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Abstract

Background: Non-small cell lung carcinoma (NSCLC) is one of the most common human cancers, comprising
approximately 80-85% of all lung carcinomas. An estimated incidence of NSCLC is approximately 2 million new
cases per year worldwide.

Results: In recent decade, the treatment of NSCLC has made breakthrough progress owing to a large number of
targeted therapies which were approved for clinical use. Epidemiology, genetic susceptibility, and molecular profiles
in patients are likely to play an important factor in response rates and survival benefits to these targeted treatments
and thus warrant further investigation on ethnic differences in NSCLC. In this study, a total number of 1500 Chinese
patient samples, 1000 formalin fixed paraffin-embedded (FFPE) and 500 blood samples, from patients with NSCLC
were analyzed by targeted sequencing to explore mutational landscape in ethnic groups associated with China.

Conclusions: Overall, the data presented here provide a comprehensive analysis of NSCLC mutational landscape in

Chinese patients and findings are discussed in the context of similar studies on different ethnic groups.
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Background

Non-small cell lung cancer (NSCLC) represents a het-
erogeneous group of lung cancer. Two major NSCLC
subtypes are distinguished: the adenocarcinoma (AD)
and the squamous cell carcinoma (SCC). In general,
treatments for NSCLC can include chemotherapy, tar-
geted drug therapy, immunotherapy, surgery, and
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palliative procedures. Ideal treatment options depend on
whether the cancer has already spread and metastasized,
what are the genetic changes in the cancer cells, and the
patients’ overall health and age. Sequencing of tumor
sample may help to screen the patients who may re-
sponse to and benefit from targeted treatments and help
to lower the mortality rate [1]. For instance, if one of the
previously identified NSCLC-associated genes, such as
EGFR, ALK, ROS1, BRAF, RET, MET, or NTRK, is mu-
tated in the patient’s cancer cells, targeted therapies has
to be considered [1]. Accordingly, the National Compre-
hensive Cancer Network (NCCN) NSCLC guidelines
had recommended the routine detection of EGFR or
ERBB2 mutations, or ALK, ROS1, or RET fusions prior
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to treatment. However, previous studies raised the possi-
bility that the distribution of these mutations show a
race-dependent pattern, with one study estimating that
10% of Caucasians but as high as 50% of Asians will be
found to have drug sensitizing mutations of the EGFR
[2]. The observed high variation in mutation frequency
in demographic subgroups urges for large-scale studies
that systematically investigate mutation landscapes in
certain races and offers a better insight what genes has
to be tested prior to choosing a targeted therapy [3, 4].

Next-generation sequencing (NGS) has revolutionized
the identification process and systematic characterization
of genomic alterations, including single nucleotide varia-
tions and small insertions/deletions (InDels), and will
likely receive recommendations from cancer societies in
the very near future about its daily use in clinical oncology
practice. Indeed, upfront tumor genotyping is now widely
considered as an essential step in guiding treatment
decision-making in the management of patients with
NSCLC [5].

In this study, a number of 1000 formalin-fixed
paraffin-embedded (FFPE) and 500 blood samples with
NSCLC were analyzed by NGS-targeted sequencing.
This study represents to our knowledge one of the lar-
gest efforts so far to systematically characterize muta-
tional landscape in Chinese NSCLC cohort samples.

Results

Clinical features of the patient samples

Discovery and quantification of genetic alterations in
NSCLC, from point mutations to large genomic rear-
rangements, requires a comprehensive genome-wide ap-
proach and a large sample cohort. We have collected
1000 formalin-fixed paraffin-embedded (FFPE) tumor
samples and 500 blood samples from a total of 1500 pa-
tients diagnosed with NSCLC between June 2017 and
April 2019. Tissue and blood samples were obtained
from independent patient groups. The detailed clinical
characteristics of the patients are shown in Table 1.
Briefly, lung adenocarcinoma accounted for 84.3% of the
FFPE samples (843/1000), squamous cell carcinoma for
14.2% (142/1000), and others for 1.5% (15/1000). As for
the blood samples, lung adenocarcinoma accounted for
80.4% (402/500), squamous cell carcinoma for 17% (85/
500), and others for 2.6% (13/500). In total, 39 samples
were excluded due to not passing quality standards
along the sample processing and sequencing.

