Zamore PD, Haley B: Ribo-gnome: The big world of small RNAs. Science. 2005, 309: 1519-1524. 10.1126/science.1111444.
Article
CAS
PubMed
Google Scholar
Eddy SR: Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001, 2: 919-929. 10.1038/35103511.
Article
CAS
PubMed
Google Scholar
Cullen BR: Derivation and function of small interfering RNAs and microRNAs. Virus Res. 2004, 102: 3-9. 10.1016/j.virusres.2004.01.009.
Article
CAS
PubMed
Google Scholar
Nakahara K, Carthew RW: Expanding roles for miRNAs and siRNAs in cell regulation. Curr Opin Cell Biol. 2004, 16: 127-133. 10.1016/j.ceb.2004.02.006.
Article
CAS
PubMed
Google Scholar
Sontheimer EJ, Carthew RW: Silence from within: Endogenous siRNAs and miRNAs. Cell. 2005, 122: 9-12. 10.1016/j.cell.2005.06.030.
Article
CAS
PubMed
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, et al: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998, 391: 806-811. 10.1038/35888.
Article
CAS
PubMed
Google Scholar
Hamilton AJ, Baulcombe DC: A species of small anti-sense RNA in posttranscriptional gene silencing in plants. Science. 1999, 286: 950-952. 10.1126/science.286.5441.950.
Article
CAS
PubMed
Google Scholar
Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000, 101: 25-33. 10.1016/S0092-8674(00)80620-0.
Article
CAS
PubMed
Google Scholar
Hannon GJ: RNA interference. Nature. 2002, 418: 244-251. 10.1038/418244a.
Article
CAS
PubMed
Google Scholar
McManus MT, Sharp PA: Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002, 3: 737-747. 10.1038/nrg908.
Article
CAS
PubMed
Google Scholar
Tuschl T: RNA interference and small interfering RNAs. Chembiochem. 2001, 2: 239-245. 10.1002/1439-7633(20010401)2:4<239::AID-CBIC239>3.0.CO;2-R.
Article
CAS
PubMed
Google Scholar
Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001, 409: 363-366. 10.1038/35053110.
Article
CAS
PubMed
Google Scholar
Hammond SM, Boettcher S, Caudy AA, Kobayashi R, et al: Argonaute2, a link between genetic and biochemical analyses ofRNAi. Science. 2001, 293: 1146-1150. 10.1126/science.1064023.
Article
CAS
PubMed
Google Scholar
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, et al: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001, 293: 834-838. 10.1126/science.1062961.
Article
CAS
PubMed
Google Scholar
Filipowicz W: RNAi: The nuts and bolts of the RISC machine. Cell. 2005, 122: 17-20. 10.1016/j.cell.2005.06.023.
Article
CAS
PubMed
Google Scholar
Hutvagner G, Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002, 297: 2056-2060. 10.1126/science.1073827.
Article
CAS
PubMed
Google Scholar
Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, et al: Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 2002, 110: 563-574. 10.1016/S0092-8674(02)00908-X.
Article
CAS
PubMed
Google Scholar
Chen PY, Manninga H, Slanchev K, Chien M, et al: The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 2005, 19: 1288-1293. 10.1101/gad.1310605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, et al: Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002, 12: 735-739. 10.1016/S0960-9822(02)00809-6.
Article
CAS
PubMed
Google Scholar
Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001, 294: 858-862. 10.1126/science.1065062.
Article
CAS
PubMed
Google Scholar
Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001, 294: 862-864. 10.1126/science.1065329.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, et al: MicroRNAs in plants. Genes Dev. 2002, 16: 1616-1626. 10.1101/gad.1004402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee RC, Feinbaum RL, Ambros V: The C. elegans het-erochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-l4. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, et al: The 21-nt let-7 RNA regulates developmental timing in C. elegans. Nature. 2000, 403: 901-906. 10.1038/35002607.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res. 2004, 32D: 109-111.
