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Abstract

Background: Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human
chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is
broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes
located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell
gene expression profiles obtained by total RNA sequencing (RNA-Seq).

Results: The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential
transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for
17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription
polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through
transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level
across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes
encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3). The
altered expression of genes involved in mitochondrial translation and energy production also emerged, followed by
the altered expression of genes encoding for the folate cycle enzyme, GART, and the folate transporter, SLC19A1.

Conclusions: The alteration of these pathways might be linked and involved in the manifestation of ID in DS.
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Background
Down syndrome (DS) is the most common form of in-
tellectual disability (ID) of genetic origin in humans [1,
2]. Also known as trisomy 21, it is caused by the pres-
ence of an extra full or partial (partial T21, PT21) hu-
man chromosome 21 (Hsa21) [3, 4] in the cells of the
affected subjects. Recently, the identification of a highly
restricted DS critical region (HR-DSCR) as the minimal
region whose duplication is associated to DS because it

is shared by all subjects with PT21 diagnosed with DS
was confirmed [4].
Hsa21 is the smallest human chromosome, being 46,

709,983 bp long [5], and it includes 228 known protein-
coding genes and 106 non-coding RNA (ncRNA) genes
(retrieved by building the recent GeneBase database up
to January 5, 2019, and searching for loci only with a
“reviewed” or “validated” gene record including at least
one “reviewed” or “validated” RNA) [6–8]. Although it is
broadly agreed that the presence of extra genetic mater-
ial in T21 gives origin to an altered expression of the
genes located on Hsa21 leading to DS phenotype, the
molecular pathogenesis is still unclear. The third copy of
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Hsa21 might lead to the over-expression of Hsa21 genes,
in theory at 150% of the normal level, i.e. at 3:2 ratio, or
to the under-expression of Hsa21 genes in the opposite
direction, i.e. at a 2:3 ratio. However, this deregulation
affects not only Hsa21 genes but also genes located on
other chromosomes [9–11]. As a result of a comprehen-
sive analysis of transcriptome maps of T21 compared to
normal control samples, it was demonstrated that most
of the gene expression ratios are very close to 1, escap-
ing gene dosage effects, whereas a smaller number of
genes has expression ratios close to 3:2 or 2:3, probably
due to the stimulatory or inhibitory effects, respectively,
of the extra copy of Hsa21 [11].
There are several mechanisms by which the 3:2 DNA

template dosage for Hsa21 could affect cellular func-
tions, including the development of the subject with T21
[12]. It has also been suggested that haploinsufficient
genes (genes whose loss-of-function results in a recog-
nisable phenotype) are also sensitive to excessive gene
dosage and are thus good candidates for contributing to
some of the DS phenotypes [12, 13]. This is critical in
DS where genes that are present in three copies might
contribute to altering cell functions directly, with their
downstream effects, or by modification of disomic gene
expression.
In recent years, many genes have been suggested to be

associated with DS, and several of them mapping on
Hsa21 are known to be involved in the alteration of
pathways such as one-carbon pathway [14], oxidative
metabolism [15] and brain development [16, 17].
Global gene expression profiling techniques have been

previously used to analyse the expression levels of Hsa21
genes and of the whole genome aimed to assess their ex-
pression in DS and their involvement in the molecular
mechanisms that may be related to the pathogenesis of
DS [9, 18, 19]. To date, there is no evidence of a clear
genotype-phenotype correlation between specific genetic
determinants and the main DS symptoms, in particular,
ID. Moreover, most of these studies do not analyse the
role of genes in the context of T21 but instead provide
useful data for each Hsa21 gene product’s roles [20].
The identification of these dose-sensitive genes and
genes relevant to DS has become a primary objective of
research because it is essential to understand pathogen-
esis, clarifying the molecular mechanisms underlying the
pathology and ultimately developing appropriate thera-
peutic strategies.
RNA sequencing (RNA-Seq) and microarrays are con-

sidered to be the two main kinds of high-throughput
technologies to study the gene expression profile [21,
22]. From a technical point of view, it should be consid-
ered that a standard protocol for RNA-Seq raw data ana-
lysis does not exist while microarray protocols are
universally applicable and comparable across platforms

[23]. In addition, the analysis of RNA-Seq data also re-
quires extensive experience and bioinformatic compe-
tencies for processing data files. However, RNA-Seq
does not require probes of known sequence and has the
unique ability to discover novel transcripts, novel tran-
script isoforms and previously unknown changes in the
already known transcript sequences [24, 25]. It has the
potential to detect rare and low-abundance transcripts
[24]. Furthermore, RNA-Seq certainly has a broader dy-
namic range than that observed with array hybridisation
technology (105 vs 103) [26], where the range of the valid
gene expression estimation is restricted by background
noise at the low end and signal plateau at the high end
[27]. By increasing the sequencing coverage depth, very
rare transcripts can be detected. Nevertheless, in some
cases, the quantification of transcripts by expression
microarray has proved more reliable than that observed
by RNA-Seq: the ncRNA transcriptome reported by the
Illumina Human BodyMap and GTEx projects revealed
to be far from comprehensive in comparison with a
newer generation microarray platform [28], while it has
been shown that an integrated quantitative transcrip-
tome map obtained by processing microarray data corre-
lated better with reverse transcription polymerase chain
reaction validation data compared to RNA-Seq data [29].
Therefore, due to the great amount of data from micro-
array analysis available on public databases, microarray-
based transcriptome data still remain a suitable and use-
ful source of gene expression profiling data [29, 30].
The aim of this study was to analyse T21 vs normal

control blood cell transcriptome by RNA-Seq. These
data were integrated and elaborated by the TRAM
(Transcriptome Mapper) software [31] generating a
quantitative transcriptome map for each condition and a
differential transcriptome map between them for the
first time. Gene expression profiles were validated
through real-time reverse transcription polymerase chain
reaction (RT-PCR) assay and then compared with previ-
ously published data whose experimental designs were
closer to our kind of analysis [11, 32].