Overview of the genomic alterations of 1000 tissue and
500 blood samples of NSCLC patients

The clinical significance of identifying hypermutated tu-
mors has recently been demonstrated in several NSCLC
studies [6, 7]. However, there is a large variability in mu-
tation burden within tumor types in NSCLCs [8]. To
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Table 1 Overview of patient and tumor characteristics in the
present study

Characteristics Tissues Blood
(1000 cases) (500 cases)
n (%) n (%)
Sex
Male 578 (57.8) 308 (61.6)
Female 422 (42.2) 192 (384))
Age
>60 392 (39.2) 164 (32.8)
<60 602 (60.2) 334 (66.8)
Unknown 6 (0.6) 2 (04)
Smoking
Non-smoking 945 (94.5) 477 (954)
Occasionally 11 (1.1) 3(06)
Often 44 (4.4) 20 (4)
Tumor type
Lung adenocarcinoma 843 (84.3) 402 (80.4)
Lung squamous carcinoma 142 (14.2) 85 (17)
Unknown 15 (1.5) 13 (26)

begin to explore the mutation burden in our cohort, we
first identified the overall mutation landscape across the
tissue and blood samples. We subclassified mutations
into four main types, single mutation (single base vari-
ation, insertion or deletion, SM), multiple single muta-
tions (MM), amplification (AMP), and fusion (FUS)
(Fig. 1). As for the FFPE NSCLC tissue samples, a total
of 968/1000 samples had at least one type of the above-
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Fig. 1 Overview of the genomic alterations of 1000 tissue and 500
blood samples of NSCLC patients. Distribution of tissue and blood
samples with single mutation (single base variation, insertion or
deletion, SM); multiple single mutations (MM); amplification (AMP),
fusion (FUS) or combination of these
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listed mutations, while 387/500 blood NSCLC samples
were found to belong to one of the mutation groups.
Specifically, there were 127/500 (25.4%) blood samples
with single base variation, 224/500 (44.8%) with multiple
mutations. Only 36/500 (7.2%) blood samples showed
amplification or fusion (Fig. 1). As for tissue samples,
there were 113/1000 (11.3%) single base variation, 555/
1000 (55.5%) with multiple mutations, and 221/1000
(22.1%) samples had amplification alone or in combin-
ation with other mutations. In contrast to 117/500
(22.6%) of blood samples, only 32/1000 tissue samples
(3.2%) had not detected mutation within the studied 65
genomic regions (Fig. 1).

Mutation patterns of frequently altered cancer genes
Next, we set out to determine the most common cancer
genes enriched for SNV/InDel in our NSCLC patient co-
hort. We identified many genes previously also found to
be mutated in NSCLC, including several tumor suppressor
genes TP53 [9], CDKN2A [10], and oncogenes EGFR [11]
and KRAS [12]. Notably, we observed highly accumulated
TP53 and EGFR mutations in both blood and tissue sam-
ples of NSCLC patients (Fig. 2a, b). Co-occurrence of
EGEFR with the TP53 mutations was remarkable in the tis-
sue samples (>25%). EGFR mutation rate was significantly
higher in tissues (~55%) vs. blood (~35%). In addition, we
found several other genes that were significantly mutated
in our cohort, such as PTCH1 and PIK3CA (Fig. 2a, b).
Other, less frequently detected, but previously identified
genes included tumor suppressor genes (APC) and tyro-
sine kinase genes (ERBB2, FGFR, and NTRK genes).

Next, we assessed the distribution of nonsynonymous
frameshift insertions and deletions, missense mutations,
Stop-gain, and other infrequent alterations (e.g., splicing)
in both the tissue and blood samples (Fig. 2c—e). In
addition to identifying previously known NSCLC-associ-
ated genes, such as TP53, KRAS, EGFR, and CDKN2A,
the analysis revealed GNAQ gene, which was previously
mostly implicated in melanomas and only a very recent
study linked to lung cancer (Fig. 2c—e) [13]. Identified
mutations of GNAQ included p.R60G, p.P174R, p.A93D,
p-M59L, and p.Q81H.

