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High heterogeneity undermines
generalization of differential expression
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Abstract

Background: RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome
changes. However, the emerging problem that high variation of gene expression levels caused by tumor
heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we
investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and
explored why a great many differentially expressed genes (DEGs) were not reproducible.

Results: Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but
also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather
than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly
caused by high variation of gene expression levels for the same gene in different samples. Even though biological
variation may account for much of the high variation of gene expression levels, the effect of outlier count data also
needs to be treated seriously, as outlier data severely interfere with DE analysis.

Conclusions: High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in
normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of
differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq
experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously
unless soundly validated.
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Background
RNA-Seq has become an indispensable tool for
transcriptome-wide analysis of differential gene expres-
sion in oncology to elucidate the mechanism of tumori-
genesis and metastasis [1–3]. Due to the high cost [4]
and the advantage of low technical variation [5–7] of
RNA-Seq technology, many RNA-Seq experiments were

performed with very small sample sizes, even with no
replicates, but broader biological statements have been
drawn on these experiments, discounting the influence
of biological variability [8–10].
Extensive genetic intertumoral and intratumoral het-

erogeneity has long been recognized [11–14]. High gen-
etic heterogeneity may greatly affect differentially
expressed gene (DEG) detection in RNA-seq analysis
and therefore undermine the reliability of differential ex-
pression (DE) results. However, the impact of tumor
heterogeneity on the reliability of DE results obtained
from RNA-seq data has rarely been studied.
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Scientists of a biotechnology firm had tried to confirm
published preclinical research findings related to their
research, but they were shocked to find that the best-
known scientific findings from cancer biology were con-
firmed in only 6 cases out of 53 [15, 16]. Poor reproduci-
bility of ovarian cancer microRNA profiles has also been
reported [17]. The findings above reveal the severity of
the reproducibility problem in cancer research, which is
probably caused by tumor heterogeneity. As drug devel-
opment relies heavily on literatures, the problem of irre-
producible data may increase the costs of drug
development along with the number of late-stage
clinical-trial failures [15]. Since RNA-Seq has been used
extensively in cancer research, it is urgent to study the
potential effect of tumor heterogeneity on the reliability
of DE results in RNA-seq analysis.
Normally, it is arduous for researchers to verify their own

or other people’s findings due to the difficulty of sampling
and limited budget. However, with the help of public large-
scale projects which have plenty of samples, such as the
Cancer Genome Atlas (TCGA) [18], reproducibility verifi-
cation of DE results is possible. RNA-Seq data in TCGA
database have been extensively employed in studies for un-
derstanding genetic changes in tumors [19–23].
In this work, the raw RNA-Seq count data for the

three cancer types that have the most samples, namely
breast cancer (BRCA), kidney renal clear cell carcinoma
(KIRC), and lung adenocarcinoma (LUAD), were ob-
tained from TCGA database. First, we investigated the
reproducibility of DE results among the four repeated
differential expression analysis, each using totally differ-
ent samples, for any given number of biological repli-
cates between 3 and 24. Then, we investigated the
detection power depending on the number of biological
replicates. Finally, we explored why a great many DEGs
were not reproducible. All DE analyses were performed
using edgeR [24], the most popular R package for DE
analysis of RNA-Seq data [9]. The edgeR tool has been
proved to have superior specificity and sensitivity as well
as good control of false-positive errors [9, 25–27].

Results
Number of DEGs depending on the number of biological
replicates
As shown in Fig. 1, just in terms of quantity, it seems
that the more biological replicates used, the more DEGs
will be identified. All the three curves in Fig. 1 show an
increasing dynamic, but the rate of increase seems to di-
minish after around 10 biological replicates. It can also
be inferred from the error bars that the number of DEGs
for a given number of biological replicates generally dif-
fers greatly.

