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Abstract

Background: While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at
23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate
causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide
association study (TWAS).

Results: GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression
Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80–491), including lymphocyte cell lines and whole
blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk,
all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not
previously been considered as a candidate gene for that locus.

Conclusions: Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate
genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a
number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have
been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and
validation to further understand their role in MM biology.
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Background
Multiple myeloma (MM) is the second most common
hematologic malignancy in economically developed coun-
tries, and despite improvements in therapy, the disease es-
sentially remains incurable. The aetiology of MM is poorly
understood; however, the two- to four-fold increased risk
of MM in relatives of patients has provided evidence for

an inherited basis [1]. Direct evidence for inherited genetic
susceptibility is provided by genome-wide association
studies (GWAS), which have so far discovered 23 genomic
regions harbouring risk variants for MM [2].
Consistent with findings from many different cancer

GWAS, bar a few notable exceptions, the functional
variants and target susceptibility genes at the MM risk
regions are yet to be identified. Knowledge of the causal
genes responsible for defining disease predisposition is
important in furthering our understanding of MM
tumorigenesis and has the potential to inform the devel-
opment of novel therapeutic strategies [3]. While most
GWAS risk variants map to non-coding regions of the
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genome, they are enriched for variants correlated with
gene expression levels [4, 5]. Exploiting this characteris-
tic, the integration of GWAS signals with expression
quantitative trait loci (eQTLs) has implicated ELL2 and
CDCA7L as the risk genes likely to be responsible for
the 5q15 and 7p15.3 MM associations, respectively [6–9].
The high frequency of eQTLs coupled with linkage dis-
equilibrium (LD) across regions can, however, make dis-
entangling the risk genes from spurious co-localization at
the same region problematic.
Transcriptome-wide association studies (TWAS) have

been proposed as a strategy to identify risk genes under-
lying complex traits [10]. This approach imputes genetic
data from GWAS using reference sets of weights gener-
ated from eQTL data, before correlating this genetic
component of gene expression with the phenotype of
interest. Since TWAS aggregates the effects of multiple
variants into a single testing unit, and facilitates priori-
tisation of genes at known risk regions for functional val-
idation, it potentially also affords increased study power to
identify new risk regions.
While MM is caused by the clonal expansion of malig-

nant plasma cells, if a TWAS is to be based on expres-
sion data from a single cell deciding on the most
appropriate source is inherently problematic [11]. Utilis-
ing eQTL data from tumours is complicated by copy
number alterations and essentially represents terminal
stage in disease progression. Moreover, the effect of any
risk allele may be acting at the level of the tumour
micro-environment [12]. Studies have shown that eQTLs
strongly enriched in GWAS signals are not necessarily
specific to the eQTL discovery tissue [5]. Taking advan-
tage of this principle allows a multi-tissue TWAS to be
conducted integrating expression across multiple tissues,
thereby leveraging information on shared eQTLs for
candidate gene discovery [13].
Herein, we report a multi-tissue TWAS to prioritise

candidate causal genes at known risk regions for MM
and search for new risk regions. Specifically, we have
analysed gene expression data from 48 tissue panels
measured in 8756 individuals in conjunction with sum-
mary association statistics on 7319 MM cases and 234,
385 controls of European descent. We identify 108 genes
at 13 loci associated with MM risk and provide add-
itional evidence of a potential role for a number of genes
dysregulated in MM tumorigenesis.

Results
We evaluated the association between predicted gene
expression levels and MM risk using MetaXcan with
summary statistics for GWAS SNPs in 7319 MM cases
and 234,385 controls. In total, the expression levels of
25,520 genes across 48 tissues were tested for an associ-
ation with MM risk. Quantile-quantile plots of TWAS

association statistics did not show evidence of system-
atic inflation (Additional file 1: Figure S1). Figure 1
shows Manhattan plots for respective GWAS and TWAS
associations.
Applying a Bonferroni threshold, we identified 108

genes at 13 independent regions associated with MM
(Table 1, Additional file 1: Table S1). All identified genes
except those localising to the HLA region on chromo-
some 6p21 were within 1Mb of previously reported MM
risk SNPs. For all loci, except those in the HLA region,
association signals were abrogated after adjusting for the
top risk SNP, consistent with variation in expression of
the identified gene being functionally related to the MM
risk association. The complex LD patterns within the HLA
region make deconvolution of significant results within the
region difficult [14, 15]; therefore, our principal focus was
confined to 31 genes at 12 loci outside 6p21.
For many loci, our TWAS findings support the in-