Article
CAS
Google Scholar
Ambros V, Bartel B, Bartel DP, Burge CB, et al: A uniform system for microRNA annotation. RNA. 2003, 9: 277-279. 10.1261/rna.2183803.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36D: 154-158.
Google Scholar
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 2001, 294: 853-858. 10.1126/science.1064921.
Article
CAS
PubMed
Google Scholar
Pasquinelli AE, Reinhart BJ, Slack FJ, Martindale MQ, et al: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000, 408: 86-89. 10.1038/35040556.
Article
CAS
PubMed
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007, 129: 1401-1414. 10.1016/j.cell.2007.04.040.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dostie J, Mourelatos Z, Yang M, Sharma A, et al: Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003, 9: 180-186. 10.1261/rna.2141503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lagos-Quintana M, Rauhut R, Meyer J, Borkhard A, et al: New microRNAs from mouse and human. RNA. 2003, 9: 175-179. 10.1261/rna.2146903.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, et al: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004, 5: R13-10.1186/gb-2004-5-3-r13.
Article
PubMed Central
PubMed
Google Scholar
Kim VN: MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005, 6: 376-385.
Article
CAS
PubMed
Google Scholar
Lee Y, Kim M, Han J, Yeom KH, et al: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cai X, Hagedorn CH, Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004, 10: 1957-1966. 10.1261/rna.7135204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han J, Lee Y, Yeom KH, Kim YK, et al: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004, 18: 3016-3027. 10.1101/gad.1262504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lund E, Guttinger S, Calado A, Dahlberg JE, et al: Nuclear export of microRNA precursors. Science. 2004, 303: 95-98. 10.1126/science.1090599.
Article
CAS
PubMed
Google Scholar
Okamura K, Ishizuka A, Siomi H, Siomi MC: Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004, 18: 1655-1666. 10.1101/gad.1210204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esau C, Kang S, Peralta E, Hanson E, et al: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004, 279: 52361-52365. 10.1074/jbc.C400438200.
Article
CAS
PubMed
Google Scholar
Hornstein E, Mansfield JH, Yekta S, Hu JK, et al: The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005, 438: 671-674. 10.1038/nature04138.
Article
CAS
PubMed
Google Scholar
Xu P, Vernooy SY, Guo M, Hay BA: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003, 13: 790-795. 10.1016/S0960-9822(03)00250-1.
Article
CAS
PubMed
Google Scholar
Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardi-ogenesis. Nature. 2005, 436: 214-220. 10.1038/nature03817.
Article
CAS
PubMed
Google Scholar
Leung AK, Sharp PA: MicroRNAs: A safeguard against turmoil?. Cell. 2007, 130: 581-585. 10.1016/j.cell.2007.08.010.
Article
CAS
PubMed
Google Scholar
Bernstein E, Kim SY, Carmell MA, Murchison EP, et al: Dicer is essential for mouse development. Nat Genet. 2003, 35: 215-217. 10.1038/ng1253.
Article
CAS
PubMed
Google Scholar
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, et al: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005, 19: 485-501.
Article
CAS
Google Scholar
Murchison EP, Partridge JF, Tam OH, Cheloufi S, et al: Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA. 2005, 102: 12135-12140. 10.1073/pnas.0505479102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yi R, Poy MN, Stoffel M, Fuchs E: A skin microRNA promotes differentiation by repressing "sternness". Nature. 2008, 452: 225-229. 10.1038/nature06642.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 2006, 6: 857-866. 10.1038/nrc1997.
Article
CAS
PubMed
Google Scholar
Kumar MS, Lu J, Mercer KL, Golub TR, et al: Impaired microRNA processing enhances cellular transformation and tumorigen-esis. Nat Genet. 2007, 39: 673-677. 10.1038/ng2003.
Article
CAS
PubMed
Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, et al: MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838. 10.1038/nature03702.
