
https://doi.org/10.1186/s40246-019-0227-1

RESEARCH Open Access

Using Apache Spark on genome
assembly for scalable overlap-graph
reduction
Alexander J. Paul1, Dylan Lawrence2, Myoungkyu Song3, Seung-Hwan Lim4, Chongle Pan5

and Tae-Hyuk Ahn1,6*

From IEEE International Conference on Bioinformatics and Biomedicine 2018
Madrid, Spain. 3-6 December 2018

Abstract

Background: De novo genome assembly is a technique that builds the genome of a specimen using overlaps of
genomic fragments without additional work with reference sequence. Sequence fragments (called reads) are
assembled as contigs and scaffolds by the overlaps. The quality of the de novo assembly depends on the length and
continuity of the assembly. To enable faster and more accurate assembly of species, existing sequencing techniques
have been proposed, for example, high-throughput next-generation sequencing and long-reads-producing
third-generation sequencing. However, these techniques require a large amounts of computer memory when very
huge-size overlap graphs are resolved. Also, it is challenging for parallel computation.

Results: To address the limitations, we propose an innovative algorithmic approach, called Scalable Overlap-graph
Reduction Algorithms (SORA). SORA is an algorithm package that performs string graph reduction algorithms by
Apache Spark. The SORA’s implementations are designed to execute de novo genome assembly on either a single
machine or a distributed computing platform. SORA efficiently compacts the number of edges on enormous graphing
paths by adapting scalable features of graph processing libraries provided by Apache Spark, GraphX and GraphFrames.

Conclusions: We shared the algorithms and the experimental results at our project website, https://github.com/
BioHPC/SORA. We evaluated SORA with the human genome samples. First, it processed a nearly one billion edge
graph on a distributed cloud cluster. Second, it processed mid-to-small size graphs on a single workstation within a
short time frame. Overall, SORA achieved the linear-scaling simulations for the increased computing instances.

Keywords: Graph reduction, Apache spark, Genome assembly, Cloud computing, Overlap-layout-consensus

Background
Next-generation sequencing (NGS) refers high-
throughput and in-parallel DNA sequencing technologies
developed around 2007 after the Sanger DNA sequencing
method first emerged in 1977 [1]. NGS technologies are
different from the long dominated Sanger method in that
NGS provides massive sequencing analysis with being

*Correspondence: ted.ahn@slu.edu
1Bioinformatics and Computational Biology Program, Saint Louis University, St.
Louis, MO, USA
6Department of Computer Science, Saint Louis University, St. Louis, MO, USA
Full list of author information is available at the end of the article

extremely high-throughput from multiple samples at
much reduced cost. Following the introduction of NGS
techniques [2, 3], prodigious changes have occurred in
the biological and biomedical sciences, specifically in
genomics [3]. With reductions in sequencing cost and
increased throughput, read length, and read accuracy
NGS has drastically recast DNA sequencing; however,
NGS requires a significant body of sequencing data for
analysis. As reported by previous studies, NGS faces
several limitations [4]. For example, in comparison to
the sequence length generated by first-generation Sanger
sequencing (500∼1000bp), fragmented DNA sequences

© The author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Paul et al. Human Genomics 2019, 13(Suppl 1):48

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-019-0227-1&domain=pdf
https://github.com/BioHPC/SORA
https://github.com/BioHPC/SORA
mailto: ted.ahn@slu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Page 2 of 12

(i.e. reads) are generally shorter (50∼300bp). Recently
developed third-generation sequencing techniques such
as Pacific Bio-sciences (PacBio) and Oxford NanoPore
provide much longer reads (up to 2 Mbp) to the consid-
erable benefit of the assembly. However, NGS remains
dominant due to its low cost and error rate.
Two different types are generally used for genome

assembly: de novo assembly and reference-based assem-
bly. De novo assembly is the process of finding overlaps
and merging reads to complete genome sequence that
is inherently challenging but essential to bioinformatics
research [5]. Reference-based assembly can construct a
new specimen genome with help of similar assembled
genome. Third-generation sequencing can produce reads
having nearly similar size of bacterial genomes that usu-
ally are few Mbp long, but cannot generate full sequences
of eukaryotic genomes up to several Gbp of length. For
example, the haploid human genome size is over 3 Gbp
and the Genome Reference Consortium Human Build
38 patch release 13 (GRCh38.p13) is the most recently
released human genome assembly [6].
The elaboration of genome assembly stems from mul-

tiple issues including heterozygosity and ploidy, affected
mainly by the length and numbers of the reads. To
assemble such large datasets, most de novo assembly
programs are highly sensitive to the changes in time
and space complexity. To account for both sensitivity
and speed, most de novo genome assemblers commonly
employed two assembly paradigms. One is overlap-layout-
consensus (OLC) algorithm and the other is de Brui-
jin graph (DBG) [7]. During the first-generation Sanger
sequencing technique era, OLC approaches, i.e., Celera
[8], reached accuracy adequate to accommodate the low
sequencing depth and longer reads output. Newbler [9]
that was designed for second-generation Roche / 454
Life Sciences sequences also adapted the OLC approach.
The majority of OLC-based genome assemblies pro-
duce the sequence assembly of whole, complex genomes
using below steps. First, finding Overlaps between frag-
ments or among all reads by using a graph model. Sec-
ond, using the overlay-graph to construct a stretched
Layout. Third, establishing the most probable Consensus
sequence.
Various alternate approaches using DBG concept were