volvement of a number of genes that have previously
been implicated in defining MM [2, 16–19]. Specifically,
single-gene associations were identified at 3p22.1 (ULK4),
6q21 (ATG5), 7p15.3 (CDCA7L), 7q36.1 (CHPF2) and
16q23.1 (RFWD3). However, at a number of regions,
our analysis identified multiple significant genes, not-
ably, 2p23.3 (KIF3C, EPT1, CENPO, DTNB, DNM3TA,
PTGES3P2, DNAJC27), 3q26.2 (MYNN, LRRC34,
LRRIQ4, ACTRT3), 16p11.2 (QPRT, RNF40, PRR14,
C16orf93, RP11-2C24.5, PRSS53) and 17p11.2 (TBC1D27,
USP32P1, PEMT). A complete list of novel genes
identified at known GWAS risk loci is provided in
Additional file 1: Table S2.
Interestingly, several of the APOBEC genes were iden-

tified at 22q13.1. These genes localise within a distinct
LD block adjacent to the one to which the sentinel
GWAS risk SNPs maps (Fig. 2). We sought to gain insight
into the potential for genome-wide significant SNPs in
22q13.1 in to influence regulation via a cis-regulatory
enhancer, by mapping looping interaction and histone
modifications in the lymphoblastoid cell line GM12878,
which was chosen as a model for early B cell differenti-
ation, with negligible genetic and phenotypic abnormal-
ities [20]. We found evidence of enhancer marks and
looping interactions from SNPs in 22q13.1 to APOBEC
genes (Fig. 2), highlighting active chromatin and spatial
proximity present in this region, necessary to mediate
gene expression [21]. No significant genes were identified
at 12 reported MM risk regions (2q31.1, 5q15, 5q23.2,
6p22.3, 7q22.3, 7q31.33, 8q24.21, 9p21.3, 10p12.1, 17p11.2,
19p13.1, 20q13.1).

Discussion
In this large TWAS involving 7319 MM cases of European
ancestry, we identified genetically predicted expression
levels in 108 genes associated with MM risk. Of these,
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there were 94 genes located in eight regions that, although
mapping within 1Mb of a MM risk locus had not previ-
ously been considered as a candidate gene for that locus.
Our findings provide further support for a number of

the genes previously implicated by GWAS whose expres-
sion influences the risk of developing MM, including
CDCA7L at 7p15.3, which has been functionally vali-
dated. At 7p15.3, rs4487645 resides in an enhancer of c-
Myc-interacting CDCA7L and increases IRF4 binding,
affecting MM proliferation [7]. Furthermore, ULK4 at
3p22.1, ATG5 at 6q21 and RFWD3 at 16q23 have been
identified here and implicated previously. Additionally,
our TWAS implicates new genes at known risk regions,
notably APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G
and APOBEC3H at 22q13.1 as playing a role in defining
MM predisposition. Aberrant APOBEC cytidine deaminase
activity has been shown to correlate with an increased
mutational burden and is a recognised feature of MM,
caused by triggering DNA mutation through dC deamin-
ation [22–24]. Furthermore, KIF3C, identified at 2p23.3, is
a gene which regulates microtubule dynamics and has been
previously implicated in breast cancer [25, 26]. Also at
2p23.3, this analysis identified CENPO, a gene involved in
cell cycle progression via regulation of kinetochore assem-
bly [27]. At 16p11.2, RNF40 is a promising candidate for

MM susceptibility due to its role in double-strand break
repair during homologous recombination (HR) and class
switch recombination [28, 29]. This gene has also been
implicated in colorectal cancer [30]. A further candidate at
this locus, QPRT has been demonstrated to confer resist-
ance to chemotherapy and radiotherapy when studied in
glioma and leukaemia [31, 32]. As such, genes identified
within this TWAS build upon previously suggested candi-
date disease mechanisms which may confer MM predispos-
ition [2], including anti-apoptotic effects, roles in DNA
double-strand break repair and cell cycle regulation. Fur-
thermore, many of the genes identified have been previ-
ously investigated in vitro for their roles in cancer and this
adds further support as plausible candidate genes for MM
predisposition [24, 26, 30–32].
6p21.33, which encodes much of the major histocom-

patibility complex, is an especially gene rich region. As
well as the class I HLA-A and class II genes HLA-DQA1
and HLA-DRB1/5, multiple genes localise to the region
including TCF19 which encodes the cell cycle progression
and proliferation transcription factor 19 [33, 34]. Complex
LD patterns within this region make deconvolution of sig-
nificant results within the region inherently problematic
[14]. Additional work is required to reveal the contribu-
tion of genes in this region to MM development.

