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Abstract
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Introduction: Metoprolol succinate is a long-acting beta-blocker prescribed for the management of hypertension
(HTN) and other cardiovascular diseases. Metabolomics, the study of end-stage metabolites of upstream biologic
processes, yield insight into mechanisms of drug effectiveness and safety. Our aim was to determine metabolomic
profiles associated with metoprolol effectiveness for the treatment of hypertension.

Methods: We performed a prospective pragmatic trial (NCT02293096) that enrolled patients between 30 and 80 years
with uncontrolled HTN. Patients were started on metoprolol succinate at a dose based upon systolic blood pressure (SBP).
Urine and blood pressure measurements were collected weekly. Individuals with a 10% decline in SBP or heart rate (HR)
were considered responsive. Genotype for the CYP2D6 enzyme, the primary metabolic pathway for metoprolol, was
evaluated for each subject. Unbiased metabolomic analyses were performed on urine samples using UPLC-QTOF mass

Results: Urinary metoprolol metabolite ratios are indicative of patient CYP2D6 genotypes. Patients taking metoprolol had
significantly higher urinary levels of many gut microbiota-dependent metabolites including hydroxyhippuric acid, hippuric
acid, and methyluric acid. Urinary metoprolol metabolite profiles of normal metabolizer (NM) patients more closely correlate
to ultra-rapid metabolizer (UM) patients than NM patients. Metabolites did not predict either 10% SBP or HR decline.

Conclusion: In summary, urinary metabolites predict CYP2D6 genotype in hypertensive patients taking metoprolol.
Metoprolol succinate therapy affects the microbiome-derived metabolites.
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Introduction

Hypertension (HTN) is the most common chronic disease
in the USA. Effective treatment remains elusive despite
more than 25 drugs approved by the Food & Drug Associ-
ation (FDA) for its treatment. Only 50% of patients that
initiate treatment of their HTN achieve adequate blood
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pressure (BP) control [1, 2]. This relative ineffectiveness is
multifactorial; non-compliance, drug-drug interactions,
and non-specific treatment for the polygenic complex
disease all contribute to therapeutic failures.

Metabolic profiling may help identify new mechanisms
of drug effectiveness and safety amongst patients taking
antihypertensives. The Pharmacogenomic Evaluation of
Antihypertensive Response (PEAR) study demonstrated
that atenolol, a beta-blocker, caused changes in plasma fatty
acid levels in Caucasians but not African Americans. These
race-dependent changes in ketone body 3-hydroxybutanoic
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acid and the tricarboxylic acid (TCA) cycle intermediate
alpha-ketoglutaric acid demonstrate differential drug effects
on upstream biologic processes [3]. Arachidonoyl-carnitine
was associated with increased blood glucose amongst these
patients. Clearly, atenolol affects numerous metabolic
processes in addition to the beta-adrenergic antagonism
that is intended for BP control [4]. Alteration of these bio-
logic processes may affect BP control; slowed metabolism
of endogenous hormones or co-administered medications
may yield variable clinical effects between patient popula-
tions [5]. These metabolic profiles can be leveraged to iden-
tify new pharmacogenomic variants that underlie these
changes [6] and may ultimately allow for prediction of drug
effectiveness and safety based upon a more complete
understanding of the underlying biology [7].

Metoprolol is a beta-blocker with the same mechanism
of action for BP control as atenolol. However, metopro-
lol is primarily metabolized through a saturable meta-
bolic pathway, hepatic cytochrome 2D6 (CYP2D6), that
is responsible for the metabolism of approximately 25%
of all xenobiotics in addition to many endogenous
hormones. Metoprolol is primarily metabolized to a-
hydroxymetoprolol and O-demethylmetoprolol by CYP2D6
(Fig. 1). Approximately 85% of metoprolol metabolites are
excreted in the urine, as well as a small amount of unme-
tabolized drug, making urine an ideal biofluid for monitor-
ing. Examination of metabolites from patients treated with
metoprolol may allow insight into mechanisms of this
drug’s effectiveness while confirming the observations of
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the PEAR study that utilized a different drug with a similar
mechanism. We hypothesize that variable metabolic pro-
cesses between patients will be associated with metoprolol
effectiveness. Thus, the primary objective of this study was
to determine metabolomics markers of metoprolol effect-
iveness and safety in a cohort of patients initiating meto-
prolol therapy for BP control.

