These methods were
chosen as they represent the range of results shown by all
13 methods. The pine plots for the remaining methods for
dataset GSE53757 are provided as Additional file 1. Visu-
alizations and tables corresponding to datasets GSE10334
and GSE13355 are available from the authors.
The plots in Figs. 1 and 2 show that reproducibility

increases as sample size increases. However, the extent of
the increase in the overlap scores is not the same across all
methods. GSEA-S, as depicted in Fig. 1, has lower overlap
scores overall compared to GSEA-G. In Fig. 2, ORA and
GAGE have higher overlap scores when using sample sizes
larger than 2 × 10 compared to GSEA-S and GSEA-G.
The pine plots for all 13 methods illustrate the following

results. PADOG, GSEA-S, and Camera show the lowest
overlap scores. Pine plots for ROAST, PAGE, ORA, GSVA,
and GSEA-G show a distinct transition from low overlap
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Fig. 1 Pine plots for GSEA-G and GSEA-S (dataset GSE53757) Pine plots for dataset GSE53757 showing reproducibility of the results from GSEA-S
(left) and GSEA-G (right) across sample sizes. Reproducibility is quantified by overlap score (Eq. 1). Each layer of the pine plot illustrates the overlap
score of the results of a method for 10 replicate datasets with the same sample size. From top to bottom, the pine plots show replicates with sample
size 2× 20, 2× 15, 2× 10, 2× 5, and 2× 3. The overlap score ranges from 0 to 1 represented by a gradient from blue to red, respectively, separated
by yellow in the middle (overlap of 0.5). The overlap score increases as sample size increases; however, the rate of increase for GSEA-S is lower than
that of GSEA-G

(for sample sizes less than or equal to 2×5) to high overlap
scores (for sample sizes more than 2 × 10) as sample size
increases. ssGSEA, GlobalTest, GAGE, and PLAGE report
a large number of gene sets as differentially enriched.
Thesemethods tend to achieve high overlap scores as well.
The box plots in Figs. 3, 4, and 5 illustrate the distri-

bution of the overlap scores across sample sizes when

the results of the replicate datasets are compared to each
other (calculated using Eq. 1), as well as when the results
of replicate datasets are compared to the results using the
entire dataset, i.e. original dataset (calculated using Eq. 3).
Figures 3, 4, and 5 show representative results from three
methods; plots for the remaining methods are in Addi-
tional file 1. For all methods except GSEA-S and PADOG,
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Fig. 2 Pine plots for ORA and GAGE (dataset GSE53757) Pine plots for dataset GSE53757 showing reproducibility of the results from ORA (left) and
GAGE (right). See Fig. 1 caption for more information. The pine plots suggest that the overlap between replicates is larger in comparison to that of
GSEA-S and GSEA-G. GAGE has more agreement between replicates when using lower sample sizes such as 3 compared to the other methods
shown (including in Fig. 1), and the overlap scores continue to improve for higher numbers of samples

the agreement between overlap scores increases as sample
size increases.
To statistically assess if there is a significant differ-

ence between the overlap scores across sample sizes, i.e.
Pψ

(2×3), . . . ,P
ψ

(2×20), for each method, a Kruskal-Wallis test
was used. The p-values resulting from these tests, shown
in Additional file 1: Table S1, suggest that the overlap
scores significantly vary across sample sizes irrespective
of the original dataset being used.

Figure 6 depicts Kendall’s concordance coefficients for
replicate datasets across sample sizes for all methods
under study. The figure illustrates that concordance coef-
ficient increases as the sample size increases.
Figure 7 illustrates the average number of gene sets

reported as differentially enriched across sample sizes.
PADOG, GSEA-S, and Camera tend to report a small
number of differentially enriched gene sets compared to
the other methods. The number of gene sets reported

Maleki et al. Human Genomics 2019, 13(Suppl 1):42
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Fig. 3 Distribution of overlap score for GSEA-S (dataset GSE53757) Box plots showing the distribution of overlap scores resulting from gene set
analysis utilizing GSEA-S when using the original dataset GSE53757 for generating replicate datasets. The panel on the left shows the overlap scores
from replicate datasets, while that on the right depicts the overlap scores of each replicate dataset and the whole dataset. Dataset sample sizes are
2 × n (3 ≤ n ≤ 20), where n is the sample size per group. The x-axis shows n, the sample size per group, and the y-axis shows the overlap scores

as differentially enriched by GAGE, GSVA, ROAST, and
FRY substantially increases as sample size increases, while
the rest of the methods reach an almost constant num-
ber of gene sets predicted as being differentially enriched.
Visualizations analogous to Figs. 6 and 7 for datasets
GSE10334 andGSE13355 are provided in Additional file 1.