proposed to assemble a genome with noticeably high-
throughput and short reads from NGS technologies.
Under NGS, DBG-based assemblers have been commonly
employed to degrade reads into k-mers where a k-mer
is a subsequence of a fixed-length, k. Various DBG-
based assemblers including AbySS [10], Velvet [11] and
SOAPdenovo [12] utilize memory-efficient DBG traver-
sal to lessen the memory footprint of assembly includ-
ing an efficient identification of redundant k-mers. As
opposed to the less computationally efficient (e.g. costly

execution time and memory consumption per assembler)
OLC-based approaches, most DBG-based assemblers
reduce dependency on sequencing depth using a genome-
sized graph at the cost of a larger memory overhead. The
DBG-based approach achieves comparably fast overlap-
ping computation for high-throughput short reads, while
the OLC-based approach performs more advantageously
for longer reads. Most of the DBG-based techniques adapt
hashing algorithms that have a chance to acquire higher
relative error rates but usually perform faster than the
OLC-based approaches [13].
Lately, probabilistic algorithms utilizing the MinHash

technique have been developed to efficiently identify
multiple overlaps between long, noisy reads from third-
generation sequencing data [14, 15]. Canu, as a succes-
sor of the Celera assembler, was designed for long and
noisy single-molecule sequences [15]. However, the com-
putationally expensive overlap graphs produced by the
assembly of raw or processed sequences must be simpli-
fied or reduced. Several MPI-based scalable assemblies
were proposed previously; including Abyss [10], Ray [16],
and SWAP2-Assembler [17]. Apache Spark serves an a
general purpose and open source and distribution com-
puting engine for cluster based computation with pre-
build libraries such as GraphX, MLlib (Machine Learning
library), Spark Steaming, and so on [18, 19]. Utilizing
data intensive cluster computation, Apache Spark pro-
cesses large scale data quickly though efficient in-memory
computation. Unlike the Apache Hadoop, a conventional
cloud-based distributed processing framework, Spark can
accelerate computational performance by up to 100 times
compared to the Hadoop especially for interactive jobs
and iterative analytics by cacheing datasets in memory.
MPI is a popular framework for high performance parallel
computing, but Spark provides an in-memory implemen-
tation of MapReduce that is widely used in the big data
industry.
Due to the extensive memory and processing time

required, the analysis of reads with significant overlap
is not easily parallelized. To address these challenges,
we propose a novel OLC-based algorithmic approaches
for genome assembly, called Scalable Overlap-graph
Reduction Algorithms (SORA) by leveraging Apache
Spark especially with the GraphX and GraphFrames
libraries. Using the computing engine of Apache Spark,
SORA accelerates the graph reductions for genome
assemblies by compacting repetitive information of
sequence overlaps either in the cloud, by a local clus-
ter system, or using a stand-alone workstation. SORA
was developed as an open-source framework to provide
pre-built modules for graph reduction with useful scripts
for genome assembly including sequence overlap finding
using BBtools (https://sourceforge.net/projects/bbmap/).
SORA executes genome assembly through the use of

Paul et al. Human Genomics 2019, 13(Suppl 1):48

https://sourceforge.net/projects/bbmap/

Page 3 of 12

three overlap-graph reduction algorithms: Transitive Edge
Reduction, Dead-End Removal, and Composite Edge Con-
traction. It presents a short turnaround time when pro-
cessing a large-scale dataset consisting of a graph with
nearly one billion edges on a distributed cloud comput-
ing cluster or when processing a smaller 8 million edge
graph dataset on a local computing cluster. Spaler [20]
is another GraphX and Apache Spark based de novo
genome assembler utilizing DBG contraction and con-
struction, but SORA is, to our knowledge, the first pro-
posed Spark-based scalable assembler utilizing the OLC
approach. Our previous studies [21, 22] were exten-
sively extended in this paper. In detail, two primary
goals are demonstrated in our benchmark results; (1)
SORA actualizes a cloud scalable de novo genome assem-
bler through leveraging Apache Spark graph processing
libraries; (2) SORAdemonstrates the applicability of cloud
computing infrastructure employing graphing algorithms
to genome assembly and alternative biological applica-
tions. The increasing popularity of Spark among compu-
tational researchers has also influenced our decision to
use Spark [23].
The remainder of the article is organized as follows.

“Methods” section describes the OLC algorithm and
Apache Spark, then presents SORA’s algorithms and the
implementation in detail. “Results” section describes vari-
ous experiments conducted to evaluate the scalability and
usability of SORA using large and small scale datasets on
cloud followed by Discussion and Conclusions.

Methods
Overlap-Layout-Consensus
The Overlap process, the initial step of OLC, focuses
on finding overlaps of all reads using all-to-all pairwise
alignments. To efficiently find overlaps between reads,
the prefix/suffix technique is commonly used for overlap-
based genome assembly [24]. This hash table approach
allows a nearly constant time search when reads are small
of all reads by their prefixes and suffixes. To efficiently
search all overlapping reads with a read r, each proper sub-
string of minimum overlap in read r is found in the hash
table, and every retrieved read is compared to the read
r. Therefore, an overlap-graph that places reads as nodes
and assigns edges between nodes whose corresponding
reads overlap exceeds a specified cutoff is constructed by
the Overlap step. As a result, the number of nodes will
be proportionate to the number of unique reads, while
the number of overlaps between reads will determine the
number of edges.
During the Layout and Consensus steps, the manufac-

tured overlap-graph is stretched and reduced into the
most probable contiguous sequences, labeled, contigs.
The Layout step acts as a Hamiltonian path problem
where each read in the graph must be visited to generate

longer sequences. This is a computationally challenging
problem caused by a large number of unnecessary edges
that are mostly produced by repeats or sequencing errors.
As the final step, Consensus considers the alignment of all
original reads onto the draft contigs from the Layout step
and employs a straightforward majority-based consensus
to improve the draft sequences. To limit extraneous edges
in the graph, SORA utilizes three overlaps-graph reduc-
tion algorithms: Transitive Edge Reduction (TER), Com-
posite Edge Contraction (CEC), and Dead-End Removal
(DER) [25].