Reproducibility of DE results among the four repeats for
a given number of biological replicates
As is shown in Fig. 2a, c, and e, for a given number of
biological replicates, the number of reproducible DEGs
is much less than the mean total number of DEGs, and
the more repeats being performed, the lower the number
of common DEGs becomes. The results indicate the
poor reproducibility of DE results, which can be clearly
seen from the changes of overlap rate in Fig. 2b, d, and f
as well.
Both the number of common DEGs and the overlap

rate increase with the elevated number of biological rep-
licates, but the increasing rate slows down after around
10 biological replicates. For all three cancer types stud-
ied, the overlap rates among four repeats are all below
40% for the maximum number of biological replicates,
and the percentage drops to below 10% for 3 biological
replicates, which implies that the DE results for relatively
large sample sizes are not reliable, and the reliability of
DE results for small sample sizes are even poorer.

The evolution of power depending on the number of
biological replicates
As it is difficult to choose one repeat to represent the
four repeats for any given number of biological repli-
cates, the common DEGs (intersection) and all detected
DEGs (union) of the four repeats were used to calculate

Fig. 1 The relationship between the mean number of DEGs and the number of biological replicates. The maximum biological replicate numbers
vary depending on the total sample numbers for each cancer type in TCGA. The values represent the M ± SD of the number of DEGs for any
given number of biological replicates
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the power and intersection/union ratio (see the “Mate-
rials and methods” section).
As shown in Fig. 3a, b, and c, for each cancer type,

when the number of biological replicates is between 3
and 10, both the number of DEGs and the power of the
intersections grow rapidly, but the increasing rate is
quite slow after about 10 biological replicates, which is
similar to the trend of overlap rate in Fig. 2. As to the
unions in Fig. 3d, e, and f, the number of DEGs and the
power has similar trends with those of the intersections,
but the two indicators reach plateaus faster than those
of the intersections do.
The low power of DEG detection for small sample

sizes can also be seen from the three curves in Fig. 3a, b,
and c. For instance, the power of intersection for 3 bio-
logical replicates was below 16% for all three cancer

types (as low as 6 % for LUAD), which means that more
than 84% of the DEGs in the referential intersection can-
not be detected using 3 biological replicates. Our find-
ings clearly reveal that using more biological replicates is
not only desirable but needed to improve the DE detec-
tion power using RNA-Seq.
As shown in Fig. 3a–f, both the intersection and the

union for a given number of biological replicates contain
some specific DEGs (i.e., DEGs that do not match with
the reference), which means that the DEGs obtained
using large sample sizes do not necessarily include all
the DEGs obtained using small sample sizes.
As can be seen in Fig. 3g, h, and i, for any given num-

ber of biological replicates, the number of DEGs of the
union is far larger than that of the intersection, which
indicates that most of the DEGs detected in the four

Fig. 2 Reproducibility of DE results among the four repeats for a given number of biological replicates. a, c, e The mean number of common
DEGs for any two (purple line), three (orange line), or four (red line) repeats for each cancer type depending on the number of biological
replicates, and the mean total number of DEGs for any given number of biological replicates (blue line) is also shown for reference. b, d, f The
overlap rate of DE results for any two (purple line), three (orange line), or four (red line) repeats for each cancer type depending on the number
of biological replicates
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repeats for a given number of biological replicates are
specific to the samples studied, rather than “true” DEGs
for the tumor and normal tissues of each cancer type.
This effect is much more intense for small sample sizes,
which also reflects the poorer reproducibility of DE re-
sults obtained using small sample sizes.

Dispersion of normalized read counts for non-common
DEGs
The results above demonstrate that a large number of
DEGs for one repeat are not DEGs for another and these
DEGs are referred to as non-common DEGs in this
paper. Although non-common DEGs have also been
found in previous literatures [9], the cause of the non-
common DEGs has rarely been investigated before.
Ten non-common DEGs in repeat II and repeat III for

10 biological replicates in BRCA were used as examples
to illustrate the phenomenon, as shown in Table 1.
Among the ten genes, IBSP, SGCG, DCT, APCDD1, and
DPP6 were identified as DEGs only in repeat III, while