Results
RNA sequencing
We generated RNA-Seq paired-end data from rRNA-
depleted total RNA isolated from the blood cell samples
of 4 T21 and 4 normal control individuals sequenced to
a depth range of about 35–53 million reads.
Mapping statistics regarding reads aligned against the

Homo sapiens (GRCh38) reference genome with STAR
aligner [33] are shown in Supplementary Table 1. On
average, about 97% of the reads could be mapped on the
human genome. Of those, about 69% could be mapped
uniquely and about 52% of the reads could be assigned
to genes. This percentage of reads might be an
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indication of residual genomic DNA or a high percent-
age of pre-mRNAs. In addition, multiple mapping reads
are on average 29% and mainly derive from domains
highly conserved among gene families and/or expressed
transposable elements [34].
FPKM values for each sample are tabulated in Supple-

mentary Table 2. No read map in the HR-DSCR [4].
The Spearman correlation coefficients between each

possible pair of T21 samples range from 0.88 to 0.95.
The Spearman correlation coefficients between each
possible pair of normal control samples range from 0.91
to 0.95. For both groups, the associated p values with a
sample size gof 58,233 ENSG identifiers are <0.0001. A
scatterplot matrix is shown in Supplementary Fig. 1.

T21 vs normal control blood cell transcriptome maps
The TRAM software was used to convert ENSG identi-
fiers in gene symbols and to perform intra- and inter-
sample normalisation of FPKM values to obtain 19,378
genes with an available expression value for T21 blood
cell transcriptome map (from 776,003.67 for RN7SL2,
encoding for RNA component of signal recognition par-
ticle 7SL2, to 0.01 for SCN2A, encoding for sodium
voltage-gated channel alpha subunit 2) and 19,357 genes
with an available expression value for normal control
blood cell transcriptome map (from 923,210.42 for
RN7SL2 to 0.01 for FLRT2, encoding for fibronectin
leucine-rich transmembrane protein 2). These values
allowed a differential (T21 vs normal control) transcrip-
tome map including the gene expression ratios for 17,
867 loci to be obtained. Detailed results for each map
are also available in the TRAM software deposited at
https://osf.io/ab3np/?view_only=c8cfbaf81a894f379854
722a13efb9ec.
Considering the genes expressed in at least two sam-

ples (half of the samples for each pool) in both pools, in
the T21 vs normal control transcriptome map, we ob-
served the highest expression ratio (ratio=16.79) for
TSPEAR, a protein that contains an N-terminal
thrombospondin-type laminin G domain and several
tandem-arranged epilepsy-associated repeats (EARs), an
expression ratio >5 for MX1 gene (ratio=6.76), encoding
for MX dynamin-like GTPase 1, IFI44L gene (ratio=
6.36), encoding for interferon-induced protein 44 like,
IFIT1 gene (ratio=5.76), encoding for interferon-induced
protein with tetratricopeptide repeats 1 and RSAD2 gene
(ratio=5.39) encoding for radical S-adenosyl methionine
domain containing 2. Among the Hsa21 genes, we have
found 143 genes with a gene expression ratio of ≥1.30,
and in particular, we observed the over-expression of
TSPEAR and MX1 genes (cited above), MX2 gene (ra-
tio=4.32) encoding for MX dynamin-like GTPase 2 and
of SLC19A1 gene (ratio=3.5) encoding for solute carrier
family 19 member 1.

Overall, the mean value among all gene expression ra-
tios is 1.30. A T21/normal expression ratio >1.70 (of
which 91 on Hsa21) is observed for 2320 genes, 3587
genes (48 on Hsa21) a T21/normal expression ratio be-
tween 1.70 and 1.30, 8283 genes (24 on Hsa21) between
1.29 and 0.75, 966 genes (5 on Hsa21, BACH1-IT3,
RBM11, C21orf62-AS1, TMPRSS15, LINC01547) be-
tween 0.76 and 0.58, 265 genes have a T21/normal ex-
pression ratio <0.58 (4 on Hsa21, LINC01679, ERVH48-
1, SIK1, TEKT4P2). Detailed results are available in Sup-
plementary Table 3.
In both single transcriptome maps, genes following

RN7SL2 with the highest expression values are HBB,
HBA2 and HBA1, i.e. genes coding for haemoglobin
beta- and alpha-chains.
Considering the chromosomes, Hsa21 has the highest

T21 vs normal control mean expression ratio (2.01 with
a standard deviation of 1.50) compared to the other
chromosomes (Fig. 1). Interestingly, mitochondrial genes
have a T21 vs normal control mean expression ratio of
1.56 with a standard deviation of 0.93. Non-parametric
Kruskal-Wallis’ test showed a significant difference
(p<.0001) in T21 vs normal control mean expression ra-
tio among chromosomes. Post hoc analysis with Games-
Howell’s test showed a significant difference in the mean
expression ratios between Hsa21 and all other chromo-
somes (p=0.0002 with chromosome Y and p<.0001 for
the other chromosomes), other than mitochondrial gen-
ome (p=0.8522).
Regarding the analysis of segments in the “Map” mode,

in both the single maps, we observed the statistically sig-
nificant over-expression of the same segments mapping
on chromosomes 11, 14, 1, 4, 12 and 2 and on the mito-
chondrial genome (see Supplementary Table 4). The seg-
ment analysis of the differential transcriptome map
showed that four segments are statistically significantly
over-expressed in T21 compared with the normal con-
trol samples (Table 1). The two segments with the high-
est expression ratios are on Hsa21, while the other two
are on chromosomes 22 and 10 (Table 1). No statisti-
cally significant under-expressed segments were found.
The given hypothesis that the one-carbon pathway

might be involved in the manifestation of the main
symptoms in DS [14], and the experimental confirm-
ation that T21 lymphocytes are more sensitive to the
methotrexate effect than normal control cells [35] led us
to analyse the expression profiles of the main genes en-
coding for the key enzymes of the one-carbon pathway.
Expression values were selected for genes implicated in
the one-carbon metabolic process (Gene Ontology, GO:
0006730) and the folic acid-containing compound meta-
bolic process (GO:0006760) [36]. Among 37 genes for
which a T21 vs normal control expression ratio was
available (derived by expression values detected in at
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least two samples in both pools), the global mean ex-
pression ratio is 1.22 (with a standard deviation of 0.69),
and 22 genes are over-expressed and 15 under-expressed
(Supplementary Table 5). Among the over-expressed
genes, two map on Hsa21: GART gene (ratio=1.58), en-
coding for phosphoribosylglycinamide formyltransferase,
phosphoribosylglycinamide synthetase, phosphoribosyla-
minoimidazole synthetase and SLC19A1 gene (cited
above).