These Figures, as well as the pine plots and box plots for
these datasets, showed patterns consistent with those for
dataset GSE53757.
The control-control experiment was conducted using

dataset GSE53757. Additional file 1: Table S2 shows the
average number of differentially enriched gene sets across

Fig. 4 Distribution of overlap score for GAGE (dataset GSE53757) Box plots showing the distribution of overlap scores resulting from gene set
analysis utilizing GAGE when using the original dataset GSE53757 for generating replicate datasets. The panel on the left shows the overlap scores
from replicate datasets, while that on the right depicts the overlap scores of each replicate dataset and the whole dataset. See Fig. 3 caption for
more information

Maleki et al. Human Genomics 2019, 13(Suppl 1):42
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Fig. 5 Distribution of overlap score for ORA (dataset GSE53757) Box plots showing the distribution of overlap scores resulting from gene set analysis
utilizing ORA when using the original dataset GSE53757 for generating replicate datasets. The panel on the left shows the overlap scores from
replicate datasets, while that on the right depicts the overlap scores of each replicate dataset and the whole dataset. See Fig. 3 caption for more
information

Fig. 6 Kendall’s coefficient of concordance results for dataset
GSE53757 Kendall’s coefficient of concordance for each method
under study when using the original dataset GSE53757 for generating
replicate datasets. The x-axis shows the sample size. The y-axis shows
concordance coefficients of the results of gene set analysis of 10
replicate datasets of the same size

Fig. 7 Number of gene sets reported as differentially enriched for
dataset GSE53757 The number of gene sets predicted as differentially
enriched for each method under study when using the original
dataset GSE53757 for generating replicate datasets. The x-axis shows
the sample size per group. The y-axis shows the average number of
gene sets predicted as differentially enriched across 10 replicate
datasets of the same size. The red line parallel to the x-axis shows the
size of the gene set database being used, i.e. the maximum possible
number of gene sets that could be predicted as being differentially
enriched

Maleki et al. Human Genomics 2019, 13(Suppl 1):42
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sample sizes in the control-control experiment for all of
themethods. Since there is no true differential enrichment
expected in the control-control experiment, the average
values in this table represent the average number of false
positives. ssGSEA, GAGE, PAGE, and PADOG are meth-
ods with non-zero false positive counts across sample
sizes. ssGSEA results in the largest number of false posi-
tives followed by GAGE, and then PAGE. Also, increasing
sample size for these methods does not reduce the fre-
quency of false positives. Surprisingly, an increase in sam-
ple size leads to an increase in false positives when using
GAGE. The number of false positives reported by PADOG
decreases rapidly as sample size increases, and for sam-
ple sizes larger than 2 × 5, it only reports a small number
of false positives. Camera reports almost no false posi-
tives for sample sizes less than 2× 9, but it reports a small
number of false positives as sample size increases. ORA,
GSVA, GlobalTest, PLAGE, ROAST, and FRY rarely, if
ever, report any false positives.

Discussion
Reproducibility of the results of gene set analysis methods,
as in any other scientific context, is an essential condition
for having confidence in the methods. In this research, we
applied a systematic approach for quantitatively assess-
ing the reproducibility of gene set analysis methods. By
using real expression datasets, the proposed approach
strives for a realistic assessment of the reproducibility of
gene set analysis methods across sample sizes. We also
measure the specificity of gene set analysis methods as a
complement to the reproducibility assessment.
To visualize overlap between the results of a gene set

analysis method across sample sizes, we introduced and
used pine plots. The utility of pine plots, however, is not
limited to this application. In general, pine plots can be
used to visualize the interaction between several variables
defined using a symmetric function while controlling for
potentially confounding factors. In practice, most func-
tions for measuring the interaction between variables are
symmetric functions—for example, Pearson correlation
and Spearman’s rank correlation coefficients. Also, sym-
metry is a necessary condition for any well-defined metric
or distance function [25]. Therefore, the symmetric con-
dition does not limit the usability of pine plots. The pine
plots in this paper illustrated a general increase in repro-
ducibility as sample size increases. While boxplots can
only show the distribution of overlap scores, pine plots
are capable of showing the extent of the overlap between
each pair of replicate datasets, further highlighting the
reproducibility of replicate datasets of the same size.
The reproducibility of gene set analysis across replicate

datasets is a necessary condition for obtaining biologically
meaningful results, but not a sufficient one. To illustrate,
consider a hypothetical method that always predicts all

of the gene sets in a gene set database as differentially
enriched regardless of the phenotype being examined.
Obviously, the results of this method are perfectly repro-
ducible (always an overlap score of 1). However, such a
method produces a large number of false positives—i.e.,
suffers from a lack of specificity—and, as a consequence,
does not provide any biological insight. Therefore, we also
investigated the specificity of gene set analysis methods.
Gene set analysis methods that tend to predict very few
gene sets as differentially enriched achieve high speci-
ficity. However, these methods often suffer from a lack of
sensitivity. In this research, we used the number of differ-
entially enriched gene sets predicted by each method to
reveal such scenarios.
The pine plots and box plots showed an increase in