Article
CAS
PubMed
Google Scholar
Tavazoie SF, Alarco C, Oskarsson T, Padua D, et al: Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008, 451: 147-152. 10.1038/nature06487.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu SL, Chen HY, Yang PC, Chen JJ: Unique microRNA signature and clinical outcome of cancers. DNA Cell Biol. 2007, 26: 283-292. 10.1089/dna.2006.0555.
Article
CAS
PubMed
Google Scholar
Zhang B, Pan X, Cobb GP, Anderson TA: MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302: 1-12. 10.1016/j.ydbio.2006.08.028.
Article
CAS
PubMed
Google Scholar
Chang S, Johnston RJJ, Frokjaer-Jensen C, Lockery S, et al: MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004, 430: 785-798. 10.1038/nature02752.
Article
CAS
PubMed
Google Scholar
Johnston RJ, Hobert O: A microRNA controlling left/right neuronal asymmetry Caenorhabditis elegans. Nature. 2003, 426: 845-849. 10.1038/nature02255.
Article
CAS
PubMed
Google Scholar
Brennecke J, Hipfner DR, Stark A, Russell RB, et al: bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003, 113: 25-36. 10.1016/S0092-8674(03)00231-9.
Article
CAS
PubMed
Google Scholar
Li X, Carthew RW: A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell. 2005, 123: 1267-1277. 10.1016/j.cell.2005.10.040.
Article
CAS
PubMed
Google Scholar
Chen CZ, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004, 303: 83-86. 10.1126/science.1091903.
Article
CAS
PubMed
Google Scholar
Ryan DG, Oliveira-Fernandes M, Lavker RM: MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis. 2006, 12: 1175-1184.
CAS
PubMed
Google Scholar
Yekta S, Shih IH, Bartel DP: Micro-RNA-directed cleavage of HOXB8 mRNA. Science. 2004, 304: 594-596. 10.1126/science.1097434.
Article
CAS
PubMed
Google Scholar
Kim HK, Lee YS, Sivaprasad U, Malhotra A, et al: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006, 174: 677-687. 10.1083/jcb.200603008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, et al: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309: 310-311. 10.1126/science.1114519.
Article
CAS
PubMed
Google Scholar
Lee Y, Ahn C, Han J, Choi H, et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957.
Article
CAS
PubMed
Google Scholar
Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, et al: Stem cell division is regulated by the microRNA pathway. Nature. 2005, 435: 974-978. 10.1038/nature03816.
Article
CAS
PubMed
Google Scholar
Carmell MA, Xuan Z, Zhang MQ, Hannon GJ: The Argonate family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002, 16: 2733-2742. 10.1101/gad.1026102.
Article
CAS
PubMed
Google Scholar
Hutvagner G, Simard MJ: Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol. 2008, 9: 22-32. 10.1038/nrm2321.
Article
CAS
PubMed
Google Scholar
Peters L, Meister G: Argonaute proteins: Mediators of RNA silencing. Mol Cell. 2007, 26: 611-623. 10.1016/j.molcel.2007.05.001.
Article
CAS
PubMed
Google Scholar
Cox DN, Chao A, Baker J, Chang L, et al: A novel class of evolutionary conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998, 12: 3715-3727. 10.1101/gad.12.23.3715.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sharma AK, Nelson MC, Brandt JE, Wessman M, et al: Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood. 2001, 97: 426-434. 10.1182/blood.V97.2.426.
Article
CAS
PubMed
Google Scholar
Qiao D, Zeeman AM, Deng W, Looijenga LH, et al: Molecular characterization of of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene. 2002, 21: 3988-3999. 10.1038/sj.onc.1205505.
Article
CAS
PubMed
Google Scholar
Kataoka Y, Takeichi M, Uemura T: Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells. 2001, 6: 313-325. 10.1046/j.1365-2443.2001.00427.x.
Article
CAS
PubMed
Google Scholar
Liu J, Carmell MA, Rivas FV, Marsden CG, et al: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004, 305: 1437-1441. 10.1126/science.1102513.