Real-time RT-PCR validation assay
Real-Time RT-PCR experiments were conducted to valid-
ate the T21 vs normal control differential transcriptome
map obtained through the elaboration of RNA-Seq data
by TRAM analysis. Nineteen genes, selected following the
criteria described in the “Materials and methods” section

(primer pairs listed in Supplementary Table 6), were ana-
lysed by real-time RT-PCR in the same RNA samples used
for RNA-Seq analyses (4 subjects with DS and 4 normal
controls, see Supplementary Table 7A). For the expression
ratio and inter-sample variability values, refer to Supple-
mentary Table 3. Bivariate statistical analysis was per-
formed between the gene expression ratios observed by
real-time RT-PCR on the 19 selected genes and the differ-
ential expression ratios of the same genes obtained by
RNA-Seq (r=0.91, p=0.0001) (Table 2A).
Real-time RT-PCR experiments were also performed on

a different and larger cohort of subjects (6 subjects with
DS and 6 normal controls), in order to independently con-
firm the expression level of five genes reported as signifi-
cantly over-expressed by RNA-Seq (primer pairs were
listed in Supplementary Table 6). Selected genes were
IFIT1 mapping on chromosome 10 and TSPEAR, MX1,

Fig. 1 Trisomy 21 (T21) vs normal control (n) expression ratio in blood cell transcriptome map divided by chromosome

Table 1 List of statistically significant over-expressed segments (q<0.05) in trisomy 21 (T21) vs normal control blood cell
transcriptome map

Chr Location Segment start Segment end Expression ratio Genes

Chr21 21q22.2-q22.3 41,250,001 41,750,000 4.16 MX2, MX1, RIPK4

Chr21 21q22.3 44,000,001 44,500,000 4.11 PWP2, TRPM2, TSPEAR

Chr22 22q11.22 21,750,001 22,250,000 3.65 IGLV4-69, IGLV8-61, IGLV10-54

Chr10 10q23.31 89,000,001 89,500,000 2.78 IFIT2, IFIT3, IFIT1

Segments are sorted by decreasing T21 vs normal control expression ratio. For simplicity, some segments are not shown because they overlap with those
highlighted in one of the listed regions
Chr chromosome, Location segment cytoband derived from that of the first mapped gene within the segment, Segment start/end chromosomal coordinates for
each segment
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SLC19A1 and GART mapping on chromosome 21. GAPD
H, mapping on chromosome 12, was used as a reference
(see Supplementary Table 6). The statistical analysis, re-
ported in the “Materials and methods” section, showed
two strong outliers among the IFIT1 expression values
(A10=0.05 and IFIT1 mean expression value of subjects
with DS is 0.016; B8=0.174 and IFIT1 mean expression
value of normal control subjects is 0.018); one strong out-
lier among the TSPEAR expression values (B7=0.001 and
TSPEAR mean expression value of normal control sub-
jects is 0.0000964); one among the MX1 expression values
(B8=0.1975 and MX1 mean expression value of normal

control subjects is 0.027) and one among the GART ex-
pression values (B6=0.0121 and GART mean expression
value of normal control subjects is 0.005). The strong out-
liers were reported in red in Supplementary Table 8, and
we decided to calculate the T21/normal expression ratio
after removing these strong outliers from the gene expres-
sion values. Bivariate statistical analysis was performed be-
tween the gene expression ratios observed by real-time
RT-PCR on the six selected genes (including GAPDH) in
the cohort of 12 subjects (6 subjects with DS and 6 normal
controls) and the expression ratios of the same genes in
the original group of 8 subjects (4 subjects with DS and 4
normal controls) whose samples had also been subjected
to RNA-Seq as described above (r=0.88, p=0.0186) (Table
2B).

Pathway analyses
An unbiased functional enrichment analysis of over-/
under-expressed genes was performed using ToppFun
from the ToppGene Suit Gene Ontology tool. The re-
sults obtained submitting a list of human genes with
expression values detected in at least two samples in
both pools and with a T21/normal expression ratio of
≥1.30 (5845 gene symbols found over 5907) and a list
of human genes with a T21/normal expression ratio
of ≤0.76 (2022 gene symbols found over 1,533 1,591)
are shown in Supplementary Tables 9 and 10,
respectively.
Among the genes with a T21/normal expression ratio

of ≥1.30, we observed that the most significantly
enriched biological process associated to the greatest
number of genes (713) is “vesicle organisation”, GO:
0016050; the most significantly enriched cellular compo-
nent associated to the greatest number of genes (645) is
“whole membrane”, GO:0098805; the most significantly
enriched molecular function associated to the greatest
number of genes (599) is “transferase activity, transfer-
ring phosphorus-containing groups”, GO:0016772; and
finally, the most represented pathway associated to the
greatest number of genes (517) is the “innate immune
system”, GO:1269203.
Among the genes with a T21/normal expression ratio

of ≤0.76, the most significantly enriched biological
process associated to the greatest number of genes (149)
is “cell cycle”, GO:0007049; the most significantly
enriched cellular components associated to the greatest
number of genes (143) is “nuclear chromatin”, GO:
0000790; the most represented molecular function asso-
ciated to the greatest number of genes (129) is “DNA-
binding transcription factor activity, RNA polymerase II-
specific”, GO:0000981; and finally, the most represented
pathway associated to the greatest number of genes (79)
is the “generic transcription pathway”, 1269650.

Table 2 Genes selected for the comparison of trisomy 21 (T21)
vs normal control (n) blood cell transcriptome maps with real-
time RT-PCR