Fig. 3 Evolution of detection power and union/intersection depending on the number of biological replicates. a–c The number of DEGs and the
power of the intersection for a given number of biological replicates for each cancer type. d–f show the number of DEGs and the power of the
union for a given number of biological replicates for each cancer type. For all the stacked bars in charts a–f, the blue part represents the number
of DEGs that match with the corresponding referential intersection or union, while the orange part represents the specific DEGs (not match with
the corresponding reference) of the intersection or union. Purple color bars in charts a–f represent the number of DEGs in the referential
intersections or unions for each cancer type. g–i The number of DEGs in the union (green bar) and intersection (pink bar), as well as the union/
intersection ratio (orange line), for a given number of biological replicates for each cancer type

Table 1 Detailed %CV, Log2FC, and FDR values for the 10 non-
common DEGs in BRCA

Gene
symbol

Repeat II Repeat III

%CV Log2FC FDR %CV Log2FC FDR

N T N T

IBSP 122 167 − 8.14 0.09 115 115 − 6.71 3.80E− 12

SGCG 138 241 − 0.32 0.85 234 116 7.38 2.70E− 10

DCT 186 307 − 0.49 0.78 152 83 4.79 8.40E− 09

APCDD1 70 201 0.57 0.49 45 84 2.57 1.44E− 08

DPP6 71 300 − 0.61 0.68 54 143 3.91 4.62E− 08

SLC16A3 53 43 − 2.52 3.34E− 09 208 99 − 1.07 0.18

CDH23 83 55 2.79 1.12E− 08 91 155 1.38 0.07

FOXJ1 59 200 − 5.97 1.82E− 08 207 194 − 1.47 0.16

FGF10 63 91 3.27 2.25E− 08 90 178 0.38 0.76

BMP5 76 92 4.30 1.41E− 07 93 313 − 2.66 0.08

Capital letters “T” and “N” represent the tumor group and the normal group of
each repeat, respectively. The numbers of biological replicates in either tumor
groups or normal groups are 10. %CV indicates the percent coefficient
of variation

Cui et al. Human Genomics            (2021) 15:7 Page 4 of 9



SLC16A3, CDH23, FOXJ1, FGF10, and BMP5 were iden-
tified as DEGs only in repeat II. The %CV, Log2FC, and
false discovery rate (FDR) values for the 10 non-
common DEGs in KIRC and LUAD are shown in Sup-
plementary Table S1 and S2, respectively.
As shown in Table 1, the values of FDR for these

genes are all smaller than 2 × 10−7 when they are DEGs,
which definitely means that they are, statistically, signifi-
cant DEGs between the tumor and normal group, even
if a threshold of 0.0001 is applied to control the FDR.
Even so, the ten genes are not identified as DEGs in the
other repeat. The result indicates that statistically signifi-
cant DEGs are not as reliable as commonly believed.
In order to explore the reasons behind the non-

common DEGs, we analyzed the dispersion of normal-
ized read counts of these genes for some clues. As
shown in Table 1, more than half of the %CVs are above
100. On the whole, there are many more %CVs over 100
in the tumor groups than in the normal groups, with
three %CVs in the tumor groups even higher than 300,
which probably means that gene expression levels in
tumor groups have greater variability than those in nor-
mal groups. As CV is the ratio of the standard deviation
to the mean, the high %CV reflects great dispersion of
normalized read counts. In DE analysis, the high disper-
sion of read counts for a given gene can cause

remarkable changes to the values of log2FC and FDR
and sometimes may even lead to opposite results. The
high variation of expression levels for the same gene in
different samples may be the main cause of the poor re-
producibility of DE results.
In addition, we noticed in Table 1 that 4 out of the 10

non-common DEGs have opposite regulating trends in
different repeats, i.e., upregulated in one repeat, but
downregulated in the other, as demonstrated by the
values of Log2FC. By checking the Log2FC values of the
3079 common DEGs between repeat II and III, we found
that 35 of them (about 1.14%) also show opposite regu-
lating trends, which indicates that the common DEGs
are not reliable either.
It is clearly shown by the boxplots in Fig. 4 that outlier

counts commonly exist in both the tumor and the nor-
mal groups, which is also true for the non-common
DEGs in KIRC (Supplementary Figure S1) and LUAD
(Supplementary Figure S2). Combining the read count
dispersion in Fig. 4 with the %CV values in Table 1, we
find that the high %CVs are mainly caused by the outlier
counts, especially the extreme outliers. By excluding the
outlier counts from analysis, 8 out of the 10 non-
common DEGs become common DEGs, but the
remaining 2 are still non-common DEGs, which implies
that the problem of non-common DEGs can be partially