Results

Patient recruitment

We enrolled 86 subjects between October 1, 2013, and
September 1, 2017 (Table 1). Nine subjects were lost to
follow-up over the course of the study, but their samples
are analyzed as part of this cohort because they had at
least two urine samples with clinical outcomes available
at those visits. A total of 283 urine samples were
analyzed in the study.

Drug effectiveness and safety

Overall, 58 (67.4%) patients achieved SBP control and
defined as 10% decline from SBP at enrollment. Fifty-
one (59.3%) achieved SBP control with metoprolol and 7
(8.1%) achieved control on additional medications
following study conclusion. There were 23 adverse drug
events reported during the study protocol. There were
eleven visits in seven patients in which the subject had a
HR less than 50bpm; five visits in three patients in
which subjects reported lightheadedness; six visits in six
patients with abdominal pain, nausea, or vomiting, and
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Fig. 1 Principal pathways of metoprolol metabolism. Metoprolol is primarily metabolized to a-hydroxymetoprolol (HM) and O-demethylmetoprolol
(DM) by hepatic CYP2D6 and to a lesser extent CYP3A4. O-demethylmetoprolol (DM) subsequently undergoes rapid oxidation to form metoprolol
acid (MA)
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Table 1 Demographics of metoprolol urine metabolomics cohort

Demographic variable
Median age (IQR)
Gender, n (%)

Male

Summary statistic
53 (46, 61)

54 (62.8%)
Female 32 (37.2%)

Race, n (%)

African American/Black 38 (44.2%)
American Indian/Alaskan Native 1 (1.2%)
Asian 2 (2.3%)
Caucasian/White 43 (50.0%)
Mixed race 2 (2.3%)
Hispanic/Latino 12 (14.0%)

one in which a subject reported sexual disturbance.
None of the bradycardic patients experienced lighthead-
edness and all were asymptomatic. Only one episode of
lightheadedness resulted in discontinuation of the study
drug, lisinopril.

Identification of metoprolol metabolites in patient samples
Multivariant data analysis subjected to unsupervised PCA-
X analysis using metoprolol status as a classifier did not
support group separation (Fig. 1 Suppl). However, super-
vised OPLS-DA showed good separation of patients on
metoprolol from patients not taking the drug (Fig. 1 Suppl
B). The representative loadings S-plot generated from the
OPLS-DA model and revealed, as expected, that several
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metoprolol metabolites significantly contribute to cluster-
ing (Fig. 1 Suppl C). Seventeen major features/ions driving
separation were identified on the S-plot and related infor-
mation is shown in Table 2. Metoprolol, hydroxymetopro-
lol, and metoprolol acid ions correspond to points #2, #8,
and #14, respectively.

All major urinary metabolites were identified including
hydroxymetoprolol (m/z = 283.178, RT = 0.74), metoprolol
acid (m/z=267.146, RT =3.32), O-demethylmetoprolol
(m/z =254.175, RT 0.74), as well as unmetabolized meto-
prolol (m/z = 267.184, RT = 0.44). An ion matching the ex-
pected mass of metoprolol glucuronide was also identified
(m/z=444.187, RT =4.62). Creatinine-normalized ion
abundance values and statistical analysis for all metoprolol
metabolites, microbial metabolites, and other unidentified
metabolites are found in Figure 2 Suppl A, and Suppl B,
respectively. Patient metoprolol dose was also correlated
to metabolite abundance (Fig. Suppl 6A). As expected, ex-
creted metoprolol metabolite abundances, on average, in-
creased with dose. There was significant variation within
each dose suggesting that, despite being on an extended-
release formulation, time after dosage greatly influenced
urinary concentrations. Additionally, co-administration of
other CYP2D6 metabolized drugs did not impact the
abundance of metoprolol metabolites (Fig. Suppl 6B).