Fig. 1 Manhattan plots of gene genomic co-ordinates against –log10(P value) of GWAS and TWAS association statistics. a GWAS association statistics. b
TWAS association statistics
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A number of previously reported MM risk regions were
not implicated in our TWAS. At some regions such as
5q15, the high tissue specificity associated with the causal
gene ELL2 [6] may not be best modelled herein. At other
loci, it is less obvious why an association was not detected.
Speculatively, models at earlier developmental stages may
yield greater insights at these loci, especially if they are in-
fluencing differentiation along B cell lineages. Addition-
ally, other mechanistic effects may explain the functional
basis of such loci, including methylation and splicing.

The increasing appreciation that regulation of gene
expression forms the mechanistic basis of many GWAS
risk regions makes the TWAS an attractive approach to
identify causal genes. Traditionally, studies have only
tended to consider an eQTL and risk SNP to overlap if they
are in linkage at a specified threshold. This is, however,
conservative as multiple local SNPs may independently
contribute to risk. Furthermore, stipulating genome-wide
significance thresholds for the GWAS signal (i.e. P < 5 ×
10−8) and linkage strength (i.e. LD > 0.5) between pairs of

Table 1 Genes significantly associated with risk of multiple myeloma

Locus Gene P value N/Nindep Z-score min Z-score max Z-score mean Z-score s.d. SNP adjusting for P value after
SNP adjustment