Fig. 4 Dispersion of normalized read counts for the 10 non-common genes in BRCA. Mild outliers (more than 1.5 IQR’s from the box, indicated
by a circle) and extreme outliers (more than 3 IQR’s from the box, indicated by an asterisk) are shown. The number beside the marker shows the
normalized read count value of the point. RII and RIII refer to repeat II and repeat III, respectively. Capital letters “T” and “N” represent the tumor
group and the normal group, respectively. IQR indicates the interquartile range
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resolved by excluding the outliers from analysis. We also
confirmed that the opposite regulating trends of the 4
genes described above can be corrected by excluding
outlier counts from analysis.

Discussion
The results above are based on the RNA-Seq data of hu-
man tumor and adjacent normal samples. Nevertheless,
the issue of low reliability of DEGs for very small sample
sizes has also been found in studies using RNA-Seq data
from mouse [28, 29], Saccharomyces cerevisiae [10], and
tomato [9], which implies that the problem of reproduci-
bility is common in RNA-seq analysis.
The maximum number of biological replicates studied

here is already much larger than recommended in the
literatures [9, 10], but still a large proportion of the
DEGs detected are irreproducible. While results ob-
tained using 3 biological replicates for each condition in
experimental designs are generally accepted as reliable,
our results show quite the opposite, at least in cancer re-
search using RNA-Seq.
As shown in Table 1 and Fig. 4, outlier counts, espe-

cially the extremes, account for much of high variation
of expression levels. It should be emphasized that outlier
counts are commonly scattered in different samples, ra-
ther than focused in one sample, in which case the out-
lier counts can be eliminated by excluding the aberrant
sample. As DE analyses with small sample sizes are more
susceptible to outliers, the poor reproducibility of DE re-
sults for small sample sizes is understandable.
The authenticity of outlier counts is beyond the scope

of this research. Nevertheless, figuring out whether the
extreme counts are true or not is the prerequisite to
properly deal with them. The popular edgeR [24] takes
raw read counts as input and provides its own
normalization approach [30] but does not handle the
outlier counts. Given the enormous influence of outliers
on DE analysis, the problem of outlier counts should be
properly addressed in future versions of edgeR.
Since low technical variation is one of RNA-Seq’s po-

tential advantages [5–7], most of the variations might be
attributed to biological variations which can be reflected
in extensive genetic intertumoral and intratumoral het-
erogeneity [11–14]. Biological variation, unlike measure-
ment error, cannot be reduced with technology
improvements, but can only be measured by considering
expression measurements taken from multiple biological
samples within the same group [8]. Therefore, large
sample sizes should be considered when designing RNA-
Seq experiments for DGE detection to reduce the effect
of biological variability. However, based on our findings,
it is impossible to determine an optimal number of bio-
logical replicates which can guarantee all detected DEGs
are reliable for a given RNA-Seq experiment, but

approximately at least 10 replicates per condition should
be used to achieve relatively high reproducibility and de-
tection power.
One goal of DE analysis in cancer research by RNA-

Seq is to identify and catalog expression of new or alter-
native transcripts between tumor and normal tissues,
which is essential for understanding the mechanism of
tumorigenesis and developing effective therapies. Appar-
ently, given the high heterogeneity of tumor and normal
samples, it is hard to achieve that goal using small sam-
ple sizes, let alone with no biological replicates. More-
over, as demonstrated by our findings, incorporating a
relatively larger sample size than recommended for
RNA-Seq experiments in previous literatures [9, 27]
does not mean the DE results are fully credible.

