Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science. 1996, 273: 1516-1517. 10.1126/science.273.5281.1516.
Article
CAS
PubMed
Google Scholar
Lohmueller KE, Pearce CL, Pike M, et al: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003, 33: 177-182. 10.1038/ng1071.
Article
CAS
PubMed
Google Scholar
Begovich AB, Carlton VEH, Honigberg LA, et al: A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004, 75: 330-337. 10.1086/422827.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Oene M, Wintle RF, Liu X, et al: Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum. 2005, 52: 1993-1998. 10.1002/art.21123.
Article
CAS
PubMed
Google Scholar
Simkins HM, Merriman ME, Highton J, et al: Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum. 2005, 52: 2222-2225. 10.1002/art.21126.
Article
CAS
PubMed
Google Scholar
Hinks A, Barton A, John S, et al: Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: Further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 2005, 52: 1694-1699. 10.1002/art.21049.
Article
CAS
PubMed
Google Scholar
Zhernakova A, Eerligh P, Wijmenga C, et al: Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun. 2005, 6: 459-461. 10.1038/sj.gene.6364220.
Article
CAS
PubMed
Google Scholar
Viken MK, Amundsen SS, Kvien TK, et al: Association analysis of the 1858C > T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun. 2005, 6: 271-273. 10.1038/sj.gene.6364178.
Article
CAS
PubMed
Google Scholar
Criswell LA, Pfeiffer KA, Lum RF, et al: Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: The PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005, 76: 561-571. 10.1086/429096.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee AT, Li W, Liew A, et al: The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun. 2005, 6: 129-133. 10.1038/sj.gene.6364159.
Article
CAS
PubMed
Google Scholar
Orozco G, Sanchez E, Gonzalez-Gay MA, et al: Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 2005, 52: 219-224. 10.1002/art.20771.
Article
CAS
PubMed
Google Scholar
Steer S, Lad B, Grumley JA, et al: Association of R602W in a protein tyrosine phosphatase gene with a high risk of rheumatoid arthritis in a British population: Evidence for an early onset/disease severity effect. Arthritis Rheum. 2005, 52: 358-360. 10.1002/art.20737.
Article
CAS
PubMed
Google Scholar
Seldin MF, Shigeta R, Laiho K, et al: Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun. 2005, 6: 720-722.
CAS
PubMed
Google Scholar
Mori M, Yamada R, Kobayashi K, et al: Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet. 2005, 50: 264-266. 10.1007/s10038-005-0246-8.
Article
PubMed
Google Scholar
Qu H, Tessier MC, Hudson TJ, Polychronakos C: Confirmation of the association of the R620W polymorphism in the protein tyrosine phosphatase PTPN22 with type 1 diabetes in a family based study. J Med Genet. 2005, 42: 266-270. 10.1136/jmg.2004.026971.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zheng W, She JX: Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes. 2005, 54: 906-908. 10.2337/diabetes.54.3.906.
Article
CAS
PubMed
Google Scholar
Ladner MB, Bottini N, Valdes AM, Noble JA: Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol. 2005, 66: 60-64.
Article
CAS
PubMed
Google Scholar
Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P: A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun. 2004, 5: 678-680. 10.1038/sj.gene.6364138.
Article
CAS
PubMed
Google Scholar
Smyth D, Cooper JD, Collins JE, et al: Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004, 53: 3020-3023. 10.2337/diabetes.53.11.3020.
Article
CAS
PubMed
Google Scholar
Bottini N, Musumeci L, Alonso A, et al: A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet. 2004, 36: 337-338. 10.1038/ng1323.
Article
CAS
PubMed
Google Scholar
Klein RJ, Zeiss C, Chew EY, et al: Complement factor H polymorphism in age-related macular degeneration. Science. 2005, 308: 385-389. 10.1126/science.1109557.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edwards AO, Ritter III, Abel KJ, et al: Complement factor H polymorphism and age-related macular degeneration. Science. 2005, 308: 421-424. 10.1126/science.1110189.
Article
CAS
PubMed
Google Scholar
Conley YP, Thalamuthu A, Jakobsdottir J, et al: Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age-related maculopathy. Hum Mol Genet. 2005, 14: 1991-2002. 10.1093/hmg/ddi204.