Metabolomic profiling reveals elevated microbial-derived
metabolites in response to metoprolol therapy

MVA analysis by OPLS-DA led to the identification of
many features that drive separation during supervised

Table 2 Putative urinary metabolites identified by multivariate data analysis using metoprolol status as a classifier

ID  Name m/z p (Corr) [11  ESI RT (min)  Adduct Mass Formula Delta (ppm)
1 Pyrocatechol sulfate/catechol sulfate 189.996  —0.309 Neg 0386 [M—H]- 188989 (C6H605S 14
2 Metoprolol 267.184  —0.306 Pos 0443 [M+H]+ 268191  C15H25NO3 1

3 Hydroxyhippuric acid 195054 -0.214 Neg 0628 [M—=H] = 194046 COHONO4 1
4 Hippuric acid 179059 —0338 Neg 0.643 [M—H] - 178051  C9HIONO3 0
5 Unknown 179133 —-0.305 Neg 0671

6  Acetylmethylpyridine 135069 —0350 Neg 0.686 IM—H] — 134061 C8HONO 1
7 Methoxyspirobrassinol 282049 —0.355 Pos 0.729 M+ Hl+ 283057 C12H14N202S2 0O
8 Hydroxymetoprolol 283.178 —0.398 Pos 0743 [M+H+ 284186 C15H25NO4 1
9 Methyluric acid 182045 —-0.320 Neg 1944 [M—H] - 181.037 C6H6EN403 1
10 Quinic acid 192064 —0.293 Neg 2116 [M—H] - 191056 C7H1206 1
11 Glucose/fructose/galactose/myo-inostitol ~ 180.064  —0.313 Neg 2144 [M—H] - 179056 C6H1206 0
12 Dimethylphenol 122074  —0406 Neg  2.159 [M=H] - 121.066 C8H100 1
13 Tigloidine/dumetorine/dihydrodioscorine  223.158  —0.392 Neg 2187 [M—=H] - 222150 CI13H21NO2 0
14 Metoprolol acid 267.146 —0422 Pos 3317 [M+H]+ 268154 Cl14H21NO4 1
15 Tigloidine/dumetorine/dihydrodioscorine  223.158  —0.374 Neg 3332 [M—H] - 222150 CI13H21NO2 0
16 Glutamine 146,069 0350 Neg 1.065 [M—H] - 145062 C5H10N203 1
17 Phenylacetylglutamine 264111 0321 Neg  1.065 [M—H] - 263103 C13H16N204 3

Abbreviations: m/z mass to charge ratio, p (Corr) p value of the correlation, ESI electrospray ionization, RT (min) retention time in minutes, ppm parts per million
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analysis dependent on metoprolol status (Fig. 1 Suppl A
& Suppl B). Features contributing greatest to group
clustering were features/ions #3 and #4 as denoted in
the S-plot analysis (Fig. 1 Suppl B). These ions corres-
pond to hippuric acid and hydroxyhippuric acid, respect-
ively, and as outlined in Table 2. Hippuric acid is a
normal component of human urine and is formed by the
conjugation of benzoic acid and glycine by microbial
metabolism in the gut. Hydroxyhippuric acid is also con-
sidered a microbial derived end-product and both ori-
ginate from polyphenol metabolism by intestinal
microflora. Feature #9 is another microbial-dependent
metabolite, methyluric acid (Table 2). All three com-
pounds are significantly elevated in patients taking
metoprolol. These compounds reflect gut flora compos-
ition and urinary levels are reduced in several patho-
logical conditions, including patients with Crohn’s
disease and impaired glucose tolerance [8, 9].

Patient CYP2D6 phenotypes differentially impact urinary
metoprolol metabolite concentrations

Unsupervised PCA-X analysis using metoprolol positive
samples and patient phenotype as a classifier did not
support group separation (Fig. 2a). Scores scatter plot
based on the OPLS-DA model showed significant clus-
tering dependent on patient phenotype (Fig. 2b). Meto-
prolol metabolite abundance was compared in all patient
samples and analyzed by CYP2D6 metabolizer pheno-
type, namely IM, NM, and UM (Fig. 3 Suppl A) and
CYP2D6 activity scores (Fig. 4 Suppl B). Unmetabolized
metoprolol and metoprolol glucuronide concentrations
decreased with increasing CYP2D6 activity. Conversely,
urinary hydroxymetoprolol abundance increased with in-
creasing CYP2D6 metabolic capacity. Comparing classi-
fication by CYP2D6 phenotype and activity score found
that urinary metoprolol metabolite profiles of patients
with an activity score of 2.0 more closely correlate to
UM patients than other NM activity score groups,
namely 1.0 and 1.5 (Fig. 4 Suppl B).