Recurrent SNV mutations in NSCLC

Next, we explored the positional distribution and recur-
rence of SNV mutations in the genes with most frequent
mutations, focusing on the most frequently mutated
genes, TP53, EGFR, KRAS, CDKN2A, PTCHI1, and
PIK3CA (Fig. 3).

Most clinical studies suggest that lung cancer with al-
terations detected in TP53 carries an overall worse prog-
nosis and such cases are more resistant to chemotherapy
and radiation [14]. Indeed, as it was shown in Fig. 2, mu-
tations of the TP53 gene occurred in over 50% of NSCL
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C samples in our cohort. In our cohort, only 8 samples
showed mutations at codons 157, 6 samples at codon
158, 11 samples at codon 179, and 27 samples at codon
248 of TP53. These codons are typically mutated in lung
cancer from smokers and uncommonly observed in lung
cancer from nonsmokers [15].

Previous analysis of the TK domain of the EGFR by
Shigematsu et al identified that all mutations in lung can-
cer specimens occurred within exons 18—21, with a preva-
lence of 21% [11, 16, 17]. Consistent with these previous
reports, EGFR mainly had three subtype of mutation
(p.L858R, Exon 19del, p.T790M). EGFR p.L858R and
Exon 19del were the most common EGFR active mutant,
which may be sensitive to EGFR-TKI inhibitors such as
gefitinib, erlotinib, or afatinib. We found the percentage of
these mutation in FFPE and blood sample were similar.
There were 42.4% p.L858R in blood sample and
44.4% in FFPE samples. Similarly, there were 38.5.4%
Exon 19del in blood sample and 34.2% in FFPE sam-
ples. Interestingly, there was significantly different
percent of p.T790M in FFPE and blood sample. The
percent of p.T790M in FFPE and blood sample were
24.8% and 2.4%, respectively.

We found that mutations in KRAS were mostly de-
tected at amino acid positions 12, 13, 61, in regions
which are considered mutational hotspots (Fig. 3). Re-
current mutations included p.G12C, p.G12V, p.G13D,
and p.Q61H. In addition, we have also found pA146T in
two tissue samples.

In addition to the previously described mutations in-
volving TP53, EGFR, and KRAS genes, our analysis in
this large cohort revealed several other recurrent point
mutations in NSCLC. For instance, recurrent point mu-
tations (E545K) in the PIK3CA gene were identified. In
fact, somatic mutations of the PIK3CA gene have been
also described NSCLC [18, 19].

CDKN2A gene mutation was detected in ~10% of the
analyzed NSCLC tissue samples. CDKN2A is a well-
known tumor suppressor, which regulates cell cycle pro-
gression by inhibiting cyclinD-CDK4 and cyclinD-CDK6
complexes responsible for initiating the G1/S phase transi-
tion. Recurrent mutations included p.A68V, p.R80X,
p.-A85P, p.D108Y, p.E120X, and p.V115E.

Recently, the PTCHI gene mutations were also identi-
fied in NSCLC. Previous studies found that the most
common genetic alterations in PTCH1 are missense mu-
tations (2.17%), frameshift (0.46%), nonsense mutations
(0.17%), and S1203Afs*52 (0.15%) [20]. We found
p-A741V, p.D898N recurrent mutations (Fig. 3).

Structural rearrangement signatures and overview of

aberration frequencies identified in our NSCLC patient cohort
Previous studies have been able to detect significant
copy number alteration in lung adenocarcinomas
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[21, 22]. Sequencing of the coding exons of the 65
pre-selected candidate cancer genes in our study
identified gene amplifications in both lung adenocar-
cinoma (LUAD) and lung squamous cell carcinoma
(LUSC) (Fig. 4a, b). Similarly to previous reports, we
have found both EGFR and KRAS gene copy number
gains to occur frequently in NSCLC [23, 24].