Article
CAS
PubMed
Google Scholar
Hageman GS, Anderson DH, Johnson LV, et al: A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005, 102: 7227-7232. 10.1073/pnas.0501536102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haines JL, Hauser MA, Schmidt S, et al: Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005, 308: 419-421. 10.1126/science.1110359.
Article
CAS
PubMed
Google Scholar
Zareparsi S, Branham KEH, Li M, et al: Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet. 2005, 77: 149-153. 10.1086/431426.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bertina RM, Koeleman BPC, Koster T, et al: Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994, 369: 64-67. 10.1038/369064a0.
Article
CAS
PubMed
Google Scholar
Ridker PM, Hennekens CH, Lindpaintner K, et al: Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med. 1995, 332: 912-917. 10.1056/NEJM199504063321403.
Article
CAS
PubMed
Google Scholar
Zoller B, Dahlback B: Linkage between inherited resistance to activated protein C and factor V gene mutation in venous thrombosis. Lancet. 1994, 343: 1536-1538. 10.1016/S0140-6736(94)92940-8.
Article
CAS
PubMed
Google Scholar
Zoller B, Svensson PJ, He X, Dahlback B: Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C. J Clin Invest. 1994, 94: 2521-2524. 10.1172/JCI117623.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma DD, Aboud MR, Williams BG, Isbister JP: Activated protein c resistance (APC) and inherited factor V (FV) mis-sense mutation in patients with venous and arterial thrombosis in a haematology clinic. Aust N Z J Med. 1995, 25: 151-154. 10.1111/j.1445-5994.1995.tb02828.x.
Article
CAS
PubMed
Google Scholar
Ridker PM, Miletich JP, Stampfer MJ, et al: Factor V Leiden and risks of recurrent idiopathic venous thromboembolism. Circulation. 1995, 92: 2800-2802. 10.1161/01.CIR.92.10.2800.
Article
CAS
PubMed
Google Scholar
Arruda VR, Annichino-Bizzacchi JM, Costa FF, Reitsma PH: Factor V Leiden (FVQ 506) is common in a Brazilian population. Am J Hematol. 1995, 49: 242-243. 10.1002/ajh.2830490312.
Article
CAS
PubMed
Google Scholar
Schobess R, Junker R, Auberger K, et al: Factor V G1691A and prothrombin G20210A in childhood spontaneous venous thrombosis -- Evidence of an age-dependent thrombotic onset in carriers of factor V G1691A and prothrombin G20210A mutation. Eur J Pediatr. 1999, 158 (Suppl 3): S105-S108.
Article
CAS
PubMed
Google Scholar
Rees DC, Cox M, Clegg JB: World distribution of factor V Leiden. Lancet. 1995, 346: 1133-1134. 10.1016/S0140-6736(95)91803-5.
Article
CAS
PubMed
Google Scholar
Miyata T, Kawasaki T, Fujimura H, et al: The prothrombin gene G20210A mutation is not found among Japanese patients with deep vein thrombosis and healthy individuals. Blood Coagul Fibrinolysis. 1998, 9: 451-452. 10.1097/00001721-199807000-00011.
Article
CAS
PubMed
Google Scholar
Cumming AM, Keeney S, Salden A, et al: The prothrombin gene G20210A variant: Prevalence in a UK anticoagulant clinic population. Br J Haematol. 1997, 98: 353-355. 10.1046/j.1365-2141.1997.2353052.x.
Article
CAS
PubMed
Google Scholar
Cattaneo M, Chantarangkul V, Taioli E, et al: The G20210A mutation of the prothrombin gene in patients with previous first episodes of deep-vein thrombosis: Prevalence and association with factor V G1691A, methylenetetrahydrofolate reductase C677T and plasma prothrombin levels. Thromb Res. 1999, 93: 1-8. 10.1016/S0049-3848(98)00136-4.
Article
CAS
PubMed
Google Scholar
Margaglione M, Brancaccio V, Giuliani N, et al: Increased risk for venous thrombosis in carriers of the prothrombin G - > A20210 gene variant. Ann Intern Med. 1998, 129: 89-93.
Article
CAS
PubMed
Google Scholar
Poort SR, Rosendaal FR, Reitsma PH, Bertina RM: A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996, 88: 3698-3703.