Metoprolol metabolite ratios strongly correlate to
CYP2D6 phenotype and activity scores

Metabolite concentrations varied greatly within each
group and appear to be influenced significantly by elapsed
time between collecting urine samples and when a patient
took their dose of metoprolol. To assess whether genotype
influences metabolite abundance within given samples,
metoprolol metabolite ratios were determined by compar-
ing normalized abundance values for each metabolite
within the same patient sample at a given visit. Although
urinary concentrations for any given metabolite varied
between patient and visit samples, the relative amount of
each metabolite was consistent with metabolite ratios.
Patient metoprolol metabolites were normalized to
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unmetabolized metoprolol (M) (Fig. 5 Suppl A). Metopro-
lol to demethylmetoprolol (DM) ratios (M to DM) and
metoprolol to hydroxymetoprolol (HM) ratios (M to HM)
closely correlated to increasing CYP2D6 activity. An
inverse relationship was observed when samples were nor-
malized to metoprolol acid (MA) and ratios decreased
with reduced CYP2D6 capacity as reflected by patient
phenotype and activity scores (Fig. 4 Suppl B). The fact
that metoprolol metabolites can quickly be used to pro-
vide insight into CYP2D6 genotype independent of dose
or time after the dosage is interesting. These ratios are
also independent of age, sex, diet, and other confounding
factors reflected in the observed metabolomic heterogen-
eity between patient samples.

Metabolomic analysis did not identify metabolite
alterations dependent on blood pressure or heart rate
response

Identification of metabolic biomarkers associated with
either patients reaching BP or HR response goals as
defined in the “Materials and methods” section was
assessed using MVA analyses. PCA model scores scatter
plots did not reveal pronounced separation by either BP
or HR as a classifier (data not shown). Supervised OPLS-
DA models also did not support clustering based on either
classifier (Fig. 5 Suppl A & Suppl B). Although not statisti-
cally significant, hippuric acid levels, a gut microbiota-
derived metabolite, trended towards being elevated in
patients who reached BP goals at the time of visit (p =
0.061) (data not shown).

Limitations
The numbers of the more uncommon CYP2D6 geno-
types, PM and UM, are low in this cohort, which limits
our ability to identify endogenous metabolites associated
with CYP2D6 genotype. While this study did not identify
metabolites associated with metoprolol effectiveness, this
may be due to examination in only 287 samples. There
may indeed be metabolites associated with drug effect-
iveness if more patients and samples are examined.
However, we were powered to detect metabolites with
more than 95% power when advised by drug ingestion
and CYP2D6 genotype. The risk of type one errors asso-
ciated with multiple comparisons remains, though we
have used methods to account for these comparisons
and repeated experiments to confirm results. This prag-
matic trial did not control patient diets, and thus, subtle
changes in endogenous metabolites may be masked by
underlying dietary changes. However, our findings sup-
port prior investigators work at other facilities in which,
presumably, diets would be equally variable.

In addition to the impact of diet on metabolite pro-
files, differences in metabolism between individuals may
increase metabolite variability resulting in poor model
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Fig. 2 Multivariant data analysis of LC/MS-derived metabolomics data using the patient CYP2D6 phenotype. Urinary metabolomics data was

subjected to unsupervised PCA-X data analysis using the patient phenotype as a classifier (@). Normal metabolizer (NM), intermediate metabolizer

(IM), and ultra-rapid metabolizer (UM) phenotypes are denoted in black, red, and green, respectively. Scores scatter plot of supervised orthogonal

projection to latent structure discriminant analysis (OPLS-DA) model using patient phenotype shows group clustering by phenotype (b). All data

were normalized to urine creatinine abundance

prediction. Urine samples analyzed in this study come
from a somewhat heterogeneous patient population,
which varied by age, sex, and race, all of which can sig-
nificantly impact metabolism between individuals. Meta-
bolic differences between patients, as well as patient’s
diets prior to sample collection, could increase metabol-
ite variability and negatively impact statistical analyses
and modeling. Despite there being a large amount of
variation between urinary metabolite profiles of patient
samples collected in the study, several ions/features were
identified.

We have considered the complex phenotypes of blood
pressure and heart our dominant phenotypes to be exam-
ined, though we did not perform phenomics to confirm
that these phenotypes drive our metabolomic separation.
Ultimately, this study was designed to examine SBP and
HR, and thus, while other phenotypes, such as diabetes,
may influence the results, these were the main outcomes
of our study and thus are the primary phenotype exam-
ined. Additionally, changes in microbiome and lipid

metabolism due to beta-blocker therapy are mechanisms
supported by known drug actions.