Chr Gene symbol RNA-Seq T21/n ratio Real-time T21/n ratio

A

chr15 B2M 1.31 1.29

chr5 DHFR 1.00 0.17

chr21 DYRK1A 1.65 1.01

chr21 ETS2 2.80 2.81

chr12 GAPDH 1.21 1.00

chr19 HCST 1.15 0.86

chr11 LRP5 0.66 0.60

chr21 MX1 6.76 6.96

chr9 NACC2 1.15 1.48

chr7 NDUFA4 1.41 1.06

chr17 NPTX1 0.25 0.13

chr11 NRGN 0.87 0.77

chr12 NUAK1 4.47 7.84

chr19 PRDX2 1.05 0.68

chr1 RYR2 1.13 0.37

chr17 SERPINF1 2.33 0.67

chr21 SOD1 1.41 1.33

chr12 TUBA1B 1.13 0.57

chr7 YKT6 1.16 1.15

B

chr10 IFIT1 5.76 0.90

chr21 SLC19A1 3.50 2.02

chr21 TSPEAR 16.79 9.27

chr21 MX1 6.76 2.07

chr21 GART 1.58 2.80

chr12 GAPDH 1.21 1.00

A) Genes randomly selected for the validation by real-time RT-PCR of the RNA-
Seq results on the same samples used for RNA-Seq. B) Genes with a
statistically significant over-expression in the RNA-Seq results, validated by
real-time RT-PCR on a larger cohort of samples. From left to right:
chromosome, official gene symbol; T21/n expression ratios obtained by TRAM
analysis following RNA-Seq data elaboration; T21/n expression ratios
determined by real-time RT-PCR. The genes in bold are used as a reference
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Comparison with publicly available transcriptome maps
The three transcriptome maps (T21, normal control and
T21 vs normal control) obtained by the elaboration of
the RNA-Seq results were compared with other blood-
derived transcriptome maps obtained through publicly
available microarray [11] and RNA-Seq meta-analyses
for WBC (white blood cells) [32] (Table 3, Supplemen-
tary Table 11). The best concordance was found be-
tween the normal control WBC transcriptome maps
obtained through microarray meta-analyses [11] and
RNA-Seq data [32] elaborated here by TRAM for the
purpose of this comparison (Supplementary Table 12),
as it could be expected due to the similarity of the type
of biological samples. Interestingly, no Pearson correl-
ation (r<0.07, data not shown) could be seen when our
RNA-Seq data were compared with the reference WBC
transcriptome previously described following systematic
meta-analysis of microarray expression data [11], while a
strong correlation emerged when a nonparametric cor-
relation test was applied (Spearman correlation by rank;
Table 3). This finding can be explained by the different
absolute values produced by the count-based RNA-Seq
method and the hybridisation kinetic-based microarray
method, so that there is little linear agreement between
the values, while the relative levels of the RNAs within
each distribution are better conserved. In addition, the
expression values obtained with both methods show a
strongly skewed distribution, in particular, because HBB,
HBA1 and HBA2 genes have expression values of some
orders above the other highly expressed genes also in
microarray meta-analysis maps. A strong correlation was

also observed between our RNA-Seq results and the
RNA-Seq data from Powers and colleagues [32] for both
T21 and normal control data and between microarray
data from Pelleri and colleagues [11] and RNA-Seq data
from Powers and colleagues [32].

Discussion
In recent years, RNA-Seq analysis has been employed in
the study of postnatal gene transcription profile of a few
T21 primary tissues, such as endothelial cells [37], fibro-
blast cells [38, 39] and WBC [32]. In this work, we
present a differential quantitative blood cell transcrip-
tome map between T21 and normal control blood cells
for 17,867 loci and a post-analysis through transcrip-
tome mapping aimed at identifying the segmental (re-
gional) variation of the expression level across the whole
genome (segment-based analysis of expression).
The analysis of RNA-Seq mapping results showed that

the percentage of reads assigned to genes is a bit low
(52% of the reads) (Supplementary Table 1) compared to
other RNA-Seq experiments on human T21 samples
[37], even with 97% of the reads mapped on the human
genome. A low percentage of reads associated to exonic
regions might be an indication of residual genomic DNA
or a high percentage of pre-mRNAs. On the other hand,
our results are consistent with the analysed biological
sample type being that HBB, HBA1 and HBA2 are
among the highest expressed genes.
The analysis of expression observed at the segment

level showed that the two most over-expressed segments
are on Hsa21 (Table 1), highlighting the presence of the

Table 3 Comparison among trisomy 21 (T21) or normal control (n) blood cell transcriptome maps obtained by RNA-Seq (present study)
and microarray and RNA-Seq (different studies) experiments and analysed by TRAM. For each comparison, the number of genes in
common between the two compared studies, and the number of the unique gene for each study are indicated. For each comparison,
Spearman correlation coefficients (r) are calculated on common genes (p<.0001 by the JMP software for all comparisons). WBC white
blood cells. Details about the studies used in the following comparisons are listed in Supplementary Table 11

Comparison Tot first
study

Tot second
study

First study unique
genes

Second study unique
genes

Common
genes

r

T21 blood cells (RNA-Seq) vs T21 WBC
(array) [11]

19,378 24,699 4,336 9,657 15,042 0.7353

n blood cells (RNA-Seq) vs n WBC (array)
[11]

19,357 24,699 4,316 9,658 15,041 0.7319

T21/n blood cells (RNA-Seq) vs T21/n WBC
(array) [11]

17,867 24,699 3,414 10,246 14,453 0.1193

T21 blood cells (RNA-Seq) vs T21 WBC
(RNA-Seq) [32]

19,378 22,614 3,194 6,430 16,184 0.7137

n blood cells (RNA-Seq) vs n WBC (RNA-
Seq) [32]

19,357 21,099 3,259 5,001 16,098 0.7097

T21/n blood cells (RNA-Seq) vs T21/n WBC
[32]

17,867 20,826 2,517 5,476 15,350 0.1718

T21 WBC (array) [11] vs T21 WBC [32] 24,699 22,614 6,082 3,997 18,617 0.8702

n WBC (array) [11] vs n WBC [32] 24,699 21,099 6,835 3,235 17,864 0.8721

T21/n WBC (array) [11] vs T21/n WBC [32] 24,699 20,826 6,939 3,066 17,760 0.3354
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third copy of Hsa21 also seen in the single Hsa21 gene
over-expression [11, 32, 38]. The over-expression of the
segment on chromosome 10 containing IFIT2, IFIT3
and IFIT1 genes confirmed previous analyses [11] and
the interferon signalling pathway alteration previously
found [32, 38]. Interferon not only has an antiviral activ-
ity but also performs various kinds of biological activ-
ities, including cell differentiation-inducing activity and
cell growth inhibition [40].
At a single gene level, the over-expression of MX1,

MX2 and IFIT1 included in the Hsa21 and chr10 over-
expressed segments (Table 1) emerged. MX1, MX2 and
IFIT1 proteins are regulated by interferons, but only the
MX1 and IFIT1 are known to participate in the cellular
antiviral response [41–43]. It is interesting to notice that
MX2 (Hsa21 gene) over-expression is involved in the
suppression of cell proliferation, migration and invasion
in glioblastoma cells [26] but also that the MX2 gene
has an important role in the morphology and function
of the mitochondrial membrane [44]. Both aspects, sup-
pression of cell proliferation and mitochondrial mem-
brane structure, are consistent with the two main DS
features: reduced incidence of solid tumours and alter-
ation of mitochondrial functions. Another interesting
point for the purpose of our study was to have found the
over-expression of the RSAD2 gene whose protein prod-
uct is another interferon-inducible antiviral protein and
belongs to the S-adenosyl-L-methionine (SAM) super-
family of enzymes [45]. It plays a role in fatty acid b-
oxidation. Focusing also on the first Hsa21 over-/under-
expressed genes emerging from the differential tran-
scriptome map analysis, we found the over-expression of
the SLC19A1 gene encoding for a transporter of folate,
thus involved in the regulation of intracellular concen-
trations of folate, and of cGAMP (2′3′-cyclic-GMP-
AMP), a second messenger that activates the antiviral
stimulator of interferon genes [46]. The over-expression
of specific genes located on chromosome 21 supports
previous analyses revealing the hyperactivation of the
interferon signalling cascade in Down syndrome [47].
The over-expression observed at the chromosomal