16p11.2 QPRT 1.01 × 10−7 17/8 − 2.73 3.04 − 0.59 1.63 rs13338946 0.15

16p11.2 RNF40 4.02 × 10−7 24/3 0.05 5.68 4.67 1.48 rs13338946 0.89

16p11.2 PRR14 4.28 × 10−7 2/2 − 5.38 − 0.20 − 2.79 3.66 rs13338946 0.34

16p11.2 C16orf93 8.07 × 10−7 13/5 − 5.74 − 0.34 − 4.59 1.73 rs13338946 0.24

16p11.2 RP11-2C24.5 1.54 × 10−6 5/5 − 5.64 4.43 − 0.58 3.80 rs13338946 0.73

16p11.2 PRSS53 1.71 × 10−6 16/8 − 5.19 3.68 − 1.04 2.71 rs13338946 0.79

16q23.1 RFWD3 7.71 × 10−7 34/7 − 3.41 6.35 2.51 3.26 rs7193541 0.47

17p11.2 TBC1D27 1.95 × 10−13 6/6 − 1.91 4.19 0.51 2.16 rs34562254 0.89

17p11.2 USP32P1 4.88 × 10− 13 3/3 − 7.29 2.80 −1.36 5.27 rs34562254 0.01

17p11.2 PEMT 5.65 × 10−8 14/7 − 1.74 5.43 1.36 1.93 rs34562254 0.01

22q13.1 APOBEC3C 1.10 × 10−18 21/8 − 8.93 0.24 − 4.09 2.21 rs139402 0.13

22q13.1 APOBEC3H 4.28 × 10−15 7/5 − 5.45 7.92 − 0.95 4.38 rs139402 0.76

22q13.1 FAM83F 4.65 × 10−10 11/8 − 4.25 2.56 − 0.48 2.01 rs139402 1.1 × 10−4

22q13.1 APOBEC3D 6.2 × 10−10 29/7 − 8.38 − 0.85 − 4.15 1.56 rs139402 0.04

22q13.1 APOBEC3F 5.15 × 10−9 5/4 − 6.34 6.15 1.09 5.07 rs139402 0.13

22q13.1 APOBEC3G 1.81 × 10−7 43/2 0.36 6.57 4.94 1.17 rs139402 0.17

2p23.3 KIF3C 1.65 × 10−18 6/6 − 9.40 4.35 − 1.19 4.50 rs7577599 1.4 × 10−9

2p23.3 EPT1 8.37 × 10−16 9/9 − 1.76 6.00 1.30 2.72 rs7577599 2.1 × 10−5

2p23.3 CENPO 1.48 × 10−13 12/8 − 6.60 2.22 − 0.05 2.57 rs7577599 6.1 × 10−8

2p23.3 DNMT3A 2.44 × 10−13 8/8 − 2.89 7.96 1.94 3.07 rs7577599 0.01

2p23.3 AC010150.1 2.90 × 10−13 4/4 − 0.88 7.89 1.61 4.20 rs7577599 8.9 × 10−10

2p23.3 PTGES3P2 4.46 × 10−11 7/5 − 4.23 2.03 − 2.46 2.08 rs7577599 1.1 × 10−4

2p23.3 DTNB 1.16 × 10−7 11/10 − 3.88 5.78 0.36 2.38 rs7577599 3.1 × 10−3

2p23.3 DNAJC27 1.74 × 10−7 8/8 − 0.74 4.52 1.95 1.58 rs7577599 0.11

3p22.1 ULK4 9.01 × 10−15 43/6 0.90 8.89 6.60 2.24 rs6599192 0.85

3q26.2 MYNN 7.84 × 10−13 6/6 − 7.91 1.58 − 1.66 3.32 rs10936600 0.17

3q26.2 LRRIQ4 9.63 × 10−9 3/2 − 5.94 − 0.88 − 4.25 2.92 rs10936600 0.03

3q26.2 LRRC34 3.35 × 10−8 21/2 3.97 6.47 5.12 0.66 rs10936600 0.82

3q26.2 ACTRT3 4.28 × 10−7 4/4 − 0.94 5.80 1.56 2.94 rs10936600 0.48

6q21 ATG5 1.55 × 10−12 4/4 0.93 5.89 3.72 2.41 rs9372120 0.07

7p15.3 CDCA7L 9.61 × 10−9 8/8 − 3.11 4.61 1.12 2.42 rs75341503 0.23

7q36.1 CHPF2 2.53 × 10−7 6/6 − 2.01 2.13 0.40 1.49 rs7781265 0.06

Excludes associations found in the HLA region. s.d., standard deviation. Detailed are the S-MultiXcan P values for association between gene expression MM, and
the corresponding Z-scores quantifying this relationship (e.g. a positive score indicates increased gene expression increases risk). N and Nindep indicate the total
number of single-tissue results used for S-MultiXcan analysis and the number of independent components after singular value decomposition, respectively
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SNPs for evidence of expression influencing risk, constrains
study power. The TWAS approach is essentially agnostic as
it jointly considers all SNPs in the region, regardless of re-
ported GWAS association strength. There are, however,
limitations to TWAS. Firstly, TWAS is based on fitting pre-
dictive linear models of gene expression based on local
genotype data, followed by prediction into large cohorts
and subsequent association testing; therefore, it does not
capture total expression which includes environmental and
technical components [35]. Secondly, TWAS will also lose
power if gene expression is a nonlinear function of local
SNPs, or when trans (or distal) regulation is a major deter-
minant of expression levels.
All conclusions from our TWAS come with several

caveats. While TWAS associations are consistent with
models of gene expression level influencing MM risk, we
acknowledge the possibility of confounding. Imputed
gene expression levels are generated from weighted

linear combinations of SNPs, and many of which may
tag non-regulatory mechanisms driving risk and result in
inflated association statistics. Inevitably, despite addressing
LD, since genes with eQTLs are common, associations may
be the result of chance co-localization between eQTLs and
MM risk.
Our ability to identify gene expression significantly

associated with MM risk in this TWAS may be affected
by tissue specificity. On the basis of the power calcula-
tion, our TWAS analysis had only 80% power to detect
an odds ratio of ~ 1.1 for MM risk per one standard de-
viation increase (or decrease) in the expression level of a
gene whose cis-heritability is 60% respectively in EBV-
transformed lymphocytes (Additional file 1: Figure S2),
which we used as a proxy for plasma cells. In light of
abundant shared cis-regulation of expression across tis-
sues, by combining data, we would expect any model to
yield greater power as the number of tissues increases in

Fig. 2 Regional plot of association results at 22q13 in MM alongside recombination rates and histone marks in GM12878. Plot shows discovery
association results of both genotyped and imputed SNPs in the GWAS samples and recombination rates. −log10 P values (y axes) of the SNPs are
shown according to their chromosomal positions (x axes). The colour of each symbol reflects the extent of LD with the top genotyped SNP.
Genetic recombination rates, estimated using HapMap samples from Utah residents of western and northern European ancestry (CEU), are shown
with a blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of GENCODE v19
genes mapping to the region of association. Below the association plot are the relative positions of GENCODE v19 genes mapping to the region
of association and the histone marks and chromatin loops for lymphoblastoid cell line, GM12878
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which a variant is functional. Hence, we aimed to robustly
capture genetically regulated gene expression using a large
sample size.