CAS
PubMed
Google Scholar
Sachchithananthan M, Stasinopoulos SJ, Wilusz J, Medcalf RL: The relationship between the prothrombin upstream sequence element and the G20210A polymorphism: The influence of a competitive environment for mRNA 3'-end formation. Nucleic Acids Res. 2005, 33: 1010-1020. 10.1093/nar/gki245.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rees DC, Chapman NH, Webster MT, et al: Born to clot: The European burden. Br J Haematol. 1999, 105: 564-566. 10.1111/j.1365-2141.1999.01361.x.
Article
CAS
PubMed
Google Scholar
Lesage S, Zouali H, Cezard JP, et al: CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002, 70: 845-857. 10.1086/339432.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hampe J, Cuthbert A, Croucher PJ, et al: Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet. 2001, 357: 1925-1928. 10.1016/S0140-6736(00)05063-7.
Article
CAS
PubMed
Google Scholar
Ogura Y, Bonen DK, Inohara N, et al: A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001, 411: 603-606. 10.1038/35079114.
Article
CAS
PubMed
Google Scholar
Hugot JP, Chamaillard M, Zouali H, et al: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001, 411: 599-603. 10.1038/35079107.
Article
CAS
PubMed
Google Scholar
Kim TH, Rahman P, Jun JB, et al: Analysis of CARD15 polymorphisms in Korean patients with ankylosing spondylitis reveals absence of common variants seen in western populations. J Rheumatol. 2004, 31: 1959-1961.
CAS
PubMed
Google Scholar
Yamazaki K, Takazoe M, Tanaka T, et al: Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn's disease. J Hum Genet. 2002, 47: 469-472. 10.1007/s100380200067.
Article
CAS
PubMed
Google Scholar
Stockton JC, Howson JM, Awomoyi AA, et al: Polymorphism in NOD2, Crohn's disease, and susceptibility to pulmonary tuberculosis. FEMS Immunol Med Microbiol. 2004, 41: 157-160. 10.1016/j.femsim.2004.02.004.
Article
CAS
PubMed
Google Scholar
CHEK2 Breast Cancer Case-Control Consortium: CHEK2*1100delC and susceptibility to breast cancer: A collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004, 74: 1175-1182.
Article
Google Scholar
Broeks A, de Witte L, Nooijen A, et al: Excess risk for contralateral breast cancer in CHEK2*1100delC germline mutation carriers. Breast Cancer Res Treat. 2004, 83: 91-93. 10.1023/B:BREA.0000010697.49896.03.
Article
CAS
PubMed
Google Scholar
Cybulski C, Gorski B, Huzarski T, et al: CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004, 75: 1131-1135. 10.1086/426403.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dufault MR, Betz B, Wappenschmidt B, et al: Limited relevance of the CHEK2 gene in hereditary breast cancer. Int J Cancer. 2004, 110: 320-325. 10.1002/ijc.20073.
Article
CAS
PubMed
Google Scholar
Gorski B, Cybulski C, Huzarski T, et al: Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat. 2005, 92: 19-24. 10.1007/s10549-005-1409-1.
Article
CAS
PubMed
Google Scholar
Meijers-Heijboer H, van den Ouweland A, Klijn J, et al: Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002, 31: 55-59. 10.1038/ng879.
Article
CAS
PubMed
Google Scholar
Vahteristo P, Bartkova J, Eerola H, et al: A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002, 71: 432-438. 10.1086/341943.
Article
PubMed Central
CAS
PubMed
Google Scholar
Corder EH, Saunders AM, Risch NJ, et al: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993, 261: 921-923. 10.1126/science.8346443.
Article
CAS
PubMed
Google Scholar
Saunders AM, Strittmatter WJ, Schmechel D, et al: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993, 43: 1467-1472. 10.1212/WNL.43.8.1467.
Article
CAS
PubMed
Google Scholar
Mayeux R, Stern Y, Ottman R, et al: The apolipoprotein epsilon 4 allele in patients with Alzheimer's disease. Ann Neurol. 1993, 34: 752-754. 10.1002/ana.410340527.
Article
CAS
PubMed
Google Scholar
Anon: Apolipoprotein E genotype and Alzheimer's disease. Alzheimer's Disease Collaborative Group. Lancet. 1993, 342: 737-738. 10.1016/0140-6736(93)91728-5.
Article
Google Scholar
Strittmatter WJ, Roses AD: Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci USA. 1995, 92: 4725-4727. 10.1073/pnas.92.11.4725.