Article
CAS
PubMed
Google Scholar
Houbaviy HB, Murray MF, Sharp PA: Embryonic stem cell-specific microRNAs. Dev Cell. 2003, 5: 351-358. 10.1016/S1534-5807(03)00227-2.
Article
CAS
PubMed
Google Scholar
Lakshmipathy U, Love B, Goff LA, Jornsten R, et al: MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 2007, 16: 1003-1016. 10.1089/scd.2007.0026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suh M-R, Lee Y, Kim JY, Kim S-K, et al: Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004, 270: 488-498. 10.1016/j.ydbio.2004.02.019.
Article
CAS
PubMed
Google Scholar
Tay YM, Tam WL, Ang YS, Gaughwin PM, et al: MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008, 26: 17-29. 10.1634/stemcells.2007-0295.
Article
CAS
PubMed
Google Scholar
Lu Y, Thomson JM, Wong HY, Hammond SM, et al: Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007, 310: 442-453. 10.1016/j.ydbio.2007.08.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, et al: A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007, 21: 3238-3243. 10.1101/gad.1616307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Di Iorio E, Barbaro V, Ruzza A, Ponzin D, et al: Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA. 2005, 102: 9523-9528. 10.1073/pnas.0503437102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mills AA, Zheng B, Wang XJ, Vogel H, et al: p63 is a pp53 homologue required for limb and epidermal morphogenesis. Nature. 1999, 398: 708-713. 10.1038/19531.
Article
CAS
PubMed
Google Scholar
Pellegrini G, Dellambra E, Golisano O, Martinelli E, et al: p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA. 2001, 98: 3156-3161. 10.1073/pnas.061032098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Senoo M, Pinto F, Crum CP, McKeon F: p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007, 129: 523-536. 10.1016/j.cell.2007.02.045.
Article
CAS
PubMed
Google Scholar
Yang A, Schweitzer R, Sun D, Kaghad M, et al: p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999, 398: 714-718. 10.1038/19539.
Article
CAS
PubMed
Google Scholar
Miller SJ, Lavker RM, Sun T-T: Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biophys Biochem Acta. 2005, 1756: 25-52.
CAS
Google Scholar
Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111. 10.1038/35102167.
Article
CAS
PubMed
Google Scholar
Tu SM, Lin SH, Logothetis CJ: Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol. 2002, 3: 508-513. 10.1016/S1470-2045(02)00820-3.
Article
CAS
PubMed
Google Scholar
He L, Thomson JM, Hermann MT, Hernandon-Monge E, et al: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833. 10.1038/nature03552.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, et al: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005, 435: 839-843. 10.1038/nature03677.
Article
PubMed
CAS
Google Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431: 350-355. 10.1038/nature02871.
Article
CAS
PubMed
Google Scholar
Andl T, Murchison EP, Liu F, Zhang Y, et al: The miRNA-processing enzyme Dicer is essential for the morphogenesis and maintenance ofhair follicles. Curr Biol. 2006, 16: 1041-1049. 10.1016/j.cub.2006.04.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cobb BS, Nesterova TB, Thompson E, Hertweck A, et al: T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 2005, 201: 1367-1373. 10.1084/jem.20050572.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yi R, O'Carroll D, Pasolli HA, Zhang Z, et al: Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006, 38: 356-362. 10.1038/ng1744.
Article
CAS
PubMed
Google Scholar
Chen JF, Murchison EP, Tang R, Callis TE, et al: Targeted deletion ofDicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA. 2008, 105: 2111-2116. 10.1073/pnas.0710228105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harris KS, Zhang Z, McManus MT, Harfe BD, et al: Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA. 2006, 103: 2208-2213. 10.1073/pnas.0510839103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, et al: MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007, 56: 2938-2945. 10.2337/db07-0175.
Article
CAS
PubMed
Google Scholar
O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, et al: Essential role for Dicer during skeletal muscle development. Dev Biol. 2007, 311: 359-368. 10.1016/j.ydbio.2007.08.032.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ashery-Padan R, Marquardt T, Zhou X, Gruss P: Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 2000, 14: 2701-2711. 10.1101/gad.184000.