Apache Spark
Apache Spark is a cluster-based engine that processes
very large-scale datasets. As opposed to Hadoop’s on-
disk data processing, Spark’s incorporated batching sys-
tem handles input data streams in-memory, separates the
data into batches for each node in a cluster, and pro-
duces the final stream of results in batches. For fast and
scalable distributed graph-parallel computation, Apache
Spark provides GraphX library that contributes a set of
fundamental operations and graph abstraction models
in parallel. This permits SORA to manipulate and exe-
cute queries on graphs represented as database entries.
The implementation and design in SORA leverages an
assortment of computational operations in GraphX for
construction, graph reading, transformation, and com-
putation. GraphX extends Spark’s Resilient Distributed
Dataset (RDD) that embodies a read-only collection of
objects that are partitioned over machines. If any par-
tition of an RDD is lost, Spark rebuilds it by applying
the filter on the corresponding block of the file in the
file system. An RDD can be cached in memory across
machines and reused in multiple MapReduce-like parallel
operations.
To accommodate abstraction for manipulating struc-

tured data (e.g., tables or two-dimensional arrays), SORA
uses a graph processing library called GraphFrames that
is built on Spark’s DataFrame implementation to process
real-time exploration of large-volume datasets. SORA
leverages GraphFrames to execute pattern matching and
relational queries in tandem with GraphX to speed up
the most common join in iterative graph processing tasks.
SORA was implemented in Scala, but the portable design
of the core components allows for adaptive use with other
programming languages like Java or Python with lower
development costs.

Overlap-Graph Reduction Algorithms
This section illustrates SORA’s adaptation of three
overlap-graph reduction algorithms to the distributed
cloud computing cluster utilizing Spark. Figure 1 rep-
resents the synopsis of each workflow as to how each
algorithm computes overlap-graph reduction.

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 4 of 12

Fig. 1 The overlap-graph reduction algorithms. a Transitive Edge Reduction (TER), b Dead-End Removal (DER), and c Composite Edge Contraction
(CEC)

Transitive Edge Reduction
Transitive edge reduction is a method of reducing com-
plexity in graphs and helps provide clearer contigs by
eliminating extraneous paths in the graph. After finding
overlaps, the initial overlap graph contains many unnec-
essary edges. For example, say read a overlaps with read b,
which overlaps with read c subsequently, which results in
a shorter overlap length between read a and read c. Then,
the string graph edge a → c is unnecessary because one
can use the edges a → b → c without a → c to obtain
the same sequence. The edge a → c is then identified
as a transitive edge and is deleted. Removing all transitive
edges significantly simplifies the overlap graph without
losing information for genome assembly.
The general transitive edge reduction algorithm takes

O(ED) time where E is the number of edges and D is the
maximum out degree for the read, but Myer proposed a

linear O(E) expected time transitive reduction algorithm
shown in Algorithm 1 [25]. After the initial marking of
every vertex and all related edges in the graph, each vertex
is then investigated to find eliminable edges of the vertex
using the marking strategies.
In Algorithm 2 we use the GraphX library operators

to implement the transitive edge reduction algorithm
based on the graph-parallel abstraction. The GraphX
library supports the graph-parallel computation APIs
aggregateMessages(), outerJoinVertices(),
mapTriplets(), subgraph(), sendToSrc(),
and sendToDst(). After constructing the ini-
tial property graph from the edge properties, the
aggregateMessages operator can compute the set
of neighbors for each vertex and retrieve the edge prop-
erties including overlap length at the same time. The
required set of neighbors can be joined with the graph

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 5 of 12

Algorithm 1 Algorithm for Transitive Edge Reduction
Input: Graph (V, E)
Output: Reduced Graph (V’, E’)
1: for v ∈ V do
2: mark[v] ← vacant // Initially mark a vertex vi as

vacant.
3: for v → w ∈ E do
4: reduce[v → w] ← false // Mark an edge wi as not

reduced.
5: end for
6: end for
7: for v ∈ V do
8: // Mark a vertex vi reachable from vj as inplay
9: for v → w ∈ E do

10: mark[w] ← inplay
11: end for
12: longest ← maxwlen(v → w)

13: for v → w ∈ E in order of length do
14: // Traverse an edge wi marked inplay, indicating it is

adjacent to v.
15: ifmark[w] = inplay then
16: // Stop if an edge is too long to eliminate edges out

of v.
17: for w → x ∈ E in order of length and

len(w → x) + len(v → w) ≤ longest do
18: ifmark[x] = inplay then
19: mark[x] ← eliminated
20: end if
21: end for
22: end if
23: end for
24: // Conclude the processing of v by examining each

adjacent vertex.
25: for v → w ∈ E do
26: ifmark[w] = eliminated then
27: reduce[v → w]← true // Mark as needing

reduction.
28: end if
29: mark[w] ← vacant // Restore each vertex mark to

vacant.
30: end for
31: end for

using outerJoinVertices. After comparing overlap
lengths of the edges for each vertex in parallel, the edges
are marked as TRUE if the edges can be removed. The
subgraph operator returns a new graph containing only
the edges not marked for removal.