Article
PubMed Central
CAS
PubMed
Google Scholar
Corbo RM, Scacchi R: Apolipoprotein E (APOE) allele distribution in the world Is APOE*4 a "thrifty' allele?". Ann Hum Genet. 1999, 63: 301-310. 10.1046/j.1469-1809.1999.6340301.x.
Article
CAS
PubMed
Google Scholar
Sayi JG, Patel NB, Premkumar DR, et al: Apolipoprotein E polymorphism in elderly east Africans. East Afr Med J. 1997, 74: 668-670.
CAS
PubMed
Google Scholar
Lane KA, Gao S, Hui SL, et al: Apolipoprotein E and mortality in African-Americans and Yoruba. J Alzheimers Dis. 2003, 5: 383-390.
PubMed Central
CAS
PubMed
Google Scholar
Wu JH, Lo SK, Wen MS, Kao JT: Characterization of apolipoprotein E genetic variations in Taiwanese: Association with coronary heart disease and plasma lipid levels. Hum Biol. 2002, 74: 25-31. 10.1353/hub.2002.0012.
Article
PubMed
Google Scholar
Gloyn AL, Weedon MN, Owen KR, et al: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003, 52: 568-572.
Article
CAS
PubMed
Google Scholar
Laukkanen O, Pihlajamaki J, Lindstrom J, et al: Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J Clin Endocrinol Metab. 2004, 89: 6286-6290. 10.1210/jc.2004-1204.
Article
CAS
PubMed
Google Scholar
McCarthy MI: Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility-gene identification. Hum Mol Genet. 2004, 13: R33-R41. 10.1093/hmg/ddh057.
Article
CAS
PubMed
Google Scholar
Dean M, Carrington M, Winkler C, et al: Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996, 273: 1856-1862. 10.1126/science.273.5283.1856.
Article
CAS
PubMed
Google Scholar
Huang Y, Paxton WA, Wolinsky SM, et al: The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996, 2: 1240-1243. 10.1038/nm1196-1240.
Article
CAS
PubMed
Google Scholar
Liu R, Paxton WA, Choe S, et al: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996, 86: 367-377. 10.1016/S0092-8674(00)80110-5.
Article
CAS
PubMed
Google Scholar
Samson M, Libert F, Doranz BJ, et al: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996, 382: 722-725. 10.1038/382722a0.
Article
CAS
PubMed
Google Scholar
Zimmerman PA, Buckler-White A, Alkhatib G, et al: Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: Studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med. 1997, 3: 23-36.
PubMed Central
CAS
PubMed
Google Scholar
Martinson JJ, Chapman NH, Rees DC, et al: Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997, 16: 100-103. 10.1038/ng0597-100.
Article
CAS
PubMed
Google Scholar
Shiffman D, Ellis SG, Rowland CM, et al: Identification of four gene variants associated with myocardial infarction. Am J Hum Genet. 2005, 77: 596-605. 10.1086/491674.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith MW, O'Brien SJ: Mapping by admixture linkage disequilibrium: Advances, limitations and guidelines. Nat Rev Genet. 2005, 6: 623-632. 10.1038/nrg1657.
Article
CAS
PubMed
Google Scholar
Abecasis GR, Ghosh D, Nichols TE: Linkage disequilibrium: Ancient history drives the new genetics. Hum Hered. 2005, 59: 118-124. 10.1159/000085226.
Article
PubMed
Google Scholar
Halder I, Shriver MD: Measuring and using admixture to study the genetics of complex diseases. Hum Genomics. 2003, 1: 52-62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaisse C, Clement K, Durand E, et al: Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000, 106: 253-262. 10.1172/JCI9238.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cohen JC, Kiss RS, Pertsemlidis A, et al: Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004, 305: 869-872. 10.1126/science.1099870.
Article
CAS
PubMed
Google Scholar
Margulies M, Egholm M, Altman E, et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005, 437: 376-380.
PubMed Central
CAS
PubMed
Google Scholar
Faham M, Zheng J, Moorhead M, et al: Multiplexed variation scanning for 1,000 amplicons in hundreds of patients using mismatch repair detection (MRD) on tag arrays. Proc Natl Acad Sci USA. 2005, 102: 14717-14722. 10.1073/pnas.0506677102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cargill M, Altshuler D, Ireland J, et al: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999, 22: 231-238. 10.1038/10290.