Article
PubMed Central
CAS
PubMed
Google Scholar
St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, et al: Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997, 387: 406-409. 10.1038/387406a0.
Article
CAS
PubMed
Google Scholar
Chow RL, Lang RA: Early eye development in vertebrates. Ann Rev Cell Dev Biol. 2001, 17: 255-296. 10.1146/annurev.cellbio.17.1.255.
Article
CAS
Google Scholar
Wei ZG, Sun TT, Lavker RM: Rabbit conjunctival and corneal epithelial cells belong to two separate lineages. Invest Ophthalmol Vis Sci. 1996, 37: 523-533.
CAS
PubMed
Google Scholar
Damiani D, Alexander JJ, O'Rourke JR, McManus M, et al: Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci. 2008, 28: 4878-4887. 10.1523/JNEUROSCI.0828-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karali M, Peluso I, Marigo V, Banfi S: Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci. 2007, 48: 509-515. 10.1167/iovs.06-0866.
Article
PubMed
Google Scholar
Beebe DC, Coats JM: The lens organizes the anterior segment: Specification of neural crest cell differentiation in the avian eye. Dev Biol. 2000, 220: 424-431. 10.1006/dbio.2000.9638.
Article
CAS
PubMed
Google Scholar
Zak NB, Linsenmayer TF: Analysis of corneal development with monoclonal antibodies. I. Differentiation in isolated corneas. Dev Biol. 1985, 108: 443-454. 10.1016/0012-1606(85)90047-8.
Article
CAS
PubMed
Google Scholar
Makarev E, Spence JR, Del Rio-Tsonis K, Tsonis PA: Identification of microRNAs and other small RNAs from the adult newt eye. Mol Vis. 2006, 12: 1386-1391.
CAS
PubMed
Google Scholar
Tsonis PA, Call MK, Grogg MW, Sartor MA, et al: MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem Biophys Res Commun. 2007, 362: 940-945. 10.1016/j.bbrc.2007.08.077.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, et al: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798. 10.1016/S0092-8674(03)01018-3.
Article
CAS
PubMed
Google Scholar
Krek A, Grun D, Poy MN, Wolf R, et al: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536.
Article
CAS
PubMed
Google Scholar
Yu J, Ryan D, Getsios S, Oliveira-Fernandes M, et al: MicroRNA-184 antagonizes microRNA-205 to maintain the lipid phosphatase SHIP2 levels in epithelia. Proc Natl Acad Sci USA. 2008, 105: 19300-19305. 10.1073/pnas.0803992105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waring GO, Roth AM, Ekins MB: Clinical and pathologic description of 17 cases of corneal intraepithelial neoplasia. Am J Ophthalmol. 1984, 97: 547-559.
Article
PubMed
Google Scholar
Xu KP, Yin J, Yu FS: SRC-family tyrosine kinases in wound- and ligand-induced epidermal growth factor receptor activation in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2006, 47: 2832-2839. 10.1167/iovs.05-1361.
Article
PubMed Central
PubMed
Google Scholar
Kakazu A, Chandrasekher G, Bazan HE: HGF protects corneal epithelial cells from apoptosis by the PI-3K/Akt-1/Bad- but not the ERK1/2-mediated signaling pathway. Invest Ophthalmol Vis Sci. 2004, 45: 3485-3492. 10.1167/iovs.04-0372.
Article
PubMed
Google Scholar
Loscher CJ, Hokamp K, Kenna PF, Ivens AC, et al: Altered retinal microRNA expression profile in a mouse model of reti-nitis pigmentosa. Genome Biol. 2007, 8: R248-10.1186/gb-2007-8-11-r248.