level of the Hsa21 and mitochondrial genome (2.01 and
1.50, respectively) compared to the other chromosomes
(Fig. 1) in T21 supports the hypothesis of the alteration
of mitochondrial functions in Down syndrome [48, 49].
In fact, we observed that the majority of the mitochon-
drial aminacyl-tRNA genes are over-expressed except
the mitochondrial transfer RNA gene for the amino acid
tryptophan (ratio=0.64) which is under-expressed. We
also noticed that the genes encoding for the mitochon-
drial cytochrome c oxidase I, II and III (MT-CO1, MT-
CO2 and MT-CO3) and the NADH dehydrogenase 5
and 6 (MT-ND5, MT-NT6) have gene expression ratios
between 1.2 and 1.6 (see Supplementary Table 3).

The unbiased functional enrichment analysis of over-/
under-expressed genes highlighted several pathways
which may suffer the altered expression of the related
genes (Supplementary Tables 9 and 10). There is no GO
category directly linked to the one-carbon pathway,
probably because the global mean expression ratio of
genes involved in it is 1.21 with only a few genes with
T21/normal expression ratio ≥1.30 (the chosen cut-off
for over-expressed genes in the functional enrichment
analysis). However, the over-expression of genes like
GART (21q22.1, gene expression ratio=1.58), encoding
for phosphoribosylglycinamide formyltransferase, phos-
phoribosylglycinamide synthetase, phosphoribosylami-
noimidazole synthetase and SLC46A1 (17q11.2, gene
expression ratio=1.67) and encoding for solute carrier
family 46 member 1, and SLC19A1 (21q22.3, gene ex-
pression ratio=3.50), encoding for the solute carrier fam-
ily 19 member 1, provides interesting hints about the
hypothesis regarding the alteration of the one-carbon
pathway in the manifestation of ID in DS [35, 36]. In-
deed, the first is a key enzyme of the folic acid cycle ne-
cessary to convert tetrahydrofolate (THF) to 10-formyl-
THF and 5,10-methenyl-THF to THF; the second is the
main carrier of folates and antifolates in the nervous sys-
tem, and the third is the ubiquitously expressed form of
folate carriers [36]. A recent study [50] about the tran-
scriptome profile of the whole heart already showed that
a coherence at a quantitative level between the transcrip-
tome model and the ratio of gene products found at pre-
cise relative amounts in that tissue exists. Nevertheless,
the protein levels are often the mirrors of what happens
at the transcriptional level and vice versa, thus measur-
ing the activities of the enzymes involved in the one-
carbon pathway in T21 vs normal control samples would
still be interesting.
The validation by real-time RT-PCR of the RNA-Seq

data (r=0.91, p=0.0001), the further assessment of five
significantly over-expressed genes in a larger cohort of
samples (r=0.88, p=0.0186) and the strong correlation of
RNA-Seq results with the gene expression data obtained
by recently published transcriptome profiles closer to
our kind of analysis [11, 32] demonstrated the reliability
of the sample choice and treatment methods and of the
quantitative gene expression data obtained in this work.
In perspective, a meta-analysis of all the T21 blood cell

gene expression profiles conducted by RNA-Seq and
available on the public databases might be due, but to
date, there is only one available study with this aim [32,
37] conducted on samples from subjects with DS. A
limitation of RNA-Seq over microarray in meta-analyses
performed by TRAM is the lack of the UniGene clusters,
since the UniGene data parsing [51] was not required
here while it is performed for microarray analyses giving
useful hints to gene characterisation [52].
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The lack of reads mapping on the HR-DSCR [4] is
likely due to the sample type and to the low depth range;
we obtained with this being an intronic region of a new
isoform of KCNJ6 (isoform 2, ENSG00000157542). Actu-
ally, the well-known KCNJ6 isoform 1 seems not to be
expressed in blood, and this was confirmed in our data-
set where it is present only in two T21 samples with a
very low median expression value (0.03). Further re-
search is necessary to better characterise this locus.

Conclusions
In the present study, we analysed T21 and normal con-
trol blood cell gene expression profiles obtained by total
RNA sequencing (RNA-Seq). A post-analysis through
transcriptome mapping allowed the identification of the
segmental (regional) variation of the expression level
across the whole genome (segment-based analysis of ex-
pression) showing that Hsa21 has the highest T21 vs
normal control mean expression ratio compared to the
other chromosomes and that mitochondrial genes have a
T21 vs normal control mean expression ratio of 1.56,
following the 3:2 Hsa21 gene dosage ratio in T21. Inter-
estingly the most over-expressed genes encode for
interferon-induced proteins, two of them (MX1 and
MX2 genes) mapping on Hsa21 (21q22.3). The altered
expression of genes involved in mitochondrial transla-
tion and energy production also emerged, followed by
the altered expression of genes encoding for the folate
cycle enzyme, GART and the folate transporter,
SLC19A1.
The alteration of these pathways might be linked and

involved in the manifestation of ID in DS.
Finally, the complete quantitative and normalised tran-

scriptome map generated in this work has been released
to allow further analysis and comparison with other glo-
bal gene expression profiles in T21 cells.

Materials and methods
Case selection
Subjects were admitted to the Day Hospital of the Neo-
natology Unit, Sant’Orsola-Malpighi Polyclinic, Bologna,
and this study was proposed in the context of the yearly
routine follow-up provided for DS. A total of 20 subjects
were enrolled in this study: 10 subjects with DS (5 males
and 5 females) and 10 normal control subjects (6 males
and 4 females). No additional samples were included in
this study due to the difficulty in retrieving blood sam-
ples of adequate quantity and quality from a larger num-
ber of children with DS and a comparable group of
normal paediatric controls.
For RNA-Seq analyses, 4 subjects with DS and 4 nor-

mal control samples were used. The mean age of sub-
jects with DS was 11.52±0.54, and the mean age of
normal control subjects was 7.86±4.33 (Supplementary

Table 7A). The unpaired t test showed no statistically
significant difference (p value=0.1448) among the mean
ages of the two groups of subjects.
The real-time RT-PCR, performed on RNA samples

from 6 children with DS and 6 normal controls, analysed
five genes over-expressed in the RNA-Seq experiments.
The mean age of subjects with DS (11.07±0.57) and of
normal controls (7.78±2.33) is comparable with the
mean age of the two groups analysed by RNA-Seq (Sup-
plementary Table 7B). Details about the samples from
subjects with DS and normal controls were listed in Sup-
plementary Table 7. Supplementary Table 13 provides
the clinical data of subjects with DS.