Article
CAS
PubMed
Google Scholar
de Bakker PI, Yelensky R, Pe'er I, et al: Efficiency and power in genetic association studies. Nat Genet. 2005, 37: 1217-1223. 10.1038/ng1669.
Article
CAS
PubMed
Google Scholar
Van Eerdewegh P, Little RD, Dupuis J, et al: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 2002, 418: 426-430. 10.1038/nature00878.
Article
CAS
PubMed
Google Scholar
Saleh M, Vaillancourt JP, Graham RK, et al: Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature. 2004, 429: 75-79. 10.1038/nature02451.
Article
CAS
PubMed
Google Scholar
Kim TH, Barrera LO, Qu C, et al: Direct isolation and identification of promoters in the human genome. Genome Res. 2005, 15: 830-839. 10.1101/gr.3430605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahmadi KR, Weale ME, Xue ZY, et al: A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet. 2005, 37: 84-89.
Article
CAS
PubMed
Google Scholar
Evans DM, Cardon LR, Morris AP: Genotype prediction using a dense map of SNPs. Genet Epidemiol. 2004, 27: 375-384. 10.1002/gepi.20045.
Article
PubMed
Google Scholar
Carlson CS, Eberle MA, Rieder MJ, et al: Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004, 74: 106-120. 10.1086/381000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu X, Schrodi SJ, Ross DA, Cargill M: Selecting tagging SNPs for association studies using power calculations from genotype data. Hum Hered. 2004, 57: 156-170. 10.1159/000079246.
Article
CAS
PubMed
Google Scholar
Ke X, Durrant C, Morris AP, et al: Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum Mol Genet. 2004, 13: 2557-2565. 10.1093/hmg/ddh294.
Article
CAS
PubMed
Google Scholar
Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet. 2001, 17: 502-510. 10.1016/S0168-9525(01)02410-6.
Article
CAS
PubMed
Google Scholar
Pritchard JK: Are rare variants responsible for susceptibility to complex diseases?. Am J Hum Genet. 2001, 69: 124-137. 10.1086/321272.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pritchard JK, Cox NJ: The allelic architecture of human disease genes: Common disease-common variant... or not?. Hum Mol Genet. 2002, 11: 2417-2423. 10.1093/hmg/11.20.2417.
Article
CAS
PubMed
Google Scholar
Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005, 6: 95-108.
Article
CAS
PubMed
Google Scholar
Gordon D, Finch SJ, Nothnagel M, Ott J: Power and sample size calculations for case-control genetic association tests when errors are present: Application to single nucleotide polymorphisms. Hum Hered. 2002, 54: 22-33. 10.1159/000066696.
Article
PubMed
Google Scholar
Fan JB, Oliphant A, Shen R, et al: Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol. 2003, 68: 69-78. 10.1101/sqb.2003.68.69.
Article
CAS
PubMed
Google Scholar
Hardenbol P, Yu F, Belmont J, et al: Highly multiplexed molecular inversion probe genotyping: Over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 2005, 15: 269-275. 10.1101/gr.3185605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reich DE, Goldstein DB: Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol. 2001, 20: 4-16. 10.1002/1098-2272(200101)20:1<4::AID-GEPI2>3.0.CO;2-T.
Article
CAS
PubMed
Google Scholar
Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003, 164: 1567-1587.
PubMed Central
CAS
PubMed
Google Scholar
Jones HB, Faham M: Evidence and implications for multiplicative interactions among loci predisposing to human common disease. Hum Hered. 2005, 59: 176-184. 10.1159/000086118.
Article
PubMed
Google Scholar
Sunyaev S, Ramensky V, Koch I, et al: Prediction of deleterious human allele. Hum Mol Genet. 2001, 10: 591-597. 10.1093/hmg/10.6.591.
Article
CAS
PubMed
Google Scholar
Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: Server and survey. Nucleic Acids Res. 2002, 30: 3894-3900. 10.1093/nar/gkf493.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ireland J, Carlton VE, Falkowski M, et al: Large-scale characterization of public database SNPs causing non-synonymous changes in three ethnic groups. Hum Genet. 2006, 119: 75-83. 10.1007/s00439-005-0105-x.