Article
PubMed Central
PubMed
CAS
Google Scholar
Arora A, McKay GJ, Simpson DA: Prediction and verification of miRNA expression in human and rat retinas. Invest Ophthalmol Vis Sci. 2007, 48: 3962-3967. 10.1167/iovs.06-1221.
Article
PubMed
Google Scholar
Darnell DK, Kaur S, Stanislaw S, Konieczka JH, et al: MicroRNA expression during chick embryo development. Dev Dyn. 2006, 235: 3156-3165. 10.1002/dvdy.20956.
Article
CAS
PubMed
Google Scholar
Frederikse PH, Donnelly R, Partyka LM: miRNA and Dicer in the mammalian lens: Expression of brain-specific miRNAs in the lens. Histochem Cell Biol. 2006, 126: 1-8. 10.1007/s00418-005-0139-0.
Article
CAS
PubMed
Google Scholar
Conaco C, Otto S, Han JJ, Mandel G: Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA. 2006, 103: 2422-2427. 10.1073/pnas.0511041103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Visvanathan J, Lee S, Lee B, Lee JW, et al: The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007, 21: 744-749. 10.1101/gad.1519107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu S, Witmer PD, Lumayag S, Kovacs B, et al: MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007, 282: 25053-25066. 10.1074/jbc.M700501200.
Article
CAS
PubMed
Google Scholar
Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, et al: MicroRNA gene expression in the mouse inner ear. Brain Res. 2006, 1111: 95-104. 10.1016/j.brainres.2006.07.006.
Article
CAS
PubMed
Google Scholar
Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, et al: In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods. 2006, 3: 27-29. 10.1038/nmeth843.
Article
CAS
PubMed
Google Scholar
Deo M, Yu JY, Chung KH, Tippens M, et al: Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn. 2006, 235: 2538-2548. 10.1002/dvdy.20847.
Article
CAS
PubMed
Google Scholar
Bilen J, Liu N, Burnett BG, Pittman RN, et al: MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell. 2006, 24: 157-163. 10.1016/j.molcel.2006.07.030.
Article
CAS
PubMed
Google Scholar
Hartong DT, Berson EL, Dryja TP: Retinitis pigmentosa. Lancet. 2006, 368: 1795-1809. 10.1016/S0140-6736(06)69740-7.
Article
CAS
PubMed
Google Scholar
Dryja TP, McGee TL, Hahn LB, Cowley GS, et al: Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 1990, 323: 1302-1307. 10.1056/NEJM199011083231903.
Article
CAS
PubMed
Google Scholar
Li T, Snyder WK, Olsson JE, Dryja TP: Transgenic mice carrying the dominant rhodopsin mutation P347S: Evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 1996, 93: 14176-14181. 10.1073/pnas.93.24.14176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen JF, Mandel EM, Thomson JM, Wu Q, et al: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006, 38: 228-233. 10.1038/ng1725.
Article
PubMed Central
CAS
PubMed
Google Scholar
Luo X, Lin H, Pan Z, Xiao J, et al: Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem. 2008, 283: 20045-20052. 10.1074/jbc.M801035200.
Article
CAS
PubMed
Google Scholar
Xu C, Lu Y, Pan Z, Chu W, et al: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apopto-sis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007, 120: 3045-3052. 10.1242/jcs.010728.
Article
CAS
PubMed
Google Scholar
Yin VP, Thomson JM, Thummel R, Hyde DR, et al: Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev. 2008, 22: 728-733. 10.1101/gad.1641808.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen J, Yang X, Xie B, Chen Y, et al: MicroRNAs regulate ocular neovascularization. Mol Ther. 2008, 16: 1208-1216. 10.1038/mt.2008.104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Ransom JF, Li A, Vedantham V, et al: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2'. Cell. 2007, 129: 303-317. 10.1016/j.cell.2007.03.030.
Article
CAS
PubMed
Google Scholar
Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, et al: Silencing of microRNAs in vivo with antagomirs. Nature. 2005, 438: 685-689. 10.1038/nature04303.
Article
PubMed
CAS
Google Scholar