Discussion

Metabolomic analyses of serial samples of patients on
metoprolol treatment for uncontrolled HTN were not
able to identify unique metabolites associated with drug
effectiveness. Metoprolol metabolites segregated very
well with CYP2D6 phenotype, suggesting that drug
metabolism can be predicted based upon knowledge of
CYP2D6 genotype and the presence of drug-drug inter-
actions. However, these data are still limited by small
numbers of PM and UM genotypes in the study. This
may have contributed to our inability to identify en-
dogenous metabolites predictive of clinical effectiveness,
if CYP2D6 drug metabolism plays a major role in drug
effectiveness, as hypothesized. The metabolites are a
result of both genetic and environmental factors in this
pragmatic trial. We believe this because some of the
identified metabolites are diet-derived while some clearly
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segregate to the metabolic pathways examined. We have
taken care to repeat experiments and used methods to
account for the multiple comparisons present in these
analyses, though the risk of type one errors remains
given the number of metabolites examined. Additional
analysis examining the composite outcome of 10% SBP
or HR decline may yield association, as it did in the phe-
notyping analysis [10]. We will increase the numbers of
lower frequency genotypes in this cohort and power for
this outcome in the future.

Analysis of metabolomics data identified elevated
levels of hippuric, hydroxyhippuric, and methyluric acids
in patients taking metoprolol. These compounds are all
considered gut flora-derived metabolites suggesting that
prolonged metoprolol treatment may influence microbial
composition and diversity within the GI. There is in-
creasing evidence that gut flora dysbiosis may contribute
to hypertension [11]. Moreover, metagenomic analysis of
fecal samples from patients with atherosclerotic cardio-
vascular disease found metoprolol therapy positively
correlated with alterations in metagenomic linkage
groups (MLGs) [12] supporting the drug may affect the
microbiome. A recent study suggested that hippuric acid
is a metabolomic marker for gut microbiome diversity
and found decreased hippuric acid is associated with
metabolic syndrome [13]. Studies have also found that
reduced urinary hippuric acid levels in Crohn’s disease
patients are diet-independent and instead dependent on
intestinal microbial metabolism [8]. Another study found
that patients with impaired glucose tolerance exhibited
decreased excretion of methyluric acid in addition to
hippuric acid and hydroxyhippuric acid [13]. Whether
these gut flora-associated metabolites are indicators of
microflora health or actively influence health is yet to be
determined. Metoprolol therapy elevates urinary excre-
tion of all three of these gut flora-associated metabolites
suggesting in the drug either directly or indirectly influ-
ences gut flora composition.

Our findings expand upon the findings of the PEAR
cohort. We were unable to confirm their findings of
alteration in [3-alanine pathway metabolites amongst
African American subjects. Aside from the diagnosis of
diabetes, we did not have detailed glucose data in these
subjects to further stratify the racial groups by the pres-
ence of hyperglycemia. Urine is not the ideal biologic
matrix to examine changes in glucose since urinary
excretion is dependent upon the relatively high tubular
reabsorption threshold of glucose and the presence/ab-
sence of renal insufficiency. Thus, our data may support
their finding if further stratified in this way and blood
glucose is examined in our additional samples.

In summary, in the treatment of HTN, metoprolol
therapy appears to alter the gut microbiome and the
composition of the microbiome may be an important

Page 6 of 9

factor in the effectiveness of antihypertensive drugs.
Further work should focus on the stratification of drug
effectiveness and gut microbiome composition in order
to understand the biologic interactions between these
systems.

Materials and methods

Study design and setting

This was a prospective pragmatic trial (NCT02293096)
that enrolled patients with uncontrolled HTN from local
clinics, the University of Colorado Emergency Department
(ED), and the local community. The study was approved
by the Colorado Multiple Institution Review Board.

Subjects

We enrolled subjects with uncontrolled HTN between
30 and 80years of age. Exclusion criteria included end-
stage liver disease, glomerular filtration rate < 60 ml/min/
1.73 m?, pregnancy, American Association of Anesthesiol-
ogists (ASA) classification of > 3, prisoners or wards of the
state, decisionally challenged, heart rate (HR) <60 beats
per minute, AV block > 240 msec, active reactive airway
disease, illicit drug use in the preceding 30 days (excluding
marijuana), allergy to metoprolol succinate, or severe
peripheral arterial circulatory disorders. If the subject was
consented in the ED, the acute medical condition was
treated and stabilized, and they followed up in the study
clinic 1 week after the ED visit. Subjects were followed for
up to 6weeks; medication reconciliation, HR, BP, and
urine samples were collected at these weekly visits.