The recent discovery of a fusion involving the echino-
derm microtubule-associated protein-like 4 (EML4) and
anaplastic lymphoma kinase (ALK) genes in tumor speci-
mens from a subset of patients with NSCLC (mostly
adenocarcinoma) and the quite effective treatment of
these cases by ALK kinase inhibitors have reinvigorated
efforts to identify additional genomic rearrangements
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Fig. 3 Recurrent SNV mutations in TP53, EGFR, KRAS, CDKN2A, PTCH1, and PIK3CA. Positional distribution of SNV mutations across blood
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that could be therapeutic targets [8, 25]. Thus, we also
analyzed the tumor genomes for fusion genes and were
able to systematically identify fusion genes (Fig. 4c).
ALK fusion mutation was very common in our NSCLC
cohort. We found that among the samples which had any
type of genomic rearrangements, ~61% FFPE and ~74%
blood samples had rearrangements related to ALK. The
most common rearrangement of ALK in tissue samples
was EML4-ALK (88.9%), and the other subtypes included
GPC6-ALK (1.9%), LTBP1-ALK (1.9%), GPATCHS-ALK
(1.9%), DIS3L2-ALK (1.9%), HIP1-ALK (1.9%), and
LPIN1-ALK (1.9%) (Fig. 4e). The most common re-
arrangement of RET in tissue samples was KIF5B-RET
(64.7.9%), and the other subtypes included MPP7-RET
(5.8%), CCNYL2-RET (5.8%), KIAA1468-RET (5.8%),
CCDC-RET (5.8%), and YME1L1-RET (5.8%) (Fig. 4e).

Combination of SNV, amplification, and fusion of
significantly mutated genes

Finally, to further explore the mutations in the most
common cancer genes involved in Chinese NSCLC pa-
tients, we also assessed the co-occurrence of single nu-
cleotide variations with other mutational events.
Strikingly, majority of samples (~90%) carrying KRAS
mutations were not containing any other type of muta-
tions (Fig. 5). In contrast, EGFR has often co-occurred
with other mutations.

Discussion

In this study, we analyzed genomic events in a large set
of FFPE and blood samples from patients with NSCLC.
Specifically, we used targeted sequencing of selected
candidate genes to identify most common mutations in
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a large cohort of Chinese NSCLC patients. The vast
amount of genomic information generated in this and
similar studies is expected to transform our current un-
derstanding of lung cancer and advance personalized
lung cancer therapy. We also anticipate that our study
along with other studies implementing tumor mutation
landscape analysis using targeted and genome-wide NGS
across different ethnic groups in lung cancer will enor-
mously expand our knowledge base in lung cancer biol-
ogy, treatment strategy, new drug target development,
and NSCLC outcome.

In fact, recent discoveries made based on previous mu-
tational analysis already significantly improved and ex-
panded the availability of targeted therapies. Development
of new receptor kinase inhibitors, such as erlotinib and ge-
fitinib (against EGFR) and most recently crizotinib
(against rearranged ALK), and antibodies such as

cetuximab (against EGFR) are all great examples how
NGS can help to improve personalized medicine [26].
However, while these drugs are effective in a subset of pa-
tients, our analysis and other studies clearly suggest a very
complex mutational landscape in NSCLC and warrant for
even more targeted drug development to be able to fur-
ther decrease the still high mortality rate of NSCLC.