Article
PubMed
Google Scholar
Lin S, Chakravarti A, Cutler DJ: Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat Genet. 2004, 36: 1181-1188. 10.1038/ng1457.
Article
CAS
PubMed
Google Scholar
Altshuler D, Hirschhorn JN, Klannemark M, et al: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000, 26: 76-80. 10.1038/79216.
Article
CAS
PubMed
Google Scholar
Haga H, Yamada R, Ohnishi Y, et al: Gene-based SNP discovery as part of the Japanese Millennium Genome Project 2002. Identification of 190,562 genetic variations in the human genome. J Hum Genet. 2002, 47: 605-610. 10.1007/s100380200092.
Article
CAS
PubMed
Google Scholar
Botstein D, Risch N: Discovering genotypes underlying human phenotypes: Past successes for Mendelian disease, future approaches for complex disease. Nat Genet. 2003, 33: 228-237. 10.1038/ng1090.
Article
CAS
PubMed
Google Scholar
Halushka MK, Fan J-B, Bentley K, et al: Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet. 1999, 22: 239-247. 10.1038/10297.
Article
CAS
PubMed
Google Scholar
Cargill M, Altshuler D, Ireland J, et al: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999, 22: 231-238. 10.1038/10290.
Article
CAS
PubMed
Google Scholar
Siepel A, Bejerano G, Pedersen JS, et al: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15: 1034-1050. 10.1101/gr.3715005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crawford DC, Akey DT, Nickerson DA: The patterns of natural variation in human genes. Annu Rev Genomics Hum Genet. 2005, 6: 287-312. 10.1146/annurev.genom.6.080604.162309.
Article
CAS
PubMed
Google Scholar
Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences. Hum Genet. 1992, 90: 41-54.
Article
CAS
PubMed
Google Scholar
Treisman R, Orkin SH, Maniatis T: Specific transcription and RNA splicing defects in five cloned beta-thalassaemia genes. Nature. 1983, 302: 591-596. 10.1038/302591a0.
Article
CAS
PubMed
Google Scholar
Mitchell GA, Labuda D, Fontaine G, et al: Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: A role for Alu elements in human mutation. Proc Natl Acad Sci USA. 1991, 88: 815-819. 10.1073/pnas.88.3.815.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pagani F, Buratti E, Stuani C, et al: A new type of mutation causes a splicing defect in ATM. Nat Genet. 2002, 30: 426-429. 10.1038/ng858.
Article
CAS
PubMed
Google Scholar
Min GL, Martiat P, Pu GA, Goldman J: Use of pulsed field gel electrophoresis to characterize BCR gene involvement in CML patients lacking M-BCR rearrangement. Leukemia. 1990, 4: 650-656.
CAS
PubMed
Google Scholar
Zhang XH, Leslie CS, Chasin LA: Dichotomous splicing signals in exon flanks. Genome Res. 2005, 15: 768-779. 10.1101/gr.3217705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fairbrother WG, Holste D, Burge CB, Sharp PA: Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol. 2004, 2: E268-10.1371/journal.pbio.0020268.
Article
PubMed Central
PubMed
CAS
Google Scholar
Senapathy P, Shapiro MB, Harris NL: Splice junctions, branch point sites, and exons: Sequence statistics, identification, and applications to genome project. Methods Enzymol. 1990, 183: 252-278.
Article
CAS
PubMed
Google Scholar
Cartegni L, Chew SL, Krainer AR: Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat Rev Genet. 2002, 3: 285-298. 10.1038/nrg775.
Article
CAS
PubMed
Google Scholar
Liu HX, Zhang M, Krainer AR: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998, 12: 1998-2012. 10.1101/gad.12.13.1998.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schaal TD, Maniatis T: Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999, 19: 261-273.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang XH, Chasin LA: Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 2004, 18: 1241-1250. 10.1101/gad.1195304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identification of exonic splicing enhancers in human genes. Science. 2002, 297: 1007-1113. 10.1126/science.1073774.
Article
CAS
PubMed
Google Scholar
Smale ST, Kadonaga JT: The RNA polymerase II core promoter. Annu Rev Biochem. 2003, 72: 449-479. 10.1146/annurev.biochem.72.121801.161520.