Dead-End Removal
Dead-End Removal (DER) eliminates short dead-ends
or spurs from the graph, reduces erroneous reads, and
decreases the graph complexity. The short dead-end paths

Algorithm 2 Spark Algorithm for Transitive Edge Reduc-
tion
Input: Let overlapG be an overlap graph G(V, E).
Output: Let reducedG be a reduced graph G(V’, E’).
1: // Compute the set of neighbors for each vertex.
2: neighborVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: sendToSrc(getDstId(v), ort, getOverlapLen(v))
6: sendToDst(getSrcId(v), ort, getOverlapLen(v))
7: end for
8: }
9: // Join graph with neighbors.

10: joinedG = outerJoinVer-
tices(overlapG(V,E),neighborVtx)

11: // Traverse each edge and mark true if the edge is remov-
able.

12: markedG = mapTriplets(joinedG(V, E)) {
13: for e ∈ edges of adjacent vertices of a vertex in V do
14: if getOverlapLen(e) < getMaxOverlapLen(e)

then
15: e ← true
16: end if
17: end for
18: }
19: // Remove the marked edge using subgraph.
20: reducedG = subgraph(markedG(V, E))

are mostly caused by sequencing errors and false-positive
joins of overlapping of chimeric sequences. Most assem-
blers identify the dead-ends by considering short length
edges with low-depth coverage to be dead-ends. The DER
algorithm iterates over all reads, then stamps the edges if
the reads have only one incoming edge and the edges are
short with low coverage.
Algorithm 3 describes the DER algorithm based on the

GraphX operators. Algorithm 3 takes as input the reduced
graph that Algorithm 2 has produced as the output and
executes the aggregateMessages operator to com-
pute the number of edges going in and out of each vertex
depending on the orientation of the edge. This informa-
tion can be joined with the input reduced graph by using
outerJoinVertices. In parallel, if the number of out-
going edges from a node is zero and the edge can be
removed mark the edge TRUE. The subgraph opera-
tor returns a new graph with the edges marked TRUE
removed.

Composite Edge Contraction
Composite Edge Contraction (CEC) reduces the compu-
tational complexity by processing larger volumes of data
in the graph. Especially, CEC merges vertices guaranteed
to process the graph without loss of information. In the

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 6 of 12

Algorithm 3 Spark Algorithm forDead End Removal
Input: Let overlapG be an overlap graph G(V, E).
Output: Let reducedG be a reduced graph G(V’, E’).
1: // Compute the in/out edge counts for each vertex.
2: inOutVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: if ort == ←→ then
6: sendToSrc(1,0)
7: sendToDst(1,0)
8: end if
9: if ort == > −− < then

10: sendToSrc(0,1)
11: sendToDst(0,1)
12: end if
13: if ort == � || ort == � then
14: sendToSrc(0,1)
15: sendToDst(1,0)
16: end if
17: end for
18: }
19: // Join graph with neighbors.
20: joinedG = outerJoinVertices(overlapG(V, E),

inOutVtx)
21: // Traverse each edge and mark true if the edge is remov-

able.
22: markedG = mapTriplets(joinedG(V, E)) {
23: for e ∈ edges of adjacent vertices of a vertex in V do
24: if e.out == 0 then
25: e ← true
26: end if
27: end for
28: }
29: // Remove the marked edge using subgraph.
30: reducedG = subgraph(markedG(V, E))

case of Overlap-layout-consensus (OLC), a read is repre-
sented for branching to two additional reads which deviate
from each other at least one nucleotide, both of which
then overlap back to the same read. In contrast to OLC,
the CEC algorithm simplifies the path analysis by remov-
ing redundancy and reducing complexity of the graph,
considering only the contractible edges without loss of
important information for the genome assembly. To sim-
plify the overlap graph, a simple vertex, r, along with its
in-arrow edge (u, r) and out-arrow edge (r,w), are replaced
by a composite edge (u,w) in the overlap graph.
Algorithm 4 describes the composite edge contraction

by using the operators of the graph-parallel computa-
tions provided byGraphX andGraphFrames. After receiv-
ing the reduced graph from Algorithm 3, the operator
aggregateMessages computes the number of edges

Algorithm 4 Spark Algorithm for Composite Edge Con-
traction
Input: Let overlapG be an overlap graph G(V, E).
Output: Let contractedG be a contracted graph G(V’, E’).
1: // Compute the in/out edge counts for each vertex.
2: inOutVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: if ort == ←→ then
6: sendToSrc(1,0)
7: sendToDst(1,0)
8: end if
9: if ort == > −− < then

10: sendToSrc(0,1)
11: sendToDst(0,1)
12: end if
13: if ort == � or ort == � then
14: sendToSrc(0,1)
15: sendToDst(1,0)
16: end if
17: end for
18: }
19: // Join graph vertices with in/out edge counts.
20: joinedG = outerJoinVertices(overlapG(V, E),

inOutVtx)
21: // Traverse each edge andmark true if edge is contractable.

22: markedG = mapTriplets(joinedG(V, E)) {
23: for e ∈ edges of adjacent vertices of a vertex in V do
24: if e.out == 1 and e.in == 1 then
25: e ← true
26: end if
27: end for
28: // Remove the edges marked true using subgraph.
29: contraG = subgraph(markedG(V, E))
30: // Calculate the connected components for each node.
31: conVtx = connectedComponents(contraG(V, E))
32: // Combine connected vertices with graph.
33: dupVtx = vertices.innerjoin(markedG(V, E), conVtx)
34: contraVtx = vertices.aggregateUsingIndex(markedG

(V, E), dupVtx)
35: // Remove the edges marked false using subgraph.
36: remainedG = subgraph(markgedG(V, E))
37: contraEdges = outerJoinVertices(remainedG(V,E),

conVtx)
38: // Generate a new graph using the modified edges and

vertices.
39: contractedG = graph(contraVtx, contraEdges)

going in and out of each vertex depending on the orienta-
tion of the edge. The result of a processed set of vertices
and edges is integrated with the input reduced graph by
using the operator outerJoinVertices. The operator