An interesting target that came out from our analysis
is GNAQ (Fig. 2). GNAQ (guanine nucleotide binding
protein [G protein], q polypeptide) is known as a subunit
of one of the heterotrimeric guanine nucleotide binding
proteins (G proteins) that is involved in multiple pro-
cesses of mammary cells including hormonal signal
transduction, metabolism, development, cell survival,
and sensory functions. Previous studies mostly impli-
cated its mutations in melanoma, and GNAQ mutations
have not been documented in NSCLC. We found several



Zhou et al. Human Genomics (2021) 15:21

Page 7 of 10

BLOOD samples (n=500)

EGFR mutations (n=118)

Both mutation I 2.5%
0

Single mutation 66.1%

Multiple mutation

and amplification

Amplification only| | 0.8%

25 50 75

KRAS mutations (n=31)

Single mutation

Multiple mutation 0%

Both mutation 0%
and amplification
I 3.2%

0 25 50 75

Amplification only

ERBB2 mutations (n=19)

I 5.3%

Both mutation 0%
and amplification

Single mutation

Multiple mutation

100 (%)

96.8%

100 (%) 0 25 50 75

84.2%

TISSUE samples (n=1000)

EGFR mutations (n=472)
72.7%

25 50 75 100 (%)

89.8%

100 (%)

ERBB2 mutations (n=62)

I 6.5%
I 3.2%
. 12.9%

77.4%

Amplification only . 10.5%
o 25 50 75

BRAF mutations (n=11)

. 10.1%

Both mutation 0%
and amplification

Single mutation

Multiple mutation

0%

Amplification only

100 (%) 0 25 50 75

90.9% 87%

100 (%)

BRAF mutations (n=46)

0 25 50 75

100 (%) 0 25 50 75

Fig. 5 An overview of significantly mutated genes. Assessment of single mutations (SNVs and InDels), multiple mutations, and amplifications
across the top most frequently mutated genes, excluding TP53. Genes were depicted according to aberration frequencies

100 (%)

nonsynonymous SNV (Stop-gain) in GNAQ both in
blood and tissue samples, though none of the identified
mutations were shown recurrence across the samples.

Another interesting candidate for follow-up studies
was the tumor suppressor Patched 1 (PTCH1), a multi-
pass transmembrane protein which is over-expressed in
many metastatic cancers. In an unbound inactive state,
PTCH1 acts as a negative regulator of smoothened
(SMO), while upon activation it leads to activation of
GLI1 proto-oncoprotein. Since PTCH1 is a multidrug
transporter, it contributes to chemotherapy resistance by
the efflux of chemotherapeutic agents such as doxorubi-
cin [27]. PTCH1-altered tumors can be now targeted
with three different FDA-approved SMO inhibitors,
namely sonidegib, vismodegib, and glasdegib [27].

An important context to discuss is related to health
disparities, which are a recognized and well-documented
phenomenon on the cancer field but has not yet been

addressed in case of NSCLC. Socioeconomic and cul-
tural differences across ethnic groups undoubtedly ac-
count for some of the disparities, namely that certain
groups may bear a disproportionate burden of cancer
compared with other groups. Our study specifically
aimed to collect and explore data of a well-defined
group of patients based on geographic location. Our data
collection and/or exploration did not yet include gather-
ing information on income, education, disabilities, and
other possibly relevant characteristics. Nevertheless, it is
important to highlight that the analyzed samples are all
representing non-smoker patients and we gathered in-
formation on gender that will be further correlated with
mutational landscapes in follow-up studies.

While a number of cancer centers have already begun
to integrate molecular profiling and even clinical next-
generation sequencing (NGS) into the pipeline of rou-
tine cancer diagnosis in order to increase accuracy and
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efficiency of treatments, it is important to recognize and
discuss the limitations of the targeted therapy in the
treatment of NSCLC. For instance, EGFR inhibitors,
such as gefitinib, erlotinib, or afatinib, can effectively
shrink tumors for several months; these drugs eventually
stop working for most patients, usually because the can-
cer cells within the tumor develop additional mutation(s)
in the EGER gene. Studies investigating the clinicopatho-
logical factors influencing post-recurrence survival and
the effect of post-recurrence therapy in NSCLC will be
critical to further advance therapies.

Conclusions

In summary, using targeted whole exome sequencing,
we have identified mutations in a large cohort of Chin-
ese NSCLC blood and tissue samples for 65 genes and
provide an overview of the mutational landscape by ana-
lyzing CNVs, fusions, and SNV/InDel in details.