Conclusions
In conclusion, both tumor tissue samples and normal
tissue samples show high heterogeneity. DE results of
small sample sizes are more susceptible to heterogeneity,
compared with those of large sample sizes. As a result,
reproducibility of DE results and DEG detection power
for small sample sizes are far lower than those for large
sample sizes. Even if large sample sizes are utilized, a
large proportion of the detected DEGs are irreprodu-
cible. Therefore, large sample sizes (at least 10 if pos-
sible) should be considered in RNA-Seq experimental
designs to reduce the interfering effect of sample hetero-
geneity and DEGs of interest should be validated before
making generalized statements.
Similarly, since it is difficult to distinguish which DEGs

are specific to the samples in use and which are com-
mon to the studied populations, DE results from pub-
lished RNA-Seq literatures, especially those with very
small sample sizes or no biological replicates, should be
consulted with caution. With regard to the reproducibil-
ity crisis which is particularly severe in cancer biology
[15, 16] and has remarkably hindered the translation of
cancer research to clinical success [31], much remains to
be done to discern the DEGs caused by biological vari-
ability and to improve the reproducibility of DE results.

Materials and methods
Raw count data collection
Raw RNA-Seq read count data for all available BRCA,
KIRC, and LUAD tumors and available adjacent normal
tissues were downloaded from The Cancer Genome
Atlas (TCGA) database. To ensure sample consistency,
data from metastatic or formalin-fixed paraffin-
embedded tissue samples [32, 33], as well as repeated
data for the same samples, were excluded. After exclu-
sion, total numbers of tumor and normal tissue samples
included in BRCA, KIRC, and LUAD datasets were
1177, 610, and 592, respectively.
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DE analysis of the collected raw count data
This work was designed to investigate the evolution of
reproducibility of DE results and the detection power
depending on the number of biological replicates n. Al-
though there are algorithms specially developed for DE
analysis of RNA-Seq data without biological replicates
[34–36], the results obtained are debatable as it is im-
possible to estimate the level of biological variability. If
there are only two biological replicates, it is difficult to
detect an outlier (bad) expression value. Therefore, the
minimum n was set at 3 for each cancer type.
For each value of n, four sets of n tumor samples and

n normal samples were randomly chosen without re-
placement from datasets of each cancer type to simulate
four different experimental repeats, which were denoted
as repeat I, II, III, and IV, respectively, for ease of de-
scription. For any given n, samples in the four repeats
were all different. Limited by the number of normal
samples in BRCA, KIRC, and LUAD datasets (i.e., 99, 72,
and 58, respectively), the maximum n for BRCA, KIRC,
and LUAD was accordingly set at 24, 18, and 14, re-
spectively. The sampling process was shown in Supple-
mentary Figure S3. Raw read count data of samples in
each set of tumor and normal groups were used to con-
struct gene expression matrices for subsequent analyses.
All DE analyses were done with R software (version

3.5.3) and the edgeR package [24] (version 3.22.5).
Trimmed-mean M values (TMM) normalization was
performed to normalize the counts among the different
samples [37–40]. As high dispersion of low counts inter-
fered with some of the statistical approximations used in
edgeR, genes with low counts were filtered out using the
filterByExpr function as recommended in the user’s
guide. Genes were marked as DEGs if the absolute value
of log2 transformed fold change (log2FC) ≥ 1 and the
false discovery rate (FDR) < 0.05.

Reproducibility of DE results among the four repeats for
a given number of biological replicates
As described above, four repeated DE analyses were per-
formed for each number of biological replicates n; there-
fore, four lists of DEGs were obtained for each n. To
analyze the reproducibility of DE results, we compared
the four lists of DEGs in terms of overlap rate which
was defined as the ratio of the number of common
DEGs (i.e., DEGs that were common to the compared
repeats) to the total number of DEGs of the correspond-
ing repeats. For instance, the total number of DEGs
identified in repeat II and III for 10 biological replicates
in BRCA was 6528, 3079 of which are common to both
of the two repeats; therefore, the overlap rate of the DE
results for the two repeats was 47.17%. The overlap rate
of DE results for any two, three, or four repeats for a
given n was computed in the same way as exemplified

above. Overlap rate was calculated using VENNY (ver-
sion 2.1.0) (Oliveros, J.C. (2007–2015) Venny; an inter-
active tool for comparing lists with Venn's diagrams.
https://bioinfogp.cnb.csic.es/tools/venny/index.html).