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 7 of 12

mapTriplets is parallelized to investigate the edges
of each adjacent vertex to determine whether the vertex
only includes a pair of incoming and outgoing edges. It
then marks the edge TRUE if they can be contracted. The
subgraph operator returns a new graph with only the
contractable edges.
The operator connectedComponent identifies the

connection relationship among contractible vertices
and produces the vertex information with the ver-
tex IDs for the connected contractible subgraphs.
Given the contractible vertex information, the opera-
tor innerJoin performs an inner join between each
contractible and internal vertex to produce a set of the
new vertex properties, which is used in the operator
aggregateUsingIndex to aggregate the contracted
vertices ensuring consistency by joining the IDs among
vertices. Then, the operator subgraph filters out the
edges marked FALSE to remove the contractible edges
from the original graph. Based on the refined vertex set,
the operator outerJoinVertices generates the con-
tracted edges, which parameterize the operator graph to
construct a new reduced graph.

Results
Figure 2 shows a practical pipeline of genome assem-
bly using SORA. In our experiments, we applied three
overlap-graph reduction algorithms (Transitive Edge
Reduction, Dead-End Removal, and Composite Edge
Contraction) in SORA to three different types of bench-
mark datasets.

Three Data Sets
For the first experiment described in Section 6, we
downloaded a metagenomics dataset from the Sequence
Read Archive at the National Center for Biotechnol-
ogy Information (NCBI) [24]. The accession number
is SRX200676. The metagenomics dataset is consid-
erably large containing mixed DNA from 64 diverse
bacterial and archaeal microorganisms. The combined
DNA was sequenced using Illumina HiSeq [26]. For
the second experiment described in Section 6, we
obtained a single genome dataset of Conyza canadensis
(also known as horseweed) processed by the Illumina
HiSeq sequencing system [27]. For the third experi-
ment described in Section 6, we downloaded a human
genome dataset provided by the 1000 Genome Project
data portal (ISGR: The International Genome Sample
Resource http://www.internationalgenome.org/). Sam-
ple ID is NA12878 (http://www.internationalgenome.
org/data-portal/sample/NA12878) and we down-
loaded 3 files of whole genome sequencing (WGS)
from the European Bioinformatics Institute (EBI)
(ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/
-SRR622461_1.fastq.gz, ftp://ftp.sra.ebi.ac.uk/vol1/fastq/

SRR622/SRR622461/-SRR622461_2.fastq.gz, ftp://ftp.sra.
ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.
fastq.gz).

Metagenomics Dataset Analysis
We evaluated the scalability of SORA by applying the
overlap-graph reduction algorithms to the metagenomics
dataset that is extremely large to check the performance
capability of SORA. In the experiment, we observed that
SORA significantly reduced the number of reads in the
metagenomics datasets, which consequently allows bin-
ning of the contigs to reconstruct genomic bins more
quickly and efficiently. The benchmark has been per-
formed on Amazon Web Service (AWS) Elastic Com-
puting Cloud (EC2) with 15 virtual instances whether
each instance (m4.xlarge) has 2.3 GHz Intel Xeon E5-
2686 v4 (Broadwell) processors (4 vCPU) and 16 GB
memory.

Overlap Graph Construction
The sequence dataset obtained from NCBI contains
109 million paired-end reads roughly and 0.4 million
single-end reads with 100-bp read length. Sequence
reads that are shorter than 60bp and containing mul-
tiple N character were removed using Sickle (https://
github.com/najoshi/sickle). BBNorm (https://sourceforge.
net/projects/bbmap) was used for error correction with
the default settings. These are the same techniques used
for the OMEGA analysis [24].

Transitive Edge Reduction
In the experiment with the metagenomics dataset, Transi-
tive Edge Reduction (TER) algorithm performed a drastic
reduction on the number of edges in the graph. In Table 1,
the reduction results of the TER algorithm were shown
using three types of data size as quarter, half, and full
data sets. Given the quarter dataset that contains over 217
million edges, the TER algorithm produced the reduced
graph comprising 12.5 million edges with 94.24% reduc-
tion; given the full size dataset that initially contains 868
million edges, the TER algorithmmade the reduced graph
comprising of 57.4 million edges with 93.39% reduction.
Figure 3 shows the powerful scalability of the TER algo-

rithm where the computational time decreased as the
number of cluster nodes increased. For example, the TER
algorithm completed the reduction of the graph module
in 2.92 h using 5 cluster nodes, while completed the same
task in 1.37 h with 15 cluster nodes.

Dead-End Removal and Composite Edge Contraction
The evaluation results of the two algorithms, Dead-End
Removal (DER) and Composite Edge Contraction (CEC),
using the quarter, half, and full size datasets were shown
in Table 1. Given the quarter dataset that contains 12.5
million edges, the combined DER-CEC modules created

Paul et al. Human Genomics 2019, 13(Suppl 1):48

http://www.internationalgenome.org/
http://www.internationalgenome.org/data-portal/sample/NA12878
http://www.internationalgenome.org/data-portal/sample/NA12878
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/-SRR622461_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/-SRR622461_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/-SRR622461_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/-SRR622461_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.fastq.gz
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://sourceforge.net/projects/bbmap
https://sourceforge.net/projects/bbmap

Page 8 of 12

Fig. 2 Overview of analysis pipeline using SORA. SORA pipeline for genome assembly

the reduced graph with 0.5 million edges with 96% reduc-
tion. In addition, given the full dataset that contains 57.3
million edges, the combined DER-CEC modules resulted
in the reduced graph comprising 2.3 million edges with
95.97% reduction.