Conclusions
Our findings highlight the value of integrating expres-
sion with GWAS to prioritise candidate causal genes. A
number of identified genes have plausible roles in MM
tumourigenesis (e.g. APOBEC, RNF40) or have been pre-
viously implicated in other malignancies (e.g. QPRT).
The genes identified in this TWAS can be explored for
follow-up and validation to further understand their role
in MM biology.

Methods
GWAS data
MM genotyping data were derived from the most recent
meta-analysis of 7 GWAS datasets totalling 7319 cases
and 234,385 controls of European descent. After imput-
ation, these related > 3.5 million genetic variants to MM.
Comprehensive details of the genotyping and quality
control of these GWAS have been previously reported
[2, 16–19] and are summarised in Additional file 1:
Tables S3 and S4.

Association analysis of predicted gene expression with
myeloma risk
Associations between predicted gene expression and
MM risk were examined using MetaXcan [10], which
combines GWAS and eQTL data, accounting for LD-
confounded associations. Briefly, genes likely to be
disease-causing were prioritised using S-PrediXcan [10]
which uses GWAS summary statistics and pre-specified
weights to predict gene expression, given co-variances of
SNPs. SNP weights and their respective covariance in 48
tissues from 80 to 491 individuals were obtained from
predict.db (http://predictdb.org/), which is based on
GTEx version 7 eQTL data [36]. A full list of the sample
count by tissue can be found at https://gtexportal.org/
home/tissueSummaryPage. To combine S-PrediXcan data
across the different tissues taking into account tissue-
tissue correlations, we used S-MultiXcan [13].
To determine if associations between genetically pre-

dicted gene expression and MM risk were influenced by
variants previously identified by GWAS, we performed
conditional analyses adjusting for sentinel GWAS risk
SNPs (Additional file 1: Table S5) using GCTA-COJO
[37]. Adjusted output files were provided as the input
GWAS summary statistics for S-PrediXcan analyses as
above. To account for multiple comparisons, we con-
sidered a Bonferroni-corrected p value threshold of
1.96 × 10−6 (i.e. 0.05/25,520 genes) as being statisti-
cally significant.

Regulatory annotation
To map risk SNPs to interactions involving promoter
contacts and identify genes involved in MM susceptibility
at the 22q13.1 locus, we analysed previously published
promoter capture Hi-C data on the GM12878 down-
loaded from the ArrayExpress database, accession code
E-MTAB-2323 cell line as a model B cell [38]. Reads
from technical replicates were combined before pro-
cessing and valid pairs were identified using HICUP
[39]. Two biological replicates were analysed to assure
reproducibility and significant interactions were determined
using CHiCAGO [40]. ChIP-Seq on H3K4Me1, H3K4Me3,
and H3K27Ac in GM12878 were from the ENCODE pro-
ject (ENCODE Project Consortium, 2012).

Statistical power for association tests
To estimate the power of our TWAS to identify associa-
tions, we performed a simulation analysis adopting a
similar methodology to Wu et al. [41] We set the num-
ber of cases and controls as 7319 and 234,385, respect-
ively. An estimate of the population prevalence of MM
was obtained from Cancer Research UK (https://www.
cancerresearchuk.org). We generated the gene expres-
sion levels from the empirical distribution of gene ex-
pression levels in GTEx normalised expression dataset
for each tissue. We calculated statistical power at P <
1.96 × 10−6, corresponding to the TWAS genome-wide
significance level, according to various cis-heritability
(h2) thresholds that are assumed to be equivalent to gene
expression prediction models (R2). The results are based
on 1000 replicates.

Additional file

Additional file 1: Table S1. Genes significantly associated with risk of
multiple myeloma. Table S2. New and previously implicated1-5 genes at
each genome wide significant multiple myeloma locus. Table S3. Quality
control filters applied to samples from the seven published GWAS. Table
S4. Quality control filters applied to SNPs from each GWAS. Table S5.
MM GWAS risk SNPs. Figure S1. Quantile-Quantile Plots of –log10(P-
value) associations. Figure S2. TWAS power plot in EBV-transformed lym-
phocytes. (DOCX 1515 kb)
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