Methods

Samples

The study was conducted in accordance with the
Helsinki Declaration and was approved by the institute’s
Ethics Committee. All the patients enrolled had been in-
formed about the content and purposes of this study
and signed the consents. In this study, we have collected
and processed a total of 1000 formalin-fixed paraffin-
embedded (FFPE) tumor samples and 500 blood samples
of patients diagnosed with NSCLC between June 2017
and April 2019. Patient samples were collected from
The First Affiliated Hospital of Nanchang University
(Nanchang, Jiangxi, China), PLA General Hospital
(Beijing, China), Jingdezhen First People’s Hospital
(Jingdezhen, Jiangxi, China), 334 Affiliated Hospital of
Nanchang University (Nanchang, Jiangxi, China), and The
First Affiliated Hospital of Anhui Medical University
(Hefei, Anhui, China). Tissue and blood samples were col-
lected from independent patient groups.

DNA extraction and Next-Generation Sequencing

Genomic profiling was performed in a College of American
Pathologists (CAP)-accredited lab at OrigiMed (Shanghai,
China) according to standard procedures. Briefly, genomic
DNA was extracted from tissue and plasma samples were
tested for cell-free DNA (cfDNA). DNA was extracted from
tissue and liquid blood biopsies using standard DNA
Extraction Kit (QIAamp DNA FFPE Tissue Kit; Qiagen,
Hilden, Germany) and MagMAX Cell-free DNA isolation
kit (Thermo, Cat#A29319), respectively, according to man-
ufacturer’s recommendations. A total of 3.6—35 ng of DNA
was used as input to prepare barcoded libraries for each
sample. The exon regions of 65 cancer driver genes were
tested using the IDT (Integrated DNA Technologies, Coral-
ville, IA, USA) custom-designed panel. The genes included
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in this panel are ABL1, AKT1, ALK, APC, AR, ATM,
BRAF, CCND1, CDK4, CDK6, CDKN1A, CDKN2A,
CTNNBI1, DDR2, EGFR, ERBB2, ERBB3, ERBB4, ESRI,
FBXW?7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, GNA11,
GNAQ, GNAS, HRAS, IDH1, IDH2, JAK1, JAK2, JAKS,
KDR, KIT, KRAS, MEK1, MET, MTOR, NF1, NF2, NRAS,
NTRK1, NTRK2, NTRK3, PDGFRA, PDGFRB, PIK3CA,
POLE, PTCHI, PTEN, RB1, RET, ROS1, SATA3, SMAD4,
SMARCA4, SMO, STK11, TERT, TP53, TSC1, TSC2, and
VHL.

The FFPE and blood samples were sequenced by Illu-
mina Nova seq. As for the FFPE samples, the mean se-
quencing depth was nearly 1200x, the coverage rate was
99.99%, and fraction of bases mapped to target region
was between 40 and 70%. At least 200x nucleic acid
coverage and 1% of mutation allele fraction were used as
the standard cutoff to make the final variant call. As for
the blood samples, the mean sequencing depth was
nearly 10000x, the coverage rate was 99.99%, and frac-
tion of bases mapped to target region was between 4
and 70%. At least 2000x nucleic acid coverage and 0.5%
of mutation allele fraction were used as the cutoff for
the final variant call.

Bioinformatics analysis

Our initial analysis aimed to explore genomic alterations,
including gene rearrangements, copy number variations
(CNVs), single nucleotide variants (SNVs), and short
and long insertions/deletions (InDels). Raw sequencing
reads were aligned to the human reference genome
(hgl9) using Burrows-Wheeler Aligner (BWA). Consen-
sus reads were generated for error suppressing and PCR
duplicates were removed using in-house software ECR.
Read depth and coverage of the targeted regions were
calculated by in-house software LibraryQC. The log-
ratio per region of each target genes was calculated, and
customized algorithms were used to detect copy number
variations. Focal amplifications were characterized as
genes with thresholds >4 copies. Gene rearrangements
and long indels were detected using CREST [28] and
Manta [29]. SNVs and short indels were identified by
MuTect [30] and Pindel [31].
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