Article
CAS
PubMed
Google Scholar
Callahan III, Balbinder E: Tryptophan operon: Structural gene mutation creating a 'promoter' and leading to 5-methyltryptophan dependence. Science. 1970, 168: 1586-1589. 10.1126/science.168.3939.1586.
Article
CAS
PubMed
Google Scholar
Roberts JW: Promoter mutation in vitro. Nature. 1969, 223: 480-482. 10.1038/223480a0.
Article
CAS
PubMed
Google Scholar
Kulozik AE, Bellan-Koch A, Bail S, et al: Thalassemia intermedia: Moderate reduction of beta globin gene transcriptional activity by a novel mutation of the proximal CACCC promoter element. Blood. 1991, 77: 2054-2058.
CAS
PubMed
Google Scholar
Bosma PJ, Chowdhury JR, Bakkerm C, et al: The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med. 1995, 333: 1171-1175. 10.1056/NEJM199511023331802.
Article
CAS
PubMed
Google Scholar
Trinklein ND, Aldred SJ, Saldanha AJ, Myers RM: Identification and functional analysis of human transcriptional promoters. Genome Res. 2003, 13: 308-312. 10.1101/gr.794803.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imanishi T, Itoh T, Suzuki Y, et al: Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol. 2004, 2: e162-10.1371/journal.pbio.0020162.
Article
PubMed Central
PubMed
Google Scholar
Suzuki Y, Yamashita R, Sugano S, Nakai K: DBTSS, DataBase of Transcriptional Start Sites: Progress report 2004. Nucleic Acids Res. 2004, 32: D78-D81. 10.1093/nar/gkh076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki Y, Yamashita R, Shirota M, et al: Large-scale collection and characterization of promoters of human and mouse genes. In Silico Biol. 2004, 4: 429-444.
PubMed
Google Scholar
Rodriguez-Jato S, Nicholls RD, Driscoll DJ, Yang TP: Characterization of cis- and trans-acting elements in the imprinted human SNURF-SNRPN locus. Nucleic Acids Res. 2005, 33: 4740-4753. 10.1093/nar/gki786.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lettice LA, Heaney SJ, Purdie LA, et al: A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyl. Hum Mol Genet. 2003, 12: 1725-1735. 10.1093/hmg/ddg180.
Article
CAS
PubMed
Google Scholar
The ENCODE (ENCyclopedia Of DNA Elements) Project: Science. 2004, 306: 636-640.
Article
CAS
Google Scholar
Kolbe D, Taylor J, Elnitski L, et al: Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. Genome Res. 2004, 14: 700-707. 10.1101/gr.1976004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Elnitski L, Hardison RC, Li J, et al: Distinguishing regulatory DNA from neutral sites. Genome Res. 2003, 13: 64-72. 10.1101/gr.817703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Woolfe A, Goodson M, Goode DK, et al: Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 2005, 3: e7-10.1371/journal.pbio.0030007.
Article
PubMed Central
PubMed
CAS
Google Scholar
Dermitzakis ET, Reymond A, Lyle R, et al: Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature. 2002, 420: 578-582. 10.1038/nature01251.
Article
CAS
PubMed
Google Scholar
Cooper GM, Stone EA, Asimenos G, et al: Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005, 15: 901-913. 10.1101/gr.3577405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dermitzakis ET, Reymond A, Antonarakis SE: Conserved non-genic sequences -- An unexpected feature of mammalian genomes. Nat Rev Genet. 2005, 6: 151-157.
Article
CAS
PubMed
Google Scholar
Margulies EH, Blanchette M, Haussler D, Green ED: Identification and characterization of multi-species conserved sequences. Genome Res. 2003, 13: 2507-2518. 10.1101/gr.1602203.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boffelli D, McAuliffe J, Ovcharenko D, et al: Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science. 2003, 299: 1391-1394. 10.1126/science.1081331.
Article
CAS
PubMed
Google Scholar
Frazer KA, Tao H, Osoegawa K, et al: Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res. 2004, 14: 367-372. 10.1101/gr.1961204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pennacchio LA, Rubin EM: Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet. 2001, 2: 100-109. 10.1038/35052548.
Article
CAS
PubMed
Google Scholar
Hardison RC: Comparative genomics. PLoS Biol. 2003, 1: E58-
Article
PubMed Central
PubMed
CAS
Google Scholar
Culi J, Modolell J: Proneural gene self-stimulation in neural precursors: An essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev. 1998, 12: 2036-2047. 10.1101/gad.12.13.2036.