Drug intervention

Subjects without allergy or intolerance were started on
the angiotensin-converting enzyme (ACE) inhibitor lisi-
nopril, 10 mg daily, as first-line therapy if they were not
already taking an ACE inhibitor or an angiotensin recep-
tor blocker class. If BP remained uncontrolled, defined
as > 140/90 mmHG, after taking at least five doses of the
therapy, then metoprolol succinate was added. Subjects
were followed weekly and metoprolol was up-titrated for
4 weeks, as tolerated by BP and HR. No further up-
titration was allowed if the BP was < 140/90 mmHG or
the HR was less than 50 beats per minute. The primary
outcome was a systolic blood pressure (SBP) decline of
10% or more, from baseline SBP, at 4 weeks following
metoprolol succinate therapy. Secondary outcomes in-
cluded a composite of HR or BP control, defined as a
10% decline in SBP or HR at 4 weeks of therapy, and the
presence of adverse drug events (ADEs) associated with
metoprolol succinate therapy. Adverse drug events in-
cluded abdominal pain, nausea/vomiting, HR less than
50 beats per minute, reactive airway disease exacerba-
tion, dizziness/lightheadedness, sexual dysfunction, myo-
cardial infarction, or congestive heart failure. Subjects
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continued their other medications and could eat their
typical diet during the protocol.

CYP2D6 genotyping

Genomic DNA was extracted from whole blood via the
Puregene® Blood Core Kit B (Qiagen) according to the
manufacturer’s instructions. CYP2D6 was genotyped
using the Multiplex SNaPshot technique previously
described [14]. This assay detects 20 CYP2D6 clinically
significant variants and identifies copy number variants.
While other hepatic cytochromes contribute to meto-
prolol metabolism, namely CYP3A4, CYP2B6, and
CYP2C9 [15], these isoforms contribute to less than 20%
of the drug’s metabolism; thus, we have focused on
CYP2D6 since it is the primary pathway of metabolism.
Genotyping was performed after subjects completed the
protocol; thus, the investigators were blinded to the
CYP2D6 genotype during treatment. Predicted pheno-
types were determined utilizing CYP2D6 activity score,
as described by Gaedigk et al. [16]. Each identified
CYP2D6 SNV was assigned a predicted enzyme activity
score [16, 17]. Gene deletions were designated as an ac-
tivity score of zero. The predicted enzyme phenotype
was determined by addition of the individual gene activ-
ity scores, accounting for gene copies yielding decreased
enzyme activity and gene duplications in each patient. A
score of 0 was predicted to be a poor metabolizer (PM),
0.5 was predicted to be intermediate metabolizer (IM),
1.0-2.0 was predicted to be a normal metabolizer (NM),
and 2.5 or greater was predicted to have an ultra-rapid
metabolizer (UM) phenotype. Genotypes were confirmed
with known reference genotype samples from 5 PMs, 4
IMs, and 24 NMs [18, 19]. Copy number variations were
determined by TagMan Copy Number Assay (Life
Technologies, CA) and then by pyrosequencing allele
quantification in the known samples [18].