Power analysis for a given number of biological replicates
We have four lists of DEGs for each n, but the number
of DEGs and DEG composition of the four lists are quite
different, so it is difficult to choose one of the lists as a
representative. Therefore, the intersection (i.e., DEGs
that are common to all four repeats) and the union (i.e.,
all DEGs identified for all four repeats) for any given n
were used for power analysis. Note that the power was
defined as the ability for a given sample size to detect
“true” DEGs. Obviously, we needed a reference list of
“true” DEGs. As is generally accepted that results ob-
tained using larger sample sizes are more robust, the
intersection and union of the maximum n for each can-
cer type were used as references.
The power was calculated by the ratio of the number

of DEGs in the intersection (or union) for any given n to
the number of DEGs in the corresponding referential
intersection (or union). The ratio of the number of
DEGs in the union to that in the intersection for any
given n was also calculated and marked as union/
intersection.

Read count dispersion analyses for non-common DEGs
The non-common DEGs, as opposed to the common
DEGs, were the DEGs that could be identified in one re-
peat, but not in another. To explore the cause of non-
common DEGs, we selected 10 non-common DEGs from
the DEG lists of repeat II and repeat III for 10 biological
replicates in BRCA dataset and analyzed the characteris-
tics of raw count data of these genes. Although the num-
ber of DEGs was close between the two repeats, about
53% of the DEGs were non-common DEGs.
In order to eliminate the interference of different se-

quencing depth, TMM normalized read counts were used
for analysis. The percent coefficient of variation (%CV) of
normalized read counts in both tumor and normal groups
of repeat II and repeat III was calculated for each non-
common DEG. Similarly, dispersion of normalized read
counts was analyzed and displayed in boxplots using IBM
SPSS Statistics (19.0). The read count dispersion analyses
for the non-common DEGs in KIRC and LUAD were con-
ducted in the same way as in BRCA.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40246-021-00308-5.

Additional file 1: Supplementary Table S1. Detailed %CV, Log2FC,
and FDR values for the 10 non-common DEGs in KIRC
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Additional file 2: Supplementary Table S2. Detailed %CV, Log2FC,
and FDR values for the 10 non-common DEGs in LUAD

Additional file 3: Supplementary Figure S1. Dispersion of normalized
read counts for the 10 non-common genes in KIRC. Mild outliers (more
than 1.5 IQR’s from the box, indicated by O) and extreme outliers (more
than 3 IQR’s from the box, indicated by *) are shown. The number beside
the marker shows the normalized count value of the point. RII and RIII
refer to repeat II and repeat III, respectively. Capital letters “T” and “N” rep-
resent the tumor group and the normal group, respectively. IQR indicates
the interquartile range.

Additional file 4: Supplementary Figure S2. Dispersion of normalized
read counts for the 10 non-common genes in LUAD. Mild outliers (more
than 1.5 IQR’s from the box, indicated by O) and extreme outliers (more
than 3 IQR’s from the box, indicated by *) are shown. The number beside
the marker shows the normalized count value of the point. RII and RIII
refer to repeat II and repeat III, respectively. Capital letters “T” and “N” rep-
resent the tumor group and the normal group, respectively. IQR indicates
the interquartile range.

Additional file 5: Supplementary Figure S3. Diagram of experimental
design for the BRCA dataset. The processes of sampling and analysis for
the KIRC and LUAD datasets were the same as that of BRCA. The
numbers of tumor tissue samples and adjacent normal tissue samples for
KIRC were 526 and 72, respectively, while the two numbers were 509 and
58, respectively, for LUAD. Restrained by the number of normal tissue
samples which was far less than the number of tumor samples for each
cancer type, the maximum number of biological replicates for BRCA,
KIRC, and LUAD was accordingly set at 24, 18, and 14, respectively.
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