Table 1 The overlap-graph reduction results with the
metagenomics dataset

Algorithm Size #EDGE (before) #EDGE (after) TIME

TER Quarter 217,002,504 12,482,946 0.57

Half 434,005,009 23,818,401 0.80

Full 868,010,019 57,363,515 1.37

DER-CEC Quarter 12,482,946 469,130 0.13

Half 23,818,401 763,474 0.23

Full 57,363,515 2,341,610 0.40

#EDGE denotes the number of edges of the graph and TIME the running time
(hours) for the computation

Figure 3 represents the capable scalability of the com-
bined DER-CEC algorithms by measuring each running
time per different numbers of cluster nodes within the
same sized dataset. In the full dataset experiment, we
directly compared the running time between 5 and 15
cluster nodes. The DER-CEC algorithm completed the
reduction of the graph using 5 virtual instances in 1.35 h,
while fast and scalable completing in 0.4 h with 15 virtual
instances.

Benchmark to Omega
To demonstrate the power of SORA’s distributed cloud
computation, we benchmarked two algorithms: Omega
and SORA. Omega is an string overlap-graph based
metagenome assembler tool implemented in C++ [24].
We could choose another baseline application such as
Spaler [20], which is a Spark-based de novo genome
assembler using DBG approach, but Spaler is not publicly

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 9 of 12

Fig. 3Wall-clock time comparison. Wall-clock time for different number of nodes with the different size of metagenomics datasets

available for benchmarking. In Fig. 4, it shows that SORA’s
computation time is only 1.77 h running time compared
to Omega with 7.5 h running time. In addition to effi-
cient speedy performance, SORA uses less amount of
systemmemory compared to Omega since it breaks down
the graph computation tasks to process them in parallel,
thereby allowing more of the graph to be in memory and
speeding up the analysis.

Horseweed Dataset Analysis
To show the flexibility and usability of SORA, we applied
SORA to a single genome dataset to generate a reduced
graph. Total size of 72 FASTQ paired-end files is 108 GB.
We used a local computational workstation that has 32
cores (Intel Xeon Processor E5-2640 V3 2.6GHz) and 128
GB of memory (DDR4 2133MHz ECC).

Overlap Graph Construction
To demonstrate the power of SORA for genome assembly
with multiple raw reads dataset from a single genome, we
implemented and incorporated multiple shell scripts into
SORA to perform error correction on the genome dataset,
find overlaps of the corrected reads, and generate a large
overlap graph as a batch process, and thereafter executes
SORA. The dataset that we tested was processed with nor-
malization and graph construction containing 8.3 million

edges. Figure 5 represents that the pipeline script includ-
ing SORA completed the assembly in 9.75 h where SORA
core modules (TER, DER, and CEC) only took less than
10 min.

Transitive Edge Reduction
Table 2 shows the assessment results using the TER
algorithm with the single genome dataset that contains
8.3 million edges. After the TER algorithm, SORA pro-
duced the reduced graph that contains 5.4 million edges,
which was lower reduction rate than the experiment
using the metagenomic dataset since the single genome
dataset is constructed less redundancies and receives
fewer transitive edges potentially to be removed. Figure 5
shows that the TER algorithm completed with the best
speedy performance (1.02 min execution time) with effi-
cient memory consumption that is not requiring above
22% of overall memory usage from 128 GB total system
memory.

Dead-End Removal and Composite Edge Contraction
Table 2 also shows the outcomes of overlap-graph reduc-
tion from the DER-CEC algorithms with the dataset
where the graph contains 5.4 million edges generated
from the TER algorithm. As we executed the algorithms
DER and CEC subsequently, the DER algorithm produced

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 10 of 12

Fig. 4 Benchmark to Omega. Shows how the analysis of the metagenomics dataset compares with Omega

the reduced graph with 4.2 million edges, whose out-
put was fed into the CEC algorithms that completed
the final graph leading to the reduced 1 million-edge
graph. During this overlap-graph reduction, the DER-
CEC algorithm completed the computation in 8.23 min
with the maximum 37% consumption of the 128 GB total
memory.

Human Genome Dataset Analysis
In this experiment, we applied SORA to a human genome
dataset to generate a reduced graph. Total size of 3 FASTQ
paired-end files for one sample is 40 GB. We used a local
computational workstation that has 32 cores (Intel Xeon
Processor E5-2640 V3 2.6GHz) and 128 GB of memory

(DDR4 2133MHz ECC) to show the ability of the SORA
for a human genome sample.

Overlap Graph Construction
We also used a script in SORA to run BBtools trimming,
filtering, error correction, merge, reformatting, merging,
and finding overlaps. The duration time was approxi-
mately 1 h using 32 cores of the machine. Table 3 shows
the number of edges of the overlap graph from the human
genome dataset.

TER, DER, and CEC
Table 3 also shows the results of overlap-graph reduction
of the TER and combined DER-CEC algorithms with the

Fig. 5 Shows the overall timing of each step from raw reads to reduced graph using SORA

Paul et al. Human Genomics 2019, 13(Suppl 1):48

Page 11 of 12

Table 2 The SORA results with the horseweed dataset

#EDGE (before) #EDGE (after) TIME (mins)

TER 8,259,543 5,386,287 1.02

DER-CEC 5,386,287 1,027,959 8.23

#EDGE denotes the number of edges of the graph and TIME denotes the running
(wall-clock) time of the computation

human genome dataset. The number of edges decreased
to 24% of the original overlap graph. During this overlap-
graph reduction, the TER, DER-CEC algorithms com-
pleted the computation in 3 min with the maximum 50%
consumption of the 128 GB total memory.