Article
PubMed Central
CAS
PubMed
Google Scholar
Renucci A, Zappavigna V, Zàkàny J, et al: Comparison of mouse and human HOX-4 complexes defines conserved sequences involved in the regulation of Hox-4.4. EMBO J. 1992, 11: 1459-1468.
PubMed Central
CAS
PubMed
Google Scholar
Loots GG, Locksley RM, Blankespoor CM, et al: Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science. 2000, 288: 136-140. 10.1126/science.288.5463.136.
Article
CAS
PubMed
Google Scholar
Poulin F, Nobrega MA, Plajzer-Frick I, et al: In vivo characterization of a vertebrate ultraconserved enhancer. Genomics. 2005, 85: 774-781. 10.1016/j.ygeno.2005.03.003.
Article
CAS
PubMed
Google Scholar
Nobrega MA, Ovcharenko I, Afzal V, Rubin EM: Scanning human gene deserts for long-range enhancers. Science. 2003, 302: 413-10.1126/science.1088328.
Article
CAS
PubMed
Google Scholar
Kimura-Yoshida C, Kitajima K, Oda-Ishii I, et al: Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development. 2004, 131: 57-71. 10.1242/dev.00877.
Article
CAS
PubMed
Google Scholar
Uchikawa M, Takemoto T, Kamachi Y, Kondoh H: Efficient identification of regulatory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech Dev. 2004, 121: 1145-1158. 10.1016/j.mod.2004.05.009.
Article
CAS
PubMed
Google Scholar
Ganley AR, Hayashi K, Horiuchi T, Kobayashi T: Identifying gene-independent noncoding functional elements in the yeast ribosomal DNA by phylogenetic footprinting. Proc Natl Acad Sci USA. 2005, 102: 11787-11792. 10.1073/pnas.0504905102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie X, Lu J, Kulbokas EJ, et al: Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature. 2005, 434: 338-345. 10.1038/nature03441.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glazko GV, Koonin EV, Rogozin IB, Shabalina SA: A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet. 2003, 19: 119-124. 10.1016/S0168-9525(03)00016-7.
Article
CAS
PubMed
Google Scholar
Drake JA, Bird C, Nemesh J, et al: Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat Genet. 2006, 38: 223-227. 10.1038/ng1710.
Article
CAS
PubMed
Google Scholar
Altshuler D, Brooks LD, Chakravarti A, et al: A haplotype map of the human genome. Nature. 2005, 437: 1299-1320. 10.1038/nature04226.
Article
CAS
Google Scholar
Boffelli D, Nobrega MA, Rubin EM: Comparative genomics at the vertebrate extremes. Nat Rev Genet. 2004, 5: 456-465. 10.1038/nrg1350.
Article
CAS
PubMed
Google Scholar
Clark AG, Glanowski S, Nielsen R, et al: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003, 302: 1960-1963. 10.1126/science.1088821.
Article
CAS
PubMed
Google Scholar
Gilad Y, Bustamante CD, Lancet D, Paabo S: Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am J Hum Genet. 2003, 73: 489-501. 10.1086/378132.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kellis M, Patterson N, Endrizzi M, et al: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003, 423: 241-254. 10.1038/nature01644.
Article
CAS
PubMed
Google Scholar
Gibbs RA, Weinstock GM, Metzker ML, et al: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004, 428: 493-521.
Article
CAS
PubMed
Google Scholar
Kruglyak L, Nickerson DA: Variation is the spice of life. Nat Genet. 2001, 27: 234-236. 10.1038/85776.
Article
CAS
PubMed
Google Scholar
The International Consortium: A haplotype map of the human genome. Nature. 2005, 437: 1299-1320. 10.1038/nature04226.
Article
CAS
Google Scholar
Matsuzaki H, Dong S, Loi H, et al: Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods. 2004, 1: 109-111. 10.1038/nmeth718.
Article
CAS
PubMed
Google Scholar
Fakhrai-Rad H, Zheng J, Willis TD, et al: SNP discovery in pooled samples with mismatch repair detection. Genome Res. 2004, 14: 1404-1412. 10.1101/gr.2373904.
Article
PubMed Central
CAS
PubMed
Google Scholar