Sample processing
Blood samples (3 mL) from DS and normal control re-
cruited donors (Supplementary Table 7) were collected
in ethylenediaminetetraacetic acid (EDTA)-coated blood
collection tubes, kept at room temperature and treated
within 2 h from blood collection. Each sample was trans-
ferred into a new tube, and the plasma fraction was iso-
lated by centrifugation at 1200g for 10 min, while 5 mL
of denaturing solution [53] was added to the remaining
blood fraction (buffy coat and red blood cells) and stored
at −20°C until RNA extraction.
Total RNA extraction was performed with the method of

Chomczynski and Sacchi [53]. The RNA quantity and quality
have been verified through electrophoresis on agarose gel
(visualisation and quantification with the GelDoc 2000 and
Quantity One software, Bio-Rad Laboratories, Hercules, CA,
USA) and through Nanodrop spectrophotometer (ND-1000
spectrophotometer, Thermo Scientific, Thermo Fisher Scien-
tific, Waltham, MA, USA).
One or, if necessary, two purification steps were per-

formed using RNA Clean & Concentrator-5 Kit (Zymo
Research, 17062 Murphy Ave, Irvine, CA, 92614, USA)
following the manufacturer’s instructions in order to re-
move genomic DNA and salt contamination and to
reach the minimum concentration of 50 ng/μL verified
through spectrophotometry in a minimum volume of 20
μL. Samples were stored at −80°C until the library prep-
aration process.

RNA-Seq and data processing
Four T21 and 4 normal control blood samples were used to
perform RNA-Seq analyses (see Supplementary table 7A).
Library preparation, sequencing, read mapping and

counting were carried out by “Sequentia Biotech SL”
(Barcelona, Spain).
TruSeq Stranded Total RNA with Ribo-Zero Gold

(Illumina, San Diego, CA) was used for library prepar-
ation following the manufacturer’s instructions, starting
with 200 ng of RNA as input. This kit allows the deple-
tion of cytoplasmic and mitochondrial ribosomal RNA
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(rRNA) from total RNA samples using biotinylated
probes that selectively bind rRNA species. This process
minimises ribosomal contamination and maximises the
percentage of uniquely mapped reads covering both
mRNA and a broad range of ncRNA species of interest,
including long intergenic noncoding RNA (lincRNA),
small nuclear (snRNA), small nucleolar (snoRNA) and
other RNA species. After the rRNA is depleted, the
remaining RNA is purified, fragmented and primed for
cDNA synthesis. The RNA was fragmented for 3 mi-
nutes at 94°C and every purification step was performed
by using 1X Agencourt AMPure XP beads (Beckman
Coulter, Brea, CA).
Both RNA samples and final libraries were quantified

by using the Qubit 2.0 Fluorometer (Invitrogen, Carls-
bad, CA) and quality tested by Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA) and Caliper
LabChip GX (PerkinElmer, Waltham, MA) assays, RNA
integrity number (RIN) >8.
Libraries were then processed with Illumina cBot for

cluster generation on the flow cell, following the manu-
facturer’s instructions and sequenced on paired-end 125
bp mode at the multiplexing level requested on
HiSeq2500 (Illumina, San Diego, CA). The CASAVA
1.8.2 version of the Illumina pipeline was used to
process raw data for both format conversion and de-
multiplexing.
Raw sequencing data were processed with BBDuk

(https://jgi.doe.gov/data-and-tools/bbtools/) in order to
perform trimming and clipping. Bases with a quality
score less than 25 were removed as well as reads shorter
than 35 nucleotides. The quality of the reads, before and
after trimming, was checked with the software FASTQC
(https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). High-quality reads were mapped against the
GRCh38 human reference genome and downloaded
from Ensembl [54], with the software STAR (version
2.5.2b, https://github.com/alexdobin/STAR). Read sum-
marisation was performed with featureCounts (http://
subread.sourceforge.net/). Only reads with a mapping
quality higher than 30 were used for this scope. The op-
tion “-s 2” was used to indicate that the libraries are
strand-specific. The resulting table was imported in the
R environment, and the package edgeR (https://
bioconductor.org/packages/release/bioc/html/edgeR.
html) was used to calculate the fragments per kilobase
million (FPKM) values.
Raw and processed files have been deposited in NCBI’s

Gene Expression Omnibus [55] and are accessible
through GEO Series accession number GSE151282
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE151282).
The Samtools software (http://samtools.sourceforge.

net/) was used to identify and extract the reads mapping

on the HR-DSCR [4] which has the following coordi-
nates on Hsa21: 37,929,229-37,963,130 (human assembly
GRGh38/hg38).
Each possible pair of T21 samples and each possible

pair of normal control samples were compared through
the nonparametric correlation test (Spearman correl-
ation by rank), transforming FPKM values into a loga-
rithmic scale (log10(FPKM)) and using the JMP 14.2 Pro
software (SAS Institute, Campus Drive, Cary, NC, USA).

Gene expression analysis by TRAM software
The TRAM software [31] is able to import and integrate
any gene expression data source in a tabulated text for-
mat and map expression values to the relevant genomic
region. The software also performs statistical analysis of
over- or under-expressed regions compared to the whole
genome or to the relative chromosome.
We used the last empty version available of TRAM