reproducibility as sample size increases. However, the
extent of reproducibility and the rate at which it grows by
sample size was different across methods.
We evaluated reproducibility not only based on the dif-

ferential enrichment of gene sets but also on the order
in which they are predicted, where the order is defined
using significance values of gene sets. Kendall concor-
dance coefficients were used to determine if the gene sets
predicted as significantly differentially enriched by each
method are consistently reported in the same order across
replicated datasets of the same sample size.
This research provides insights into the behaviour of

specific gene set analysis methods. For instance, GSEA-S
achieves low overlap scores across replicate datasets, even
for larger sample sizes such as 2 × 20. Meanwhile no dif-
ferentially enriched gene sets are predicted by this method
using small sample sizes (see Figs. 1, 3, and 7). GSEA-S
was expected to predict few differentially enriched gene
sets using small sample sizes since large sample sizes are
required for this method to assess significance based on
sample permutation. For example, for an experiment with
3 control and 3 case samples, 20 distinct sample permuta-
tions exist—the combination of 3 out of 6. Therefore, the
smallest non-zero p-value is 0.05, which we did not con-
sider significant. For a sample size of 2 × 10 or higher,
GSEA-S predicts an average of 15 gene sets as differen-
tially enriched (Fig. 7). This number remains steady while
Kendall’s concordance increases (Fig. 6), which suggests
that 2×10 samples might be a reasonable lower bound for
using GSEA-S.
PADOG, which has been designed to take gene set over-

lap into account and increase specificity, has low overlap
scores between replicate datasets even for the largest sam-
ple sizes considered. Like GSEA-S and Camera, PADOG
also predicts few gene sets as differentially enriched. Lack
of reproducibility across large sample sizes for both meth-
ods may suggest that the gene sets predicted as differen-
tially enriched are false positives, i.e. gene sets incorrectly
predicted as being differentially enriched.
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PLAGE, ssGSEA, and GlobalTest tend to report nearly
all gene sets as differentially enriched. This is always the
case for ssGSEA regardless of the sample size of the
replicate datasets used. For small sample sizes, PLAGE
and GlobalTest report fewer gene sets as differentially
enriched, but this number rapidly increases for larger
sample sizes. Furthermore, PLAGE appears to be more
sensitive to the dataset used since it predicts far fewer
gene sets as differentially enriched for the dataset with
higher variability across case and control samples, as
with GSE10334 (see Additional file 1: Figures S2 and
S21). The number of gene sets predicted explains why
these methods achieve high overlap scores. Since it is
unlikely that such a large number of gene sets are dif-
ferentially enriched in a living organism, we assume
that these methods also predict a large number of false
positives.
Given the above, relying on gene sets predicted as being

differentially enriched by GlobalTest, PLAGE or ssGSEA
may lead to interpretations that are incorrect or biased
towards a hypothesis of interest. However, the most statis-
tically significant gene sets, i.e. gene sets with the lowest
adjusted p-value, suggested by these methods may still
be biologically relevant. Therefore, we suggest further
research be conducted to evaluate how best to use these
methods and interpret their results.
GlobalTest’s and PLAGE’s relatively low Kendall concor-

dance coefficients depicted in Fig. 6 show that the order
in which they predict the differentially enriched gene sets
is not conserved across replicate datasets. For PLAGE this
may be explained by considering that for each gene set,
the method defines “the activity level in terms of the first
eigenvector, ‘metagene’, in the singular value decomposi-
tion" [13]. By ignoring other eigenvectors of an expression
profile for a gene set, it cannot completely capture the
variability of expression of genes within a gene set. This
means that the gene sets predicted as being differentially
enriched by PLAGE could show variation in statistical
significance across replicate datasets, and therefore, be
ranked differently for each replicate dataset.
For sample sizes larger than 2 × 5, ORA remains

consistent in the number of gene sets reported as dif-
ferentially enriched suggesting that 2 × 5 is a reason-
able lower bound for sample sizes when using ORA.
PAGE also shows a behaviour similar to that of ORA.
Since PAGE and ORA are parametric methods and their
calculated gene set scores are a function of the num-
ber of differentially expressed genes, this behaviour was
expected.
When replicate datasets of various sizes are generated

from one original dataset, it is expected that a gene set
analysis method analyzing these replicate datasets will
report approximately the same number of differentially
enriched gene sets. However, this is not the case with