Discussion
The sequencing price continues to drop with increasing
of emergence and fine tuning of novel sequencing tech-
nologies that increase the amount of sequencing data
exponentially. Conventional algorithms can utilize the
large influx of raw reads, but most of those algorithms
require a large and expensive computing system with a
large amount of computer memory. That requirement
only limit to the few big labs that can afford to pur-
chase and maintain such a powerful computing machine.
SORA helps bridge this gap to small-size research labs
by providing an efficient method for generating reduced
graphs using distributed computing in the cloud. SORA
also provides the ability to analyze any size of input data
to generate novel sequenced contigs in fast turn-around
time using any size of system resources.
In reference free de novo assembly, overlap-layout-

consensus approach is a well-used method in low-
throughput long-reads Sanger sequencing era, but can
raise a problem for massive amounts of short reads that
can lead many false overlaps. Therefore, it can increase
the computational time and memory usage requiring for
storing and analyzing large-scale graphs spawned from
the massive short reads. SORA has been designed to
work efficiently with these problems by using the Apache
Spark engine to manage the distributed computation in
the cloud or local cluster. SORA with Apache Spark effi-
ciently uses in memory storage across multiple instances
to provide a better performance compared to traditional
genome assemblers.

Table 3 The SORA results with the with the human genome
dataset

#EDGE (before) #EDGE (after) TIME (mins)

TER 18,942 10,017 1

DER-CEC 10,017 4648 2

#EDGE denotes the number of edges of the graph and TIME denotes the running
(wall-clock) time of the computation

Conclusions
As seen in the experimental results the nearly linear scal-
ability of SORA allows altering of the number of compu-
tational nodes as the overlap graph data size changes. By
using the intrinsic attributes of each node (alignment of
reads) the redundant edges in the graph can be removed
using the Transitive Edge Reduction algorithm. The long
stretches of multiple single edges mapped head to tail can
be reduced to a single edge using the Composite Edge
Contraction. Overall these algorithms provide a reduced
overlap graph which allows for better contigs to be gener-
ated for de novo genome assembly.

Abbreviations
AWS: Amazon web service; CEC: Composite edge contraction; DBG: de Bruijin
graph; DER: Dead-end removal; EBI: The European Bioinformatics Institute; EC2:
Elastic computing cloud; MLlib: Machine learning library; NCBI: National center
for biotechnology information; NGS: Next-generation sequencing; OLC:
Overlap-layout-consensus; PacBio: Pacific bio-sciences; RDD: Resilient
distributed dataset; TER: Transitive edge reduction; WGS: Whole genome
sequencing

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of Human Genomics Volume 13
Supplement 1, 2019: Selected articles from the IEEE BIBM International Conference
on Bioinformatics & Biomedicine (BIBM) 2018: human genomics. The full contents
of the supplement are available online at https://humgenomics.
biomedcentral.com/articles/supplements/volume-13-supplement-1.

Authors’ contributions
TA and CP jointly contributed to the design of the study. AJ jointly conceived
the study with T.A, performed experiments and data analysis, and prepared
the initial draft of the manuscript. D.L performed experiments and data
analysis. MS, SL, CP assisted in the design of the SORA algorithm. TA
supervised the project. All authors read and approved the final manuscript.

Funding
TA is supported by NSF-1566292, NSF-1564894, Saint Louis University (SLU)
Startup, SLU President’s Research Fund 2018, and Amazon Web Service (AWS)
Cloud Credits for Research. DL is supported by T32 HG000045 from the
National Human Genome Research Institute. Publication were funded by TA’s
SLU Startup fund.

Availability of data andmaterials
The datasets that support the findings of this study are available in https://
www.ncbi.nlm.nih.gov/sra/SRX200676, http://www.plantphysiol.org/content/
166/3/1241, and ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Bioinformatics and Computational Biology Program, Saint Louis University, St.
Louis, MO, USA. 2Computational and Systems Biology Program, Washington
University in St. Louis, St. Louis, MO, USA. 3Department of Computer Science,
University of Nebraska at Omaha, Omaha, NE, USA. 4National Center for
Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Paul et al. Human Genomics 2019, 13(Suppl 1):48

https://humgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-1
https://humgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-1
https://www.ncbi.nlm.nih.gov/sra/SRX200676
https://www.ncbi.nlm.nih.gov/sra/SRX200676
http://www.plantphysiol.org/content/166/3/1241
http://www.plantphysiol.org/content/166/3/1241
http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/

Page 12 of 12

5School of Computer Science, University of Oklahoma, Norman, OK, USA.
6Department of Computer Science, Saint Louis University, St. Louis, MO, USA.

References
1. Ansorge WJ. Next-generation dna sequencing techniques. New

Biotechnol. 2009;25(4):195–203.
2. Hert DG, Fredlake CP, Barron AE. Advantages and limitations of next-

generation sequencing technologies: a comparison of electrophoresis
and non-electrophoresis methods. Electrophoresis. 2008;29(23):4618–26.

3. Metzker ML. Sequencing technologies - the next generation. Nat Rev
Genet. 11(1):31–46.

4. Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H,
Landherr L, Tomsho LP, Hu Y, Carlson JE, et al. Comparison of next
generation sequencing technologies for transcriptome characterization.
BMC Genom. 2009;10(1):347.