(TRAM 1.3, http:/apollo11.isto.unibo.it/software/) that
was manually configured following the software guide
with human chromosome and human gene data down-
loaded from the National Center for Biotechnology In-
formation (NCBI) Genome and Genes [56], respectively,
updated up to January 24, 2019. The Ensembl gene
accession number identifier (ENSG) conversion table to
official gene symbol was downloaded with BioMart from
Ensembl on January 23, 2019, corresponding to the
GRCh38 (release 95) and imported in TRAM as a cus-
tom identifier data table following the software guide.
Since the RNA-Seq technique is able to distinguish and
quantify both the genes and their related pseudogenes,
manual exclusion of the step for the removal of pseudo-
genes (necessary if microarray data are treated) from the
TRAM set-up pipeline was necessary in order to cor-
rectly conduct the analysis. This script modification pro-
cedure was carried out using FileMaker Pro 12 software
(FileMaker, Santa Clara, CA) and is available upon
request.
A single tabulated text file with ENSG identifier and

the corresponding FPKM value (excluding those equal
to zero) was created for each T21 and normal control
sample. These datasets related to T21 (pool A) and nor-
mal control (pool B) conditions were imported into
TRAM which allowed a differential transcriptome map
to be obtained, where the gene expression ratios (A/B)
for each locus were shown in addition to the gene ex-
pression values of the single pools.
First, TRAM performs intra- and inter-sample normal-

isations (global normalisation and scaled quantile nor-
malisations) of gene expression values. The value for
each locus, in each biological condition, is represented
by the mean value of all the values available for that
locus. The mean value of the gene expression of the
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whole genome is used to determine the percentile of ex-
pression for each gene [31].
Then, a graphical representation of the gene expression

profile is created in two different modes, “Map” or “Clus-
ter”, identifying critical genomic regions (genomic regions
including one gene) with significant differential expression
comparing two different biological conditions. We mainly
focused on the “Map” mode, analysing over-/under-
expressed segments of the genome, with a window size of
500,000 bp and a shift of 250,000 bp (default parameters).
The expression value for each genomic segment is calcu-
lated by the mean of the expression values of the loci in-
cluded in that segment, considering only loci for which
the mean value was derived from at least two biological
samples. Over-/under-expression definition and statistical
significance have already been explained [57]. A segment
was considered to be statistically significant over-/under-
expressed for q < 0.05, where q is the p value obtained by
the method of hypergeometric distribution [11]. The sig-
nificance of the over-/under-expression for single genes
was determined by running TRAM in “Map” mode with a
segment window of 12,500 bp. This window size corre-
sponds to about a quarter of the mean length of a gene, so
the significant over-/under-expression of a segment al-
most always corresponds with that of a gene. When the
segment window contains more than one gene, the signifi-
cance is maintained if the expression value of the over-/
under-expressed gene prevails over the others.
Analysis of variance and post hoc test of chromosome

mean expression ratios were performed with the JMP
14.2 Pro software (SAS Institute, Campus Drive, Cary,
NC, USA) and the add-inn available (https://community.
jmp.com/t5/JMP-Add-Ins/Games-Howell-Test-Tukey-
HSD-with-Welch-s-correction-for-Unequal/ta-p/213771
?trMode=source).
A functional enrichment analysis of over-/under-

expressed genes in T21 vs normal control differential
transcriptome map was performed using ToppFun from
the ToppGene Suite Gene Ontology tool [58].

Real-time reverse transcription polymerase chain reaction
validation of RNA-Seq data
A real-time reverse transcription polymerase chain reac-
tion (RT-PCR) analysis was performed on the same sam-
ples used for RNA-Seq analyses (4 subjects with DS and
4 normal control samples, see “Case selection” section).
Nineteen genes (Table 2A and Supplementary Table 6)
were selected according to their low inter-sample vari-
ability (standard deviation or SD as % of expression <
100, see Supplementary Table 3) deduced from the
RNA-Seq T21 vs normal control blood cell transcrip-
tome map. Four genes were randomly selected among
those with a gene expression ratio >1.70 (ETS2, MX1,
NUAK1, SERPINF1), 4 genes were randomly selected

among those with a gene expression ratio between 1.70
and 1.30 (B2M, DYRK1A, NDUFA4, SOD1), 9 genes
were randomly selected among those with a gene ex-
pression ratio between 1.29 and 0.70 (DHFR, GAPDH,
HCST, NACC2, NRGN, PRDX2, RYR2, TUBA1B, YKT6),
and 2 genes were randomly selected among those with a
gene expression ratio <0.70 (LRP5, NPTX1).
For the validation of the RNA-Seq results, two pools

of RNA samples were created, starting from the same
RNA samples used for RNA-Seq analysis in this work:
one with three T21 blood cell RNA samples (350 ng of
each) and the second with four normal control blood
cell RNA samples (350 ng of each). Among the T21
samples used for RNA-Seq, one was no more available
for the real-time PCR analysis (A3 sample, see Supple-
mentary Table 7A).
Real-time RT-PCR experiments on a different and larger

cohort of samples (12 RNA samples, 6 from children with
DS and 6 from normal controls, see Supplementary Table
7B) were performed on genes reported by RNA-Seq ex-
periments as statistically significant over-expressed in T21
vs normal control subjects. Four genes mapping on Hsa
21 (TSPEAR, MX1, SLC19A1 and GART) and one gene
mapping on chromosome 10 (IFIT1) were selected (Table
2B and Supplementary Table 6) and studied in each indi-
vidual sample.
The Amplify 3 software [59] was used to design primer

pairs so that their length is between 18 and 22 nucleo-
tides; they have a GC content between 40 and 60%, and
they have the same melting temperature [60, 61]. Finally,
the Primer-BLAST software analysis did not find non-
specific results [61]. Each primer was designed on a dif-
ferent exon, and each primer pair binds to regions
common to all splicing isoforms of the same gene [62].
Complementary DNA (cDNA) was obtained by reverse

transcription (RT) performed according to [11] from
each RNA sample pool.
Real-time RT-PCR assays were performed in triplicate,

using the CFX96 instrument (Bio-Rad Laboratories,
Hercules, CA, USA).
The reactions were performed in a total volume of 20

μL using Sybr Select Master Mix 2× for CFX (Applied
Biosystems, by Life Technologies) according to the man-
ufacturer’s instructions providing the following cycling
parameters: 2 min at 50°C (uracil-DNA glycosylase
(UDG) activation), 2 min at 95°C (AmpliTaq Fast DNA
Polymerase UP activation) and 40 cycles of 15 s at 95°C
(denature) and of 1 min at 61°C (anneal and extend). In
order to assess the amplification specificity, a melting
step consisting of an increase in temperature of 0.5°C/s
from 65 to 95°C was performed.
For each gene, we used the primer pair that gave be-

tween 90 and 110% efficiency. For the gene expression
analysis, we used the Livak method of 2−ΔΔCt (delta delta
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cycle threshold) [63] by choosing GAPDH as a reference
gene.
For the validation of five statistically significant over-

expressed genes obtained by RNA-Seq analyses, the re-
verse transcriptions of 1 μg of 6 RNA samples from sub-
jects with DS and 6 RNA samples from normal control
subjects were performed, and the cDNA samples were
analysed by real-time RT-PCR as cited above. The rela-
tive gene expression value of each gene vs a gene chosen
as reference (GAPDH) was obtained through the 2−ΔCt

method in both DS and N groups. The mean among the
relative gene expression values was calculated after re-
moving strong outliers (see Supplementary Table 8 for
details). Strong outliers, reported in red in Supplemen-
tary Table 8, were detected with the SPSS Statistics soft-
ware as follows: from the leading software Menu, we
selected “Analyze” and then “Descriptive statistics”; we
then chose “Explore” and included gene expression
values in “Dependent List”; finally, in “Statistics section”,
we selected the “Outliers” and “Percentiles” options. The
SPSS Statistics software indicates strong outliers with an
asterisk in the graph. The DS/N ratios obtained after
strong outlier removal are listed in Table 2B.
The results obtained by real-time RT-PCR were com-

pared with the gene expression ratios from RNA-Seq
analysis through bivariate statistical analyses using the
JMP 14.2 Pro software (SAS Institute, Campus Drive,
Cary, NC, USA).