GAGE, GSVA, FRY, and ROAST. A dramatic increase in
the number of gene sets predicted as being differentially
enriched was observed for these methods as sample size
increases. This increase may also be partially responsible
for the observed increase in the overlap scores of these
methods as sample size increases.
FRY and ROAST closely mirror each other in the num-

ber of gene sets predicted as being differentially enriched
as well as their Kendall concordance coefficients across
sample sizes. As FRY was designed to be a fast approxi-
mation of ROAST, this behaviour is understandable. How-
ever, since these methods, as well as GAGE and GSVA,
report large numbers of gene sets as being differentially
enriched, we assume that these methods may lead to more
false positives as sample size increases.
Measuring sensitivity using real datasets is challenging,

if not impossible, as the differential enrichment status
of gene sets for real datasets are not known. Simulated
data, on the other hand, often suffer from oversimplified
assumptions such as constant or zero gene-gene corre-
lation or normally distributed expression values [26–28]
leading to biased evaluations of gene set analysis meth-
ods [29].We suggest development of standard synthesized
datasets without relying on such assumptions as future
research in the community. This would alleviate the chal-
lenges caused by the lack of gold standard datasets for the
evaluation of gene set analysis methods. A methodology
such as the one utilized in this paper could be used for
such standard datasets.
The results of the control-control experiment indicate

that some methods suffer from a lack of specificity, even
in the absence of differential expression. It would be
expected that as the number of samples increases, the
number of false positives reported would decrease, i.e.
specificity increases; however, it is not the case for some
methods. As depicted in Additional file 1: Table S2, GAGE
and ssGSEA report the highest number of false posi-
tives. Almost all gene sets are predicted by ssGSEA as
differentially enriched in both the control-control experi-
ment and case-control experiments (see Fig. 7 and also in
Additional file 1: Figures S21 and S22), regardless of the
sample size. GAGE reports a large number of false pos-
itives as sample size increases. PAGE and GSEA-G also
report a large number of false positives, but this num-
ber remains relatively consistent and is not affected by the
sample size used. Therefore, increasing the sample size
is not a viable solution for improving the results of these
methods. PADOG reports fewer false positives as sam-
ple size increases; however, PADOG also reports a small
number of differentially enriched gene sets in the case-
control experiments as well. This shows that although
PADOG achieves a high specificity, it may suffer from a
lack of sensitivity, as the reported false positives might
overwhelm the results. GSEA-S and Camera have a similar
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issue with being overwhelmed with false positives since
they also report a small number of gene sets as differen-
tially enriched. GSVA, Globaltest, FRY, and ROAST do
not appear to report false positives in the control-control
experiment regardless of sample size being used. However,
this control-control experiment measures the number of
false positive in the absence of differential expression and
does not say anything about the specificity of these meth-
ods in the presence of differential expression. The large
number of gene sets predicted as differentially enriched
in the case-control experiments, as depicted in Fig. 7 and
also in Additional file 1: Figures S21 and S22, suggests
that these methods suffer from a lack of specificity in
the presence of differential expression, as such a drastic
change in gene expression is unlikely for a living organism.
ORA, as expected, did not report any false positive in the
absence of differentially expressed genes. It also reported
a smaller number of differentially enriched gene sets in
the case-control experiments—in comparison to GSVA,
Globaltest, FRY, and ROAST. However, it still reported a
substantially large number of differentially enriched gene
sets for each case-control experiment (almost 20% of
gene sets in G). This suggests that ORA could still suf-
fer from lack of specificity in the presence of differential
expression though not to the degree of the other methods
such as GSVA, Globaltest, FRY, and ROAST. This can be
attributed to the presence of gene set overlap [30].
In this paper, we evaluated the results of gene set

analysis methods using balanced datasets, i.e. datasets
with the same number of cases and controls. While we
expect consistent results for datasets that are not dras-
tically imbalanced, we suggest investigating the effect
of dataset imbalance on the results of gene set analysis
methods.

Conclusion
The systematic methodology described in this paper can
be successfully used to evaluate the reproducibility of
results from gene set analysis methods, allowing compar-
ison across methods and sample sizes. The methodology
was employed to evaluate the reproducibility of 13 widely
used gene set analysis methods. The proposed method-
ology also made it possible to measure the specificity of
these methods using real datasets. From the results we
conclude that, as a general pattern, reproducibility, as
measured by an overlap score, increases with sample size.
However, the rate of increase is method-dependent. Our
findings suggest that for all methods in the study, achiev-
ing reproducible results using small sample sizes—such
as 3, 4, or 5 samples per group—is unlikely. However,
we observed that increasing sample size is not a panacea
for achieving biologically reliable results, as for some
methods it decreased the specificity, i.e. introduced more
false positives.

Results from this paper can aid researchers in making a
choice among common gene set analysis methods for their
work.

Additional file

Additional file 1: This file includes the results of the analysis for the
datasets and methods not presented in the main body of the paper. (PDF
435 kb)
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