5. Flicek P, Birney E. Sense from sequence reads: methods for alignment
and assembly. Nat Methods. 6(11 Suppl):6–12.

6. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen H-C, Kitts PA,
Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, Fulton RS,
Kremitzki M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K,
Chow W, Collins J, Harden G, Hubbard T, Pelan S, Simpson JT,
Threadgold G, Torrance J, Wood JM, Clarke L, Koren S, Boitano M,
Peluso P, Li H, Chin C-S, Phillippy AM, Durbin R, Wilson RK, Flicek P,
Eichler EE, Church DM. Evaluation of grch38 and de novo haploid
genome assemblies demonstrates the enduring quality of the reference
assembly. 2017;27(5):849–64. https://doi.org/10.1101/gr.213611.116.

7. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation
sequencing data. Genomics. 95(6):315–27.

8. Myers EW, et al. A whole-genome assembly of drosophila.
Science. 287(5461):2196–204.

9. Margulies M, et al. Genome sequencing in microfabricated high-density
picolitre reactors. Nature. 437(7057):376–80.

10. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. Abyss: a
parallel assembler for short read sequence data. Genome Res. 19(6):
1117–23.

11. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome Res. 18(5):821–9.

12. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen
K, Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes
with massively parallel short read sequencing. Genome Res. 20(2):265–72.

13. Pop M. Genome assembly reborn: recent computational challenges. Brief
Bioinform. 10(4):354–66.

14. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM.
Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat Biotechnol. 33(6):623–30.

15. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 27(5):722–36.

16. Boisvert S, Laviolette F, Corbeil J. Ray: Simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. J Comput
Biol. 17(11):1519–33.

17. Meng J, Seo S, Balaji P, Wei Y, Wang B, Feng S. Swap-assembler 2:
Optimization of de novo genome assembler at extreme scale, 2016 45th
International Conference on Parallel Processing (ICPP), Philadelphia. 2016.
p. 195–204. https://doi.org/10.1109/ICPP.2016.29.

18. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing (HotCloud’10). Berkeley:
USENIX Association; 2010. p. 10–10. https://dl.acm.org/citation.cfm?id=
1863103.1863113.

19. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin
MJ, Shenker S, Stoica I. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation
(NSDI’12). Berkeley: USENIX Association; 2012. p. 2–2. https://dl.acm.org/
citation.cfm?id=2228301.

20. Abu-Doleh A, Catalyurek UV. Spaler: Spark and graphx based de novo
genome assembler, 2015 IEEE International Conference on Big Data (Big

Data), Santa Clara. 2015. p. 1013–8. https://doi.org/10.1109/BigData.2015.
7363853.

21. Paul AJ, Lawrence D, Ahn T-H. Overlap graph reduction for genome
assembly using apache spark. In: Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology,and
Health Informatics, ACM-BCB ’17. New York: ACM; 2017. p. 613. https://
doi.org/10.1145/3107411.3108222. http://doi.acm.org/10.1145/3107411.
3108222.

22. Paul AJ, Lawrence D, Song M, Lim S, Pan C, Ahn T. Sora: Scalable
overlap-graph reduction algorithms for genome assembly using apache
spark in the cloud. In: 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM); 2018. p. 718–23. https://doi.org/
10.1109/BIBM.2018.8621546.

23. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J,
Tsai D, Amde M, Owen S, et al. Mllib: Machine learning in apache spark.
J Mach Learn Res. 2016;17(1):1235–41.

24. Haider B, Ahn T-H, Bushnell B, Chai J, Copeland A, Pan C. Omega: an
overlap-graph de novo assembler for metagenomics.
Bioinformatics. 30(19):2717–22.

25. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(2):ii79–85. http://dx.doi.org/10.1093/bioinformatics/bti1114.

26. Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M.
Comparative metagenomic and rrna microbial diversity characterization
using archaeal and bacterial synthetic communities. Environ
Microbiol. 15(6):1882–99.

27. Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O’Geen
H, Kim RW, Sammons RD, Rieseberg LH, Stewart CN. De novo genome
assembly of the economically important weed horseweed using
integrated data from multiple sequencing platforms. Plant Physiol.
2014;166(3):1241–54. https://dx.doi.org/10.1104%2Fpp.114.247668.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 22 October 2019

Paul et al. Human Genomics 2019, 13(Suppl 1):48

https://doi.org/10.1101/gr.213611.116
https://doi.org/10.1109/ICPP.2016.29
https://dl.acm.org/citation.cfm?id=1863103.1863113
https://dl.acm.org/citation.cfm?id=1863103.1863113
https://dl.acm.org/citation.cfm?id=2228301
https://dl.acm.org/citation.cfm?id=2228301
https://doi.org/10.1109/BigData.2015.7363853
https://doi.org/10.1109/BigData.2015.7363853
https://doi.org/10.1145/3107411.3108222
https://doi.org/10.1145/3107411.3108222
http://doi.acm.org/10.1145/3107411.3108222
http://doi.acm.org/10.1145/3107411.3108222
https://doi.org/10.1109/BIBM.2018.8621546
https://doi.org/10.1109/BIBM.2018.8621546
http://dx.doi.org/10.1093/bioinformatics/bti1114
https://dx.doi.org/10.1104%2Fpp.114.247668

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Overlap-Layout-Consensus
	Apache Spark
	Overlap-Graph Reduction Algorithms
	Transitive Edge Reduction
	Dead-End Removal
	Composite Edge Contraction

	Results
	Three Data Sets
	Metagenomics Dataset Analysis
	Overlap Graph Construction
	Transitive Edge Reduction
	Dead-End Removal and Composite Edge Contraction
	Benchmark to Omega

	Horseweed Dataset Analysis
	Overlap Graph Construction
	Transitive Edge Reduction
	Dead-End Removal and Composite Edge Contraction

	Human Genome Dataset Analysis
	Overlap Graph Construction
	TER, DER, and CEC

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