Comparison between RNA-Seq and publicly available
gene expression data
We searched for all gene expression studies performed on
human blood samples from T21 vs normal controls in the
literature in order to compare transcriptome maps ob-
tained here by TRAM elaboration of RNA-Seq analyses
with previously published blood transcriptome maps.
In particular, T21 and normal control single transcrip-

tome maps and T21 vs normal control differential tran-
scriptome map were compared with those obtained in the
meta-analysis performed by Pelleri and colleagues on
WBC samples [11]. These maps were also compared with
those obtained in the RNA-Seq experiment performed by
Powers and colleagues on WBC samples [32], after reads
per kilobase per million (RPKM) value elaboration by
TRAM in order to integrate and normalise more samples
as a unique pool and to make data fully comparable. Gene
expression values were compared performing the non-
parametric correlation test (Spearman correlation by rank)
using the JMP 14.2 Pro software (SAS Institute, Campus
Drive, Cary, NC, USA). It was not possible to use RNA-
Seq experiment on peripheral blood cells performed by
Costa and colleagues [37] due to the absence of processed
RNA-Seq data, such as a list of gene expression values.
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Additional file 1: Supplementary Figure 1. Scatterplot matrix of each
possible pair of trisomy 21 samples (A) and each possible pair of normal
control samples (B) obtained with JMP 14.2 Pro software (SAS Institute,
Campus Drive, Cary, NC, USA). Fragments per kilobase million (FPKM)
values are transformed in logarithmic scale (log10(FPKM)).

Additional file 2: Supplementary Table 1. Mapping statitics regarding
reads aligned against the Homo sapiens (GRCh38) reference genome
with STAR aligner. A: trisomy 21 samples; B: normal control samples.

Additional file 3: Supplementary Table 2. Fragments per kilobase
million values (FPKM). ID: Ensembl gene accession number identifier. A:
trisomy 21 samples, B: normal control samples. FPKM values for each
sample are accessible through NCBI's Gene Expression Omnibus (GEO)
Series accession number GSE151282 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE151282).

Additional file 4: Supplementary Table 3. Differential expression of
pool A (trisomy 21 blood) versus pool B (normal control blood cells). Loci
were sorted in descending order of expression ratio (Ratio A/B). N/A: not
available. SD: standard deviation.

Additional file 5: Supplementary Table 4. A) Segment map of the
T21 blood cell transcriptome map. B) Segment map of the normal
control blood cell transcriptome map. "Genes" column list only over-/
under-expressed genes, in red over-expressed genes, in blue under-
expressed genes.

Additional file 6: Supplementary Table 5. Expression values from
RNA sequencing performed here for genes implicated in one-carbon
metabolic process (Gene Ontology, GO:0006730) and folic acid-
containing compound metabolic process (GO:0006760). Trisomy 21 (T21)
vs normal control (N) differential expression ratios between 0.58 and 0.76
are highlighted in blue (under-expression), ratios between 1.30 and 1.70
in red (over-expression). Extreme expression ratios (< 0.58 or > 0.76) are
highlighted in green and orange respectively. Sample count represents
the number of samples with an available expression value for that gene.

Additional file 7: Supplementary Table 6. Primer pairs used for TRAM
map experimental validation by Real-Time RT-PCR.

Additional file 8: Supplementary Table 7. A) Samples selected for
RNA sequencing. B) Samples selected for Real-Time RT-PCR analyses on a
larger cohort of samples to validate some Hsa21 genes over-expressed
with the RNA-Seq. DS: Down syndrome; n: normal control.

Additional file 9: Supplementary Table 8. Real-Time RT-PCR experi-
ments performed on 6 subjects with Down syndrome (A5; A6; A7; A8; A9;
A10) and 6 normal controls (B5; B6; B7; B8; B9; B10). The tables on the left
report the mean of cycles (Cq mean) for the five genes selected and for
the reference gene (GAPDH), the difference of Cq means among the
gene and GAPDH gene (ΔCq) and finally the relative expression values of
the gene vs GAPDH gene obtained through the 2-ΔCt method (2-ΔCt) for
each subject. The presence of strong outliers in the expression values of
each gene is reported in red in tables on the left. The following is re-
ported in the tables on the right: mean gene expression values (Mean);
standard deviation (S.D.); and ratio between DS and N mean gene expres-
sion values (Ratio DS/N) after the exclusion of strong outliers.

Additional file 10: Supplementary Table 9. Results of functional
enrichment analysis, performed by ToppFun from the ToppGene Suite
Gene Ontology tool, of over-expressed genes (with expression ratios
≥1.30) in the trisomy 21 (T21) vs normal control (N) differential transcrip-
tome map. The GO codes are ordered for the number of the column "hit
count in query list".

Additional file 11: Supplementary Table 10. Results of functional
enrichment analysis, performed by ToppFun from the ToppGene Suite
Gene Ontology tool, of under-expressed genes (with expression ratios
≤0.76) in the trisomy 21 (T21) vs normal control (N) differential transcrip-
tome map. The GO categories are ordered by the number in the column
"hit count in query list".
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Additional file 12: Supplementary Table 11. Details of transcriptome
maps used in the comparisons.

Additional file 13: Supplementary Table 12. Differential expression
of pool A (trisomy 21 white blood cells) versus pool B (normal control
white blood cells) from data available in Powers et al. (2019). Loci were
sorted in descending order of expression ratio (Ratio A/B). N/A: not
available. SD: standard deviation.

Additional file 14: Supplementary Table 13. DS clinical data
collected at the moment of enrollment in the study. RNA samples for
RNA-seq experiments were collected from subjects A1; A2; A3; A4. RNA
samples for Real-time RT-PCR experiments were collected from subjects
A5; A6; A7; A8; A9; A10.
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