Metabolomic analyses

Metoprolol and related metabolites are primarily ex-
creted in the urine. The identification of these com-
pounds in wurine by LC/MS has been described
extensively [20-22]. Urinary metabolite abundance was
determined using predicted m/z values and associated
peak intensities. Prospective metabolites were initially
identified by m/z values, then verifying an absence of the
corresponding ion in “untreated” samples. Characteristic
fragmentation peaks were identified by expanding target
ion peaks using MassLynx software. Potential fragment
peaks were compared with those confirmed experimen-
tally by targeted LC-MS/MS peaks found on the
METLIN database when possible. Urine from each study
visit was aliquoted and frozen at - 80 °C within an hour
of the study visit. Samples were shipped on dry ice to
the NIH Laboratory of Metabolism at the National
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Cancer Institute. Samples were thawed on ice and depro-
teinated (dilution of 1:6) using a solution of isopropanol/
acetonitrile/water (65/30/5) containing a-aminopimelic
acid as an internal standard for hydrophilic interaction
liquid chromatography (HILIC). All samples were vortexed
for 30s and spun at 15k xg for 15min to remove the
precipitant. Cleared supernatants were transferred into a
96-well plate for metabolite extraction. A Microlab Starlet
automated liquid handler (Hamilton Robotics) was used for
subsequent pipetting and dilutions. For HILIC analysis,
samples were randomized and an aliquot (5pL) was
injected into a 2.1 x 50 mm Acquity UPLC BEH amide col-
umn (1.7 pum) attached to a Waters Acquity H-class UPLC
system for chromatographic separation. The UPLC system
consisted of a quaternary solvent manager, FTN-solvent
manager, and a column manger, all controlled by MassLynx
Software (Waters Corporation). Metabolite separation was
achieved using a mobile phase mixture of 10 mmol/L
ammonium acetate in 90% acetonitrile (A, pH=9.0) and
10 mmol/L ammonium acetate in 10% acetonitrile (B, pH =
9.0). A gradient elution was performed over 10 min using 1
to 60% B in 4 min, 60 to 80% B at 8 min, holding at 80% B
to 8.5 min, returning to initial conditions for column equili-
bration. The flow rate was maintained at 0.4 mL/minute,
and the total run time for each sample was 12.5 min. The
column temperature was maintained at 40 °C. Mass spec-
trometric analysis was performed on a Waters XEVO G2
ESI-QTOF mass spectrometer (Waters Corporation) in
both positive and negative ionization modes. Sulfadime-
thoxine was used as the lock mass (m/z 311.0814+) for
accurate mass calibration in real time. Pooled samples and
standard mix were also injected recurrently during the run
as quality control to monitor the stability of the system.
MassLynx software (Waters Corporation) was used to
acquire mass chromatograms and mass spectral data in
centroid format.

Data processing, multivariate data analysis, and
metabolite identification

Retention time alignment and peak picking were performed
on chromatographic and spectral data using Progenesis QI
software (Nonlinear Dynamics, Newcastle, UK). Sample
data matrixes were generated and normalized to urine cre-
atinine ion abundance. Features/ions identified in positive
and negative ionization modes were combined into a single
file using a custom R script (Supplement B). Alterations in
systemic urinary metabolites were compared by multivari-
ate data analysis (MVA) using SIMCA software (Version
14) (Umetrics, Kinnelon, NJ, USA). Normalized data was
subjected to unsupervised principal component analysis
(PCA-X) to visualize sample and group clustering. Specific
features/ions that contribute to group clustering were
identified using supervised orthogonal projection to latent
structures-discriminant analysis (OPLS-DA) and S-plot
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analysis. To assess changes in endogenous metabolites,
metoprolol and other drug metabolites were removed from
prior to SIMCA analysis. Significant features identified by
OPLS-DA were identified by database searches. These
searches were performed using METLIN [23] and Human
Metabolome Database (HMDB) databases [24] by m/z, re-
tention times, and fragmentation patterns, when available.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
software (Version 7.03) (GraphPad Software, San Diego,
CA, USA). Outliers were identified, and normality
assessed using ROUT and D’Agostino-Pearson tests, re-
spectively. Non-parametric (Mann-Whitney) or one-way
ANOVA (Kruskal-Wallis) tests were performed on data
sets to determine statistical significance. Dunn’s multiple
comparison test was used for post hoc analyses. Differ-
ences were considered significant for adjusted p values
less than 0.05. Supervised OPLS-DA was used to assess
whether the patient phenotype was sufficient to drive
metabolite group separation. Raw data were generated at
the University of Colorado School of Medicine and the
National Institutes of Health. Derived data supporting
the findings of this study are available from the corre-
sponding author (AAM) upon request.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540246-020-00260-w.

Additional file 1: Figure 1 Suppl. Impact of metoprolol therapy on
global metabolite profiles. Figure Suppl. Abundance of metoprolol- and
microbiota-dependent metabolites in patient urine. Figure 3 Suppl.
CYP2D6 phenotype differentially impacts metoprolol metabolite concen-
trations in urine. Figure 4 Suppl. Urinary metoprolol metabolite ratios
reflect CYP2D6 genotype. Figure 5 Suppl. Effect of systolic blood pres-
sure or heart rate response on metabolomic profiles. Figure 6 Suppl.
Impact of metoprolol dose and CYP2D6 drug co-medication on metopro-
lol metabolite abundance.

Additional file 2. Supplement B: Features/ions identified in positive and
negative ionization modes were combined into a single file using a
custom R script.
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