Janes PW, Saha N, Barton WA, Kolev MV, et al: Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005, 123: 291-304. 10.1016/j.cell.2005.08.014.
Article
CAS
PubMed
Google Scholar
Anders A, Gilbert S, Garten W, Postina R, et al: Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J. 2001, 15: 1837-1839.
CAS
PubMed
Google Scholar
Lum L, Reid MS, Blobel CP: Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem. 1998, 273: 26236-26247. 10.1074/jbc.273.40.26236.
Article
CAS
PubMed
Google Scholar
Howard L, Maciewicz RA, Blobel CP: Cloning and characterization of ADAM28: Evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J. 2000, 348: 21-27. 10.1042/0264-6021:3480021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schlomann U, Wildeboer D, Webster A, Antropova O, et al: The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem. 2002, 277: 48210-48219. 10.1074/jbc.M203355200.
Article
CAS
PubMed
Google Scholar
Andreini C, Banci L, Bertini I, Elmi S, et al: Comparative analysis of the ADAM and ADAMTS families. J Proteome Res. 2005, 4: 881-888. 10.1021/pr0500096.
Article
CAS
PubMed
Google Scholar
Niewiarowski S, McLane MA, Kloczewiak M, Stewart GJ: Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol. 1994, 31: 289-300.
CAS
PubMed
Google Scholar
Tomczuk M, Takahashi Y, Huang J, Murase S, et al: Role of multiple beta1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res. 2003, 290: 68-81. 10.1016/S0014-4827(03)00307-0.
Article
CAS
PubMed
Google Scholar
White JM: ADAMs: Modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol. 2003, 15: 598-606. 10.1016/j.ceb.2003.08.001.
Article
CAS
PubMed
Google Scholar
De Groot R, Bardhan A, Ramroop N, Lane DA, et al: Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 2009, 113: 5609-5616.
CAS
PubMed
Google Scholar
Smith KM, Gaultier A, Cousin H, Alfandari D, et al: The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol. 2002, 159: 893-902. 10.1083/jcb.200206023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gerhardt S, Hassall G, Hawtin P, McCall E, et al: Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol. 2007, 373: 891-902. 10.1016/j.jmb.2007.07.047.
Article
CAS
PubMed
Google Scholar
Edwards DR, Handsley MM, Pennington CJ: The ADAM metalloproteinases. Mol Aspects Med. 2008, 29: 258-289. 10.1016/j.mam.2008.08.001.
Article
CAS
PubMed
Google Scholar
Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, et al: Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation. 1999, 100: 1423-1431. 10.1161/01.CIR.100.13.1423.
Article
CAS
PubMed
Google Scholar
Guo N, Krutzsch HC, Inman JK, Roberts DD: Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 1997, 57: 1735-1742.
CAS
PubMed
Google Scholar
Somerville RP, Longpre JM, Jungers KA, Engle JM, et al: Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem. 2003, 278: 9503-9513. 10.1074/jbc.M211009200.
Article
CAS
PubMed
Google Scholar
Llamazare M, Cal S, Quesada V, Lopez-Otin C: Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON domain. J Biol Chem. 2003, 278: 13382-13389. 10.1074/jbc.M211900200.
Article
Google Scholar
Tortorella MD, Burn TC, Pratta MA, Abbaszade I, et al: Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science. 1999, 284: 1664-1666. 10.1126/science.284.5420.1664.
Article
CAS
PubMed
Google Scholar
De Groot R, Bardhan A, Ramroop N, Lane DA, et al: Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 2009, Vol
Google Scholar
Blobel CP: Metalloprotease-disintegrins: Links to cell adhesion and cleavage of TNF alpha and Notch. Cell. 1997, 90: 589-592. 10.1016/S0092-8674(00)80519-X.
Article
CAS
PubMed
Google Scholar
Sagane K, Ohya Y, Hasegawa Y, Tanaka I: Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: Novel human cellular disintegrins highly expressed in the brain. Biochem J. 1998, 334: 93-98.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sagane K, Yamazaki K, Mizui Y, Tanaka I: Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene. 1999, 236: 79-86. 10.1016/S0378-1119(99)00253-X.
Article
CAS
PubMed
Google Scholar
Takahashi E, Sagane K, Oki T, Yamazaki K, et al: Deficits in spatial learning and motor coordination in ADAM11-deficient mice. BMC Neurosci. 2006, 7: 19-10.1186/1471-2202-7-19.
Article
PubMed Central
PubMed
Google Scholar
Sagane K, Hayakawa K, Kai J, Hirohashi T, et al: Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci. 2005, 6: 33-10.1186/1471-2202-6-33.
Article
PubMed Central
PubMed
Google Scholar
Mitchell KJ, Pinson KI, Kelly OG, Brennan J, et al: Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet. 2001, 28: 241-249. 10.1038/90074.
Article
CAS
PubMed
Google Scholar
Frayne J, Hurd EA, Hall L: Human tMDC III: A sperm protein with a potential role in oocyte recognition. Mol Hum Reprod. 2002, 8: 817-822. 10.1093/molehr/8.9.817.
Article
CAS
PubMed
Google Scholar
Choi I, Woo JM, Hong S, Jung YK, et al: Identification and characterization of ADAM32 with testis-predominant gene expression. Gene. 2003, 304: 151-162.
Article
CAS
PubMed
Google Scholar
Cong L, Jia J: Promoter polymorphisms which regulate ADAM9 transcription are protective against sporadic Alzheimer's disease. Neurobiol Aging. 2009
Google Scholar
Wang F, Xu R, Zhu P, Hu J, et al: Preliminarily functional analysis of a cloned novel human gene ADAM29. Sci China C Life Sci. 2001, 44: 392-399. 10.1007/BF02879606.
Article
CAS
PubMed
Google Scholar
Hooft van Huijsduijnen R: ADAM 20 and 21: Two novel human testis-specific membrane metalloproteases with similarity to fertilin-alpha. Gene. 1998, 206: 273-282. 10.1016/S0378-1119(97)00597-0.
Article
CAS
PubMed
Google Scholar
Yang P, Baker KA, Hagg T: A disintegrin and metalloprotease 21 (ADAM21) is associated with neurogenesis and axonal growth in developing and adult rodent CNS. J Comp Neurol. 2005, 490: 163-179. 10.1002/cne.20659.
Article
CAS
PubMed
Google Scholar
Cerretti DP, Dubose RF, Black RA, Nelson N: Isolation of two novel metalloproteinase-disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochem Biophys Res Commun. 1999, 263: 810-815. 10.1006/bbrc.1999.1322.
Article
CAS
PubMed
Google Scholar
Bates EE, Fridman WH, Mueller CG: The ADAMDEC1 (decysin) gene structure: Evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics. 2002, 54: 96-105. 10.1007/s00251-002-0430-3.
Article
CAS
PubMed
Google Scholar
Zhao Z, Tang L, Deng Z, Wen L, et al: Essential role of ADAM28 in regulating the proliferation and differentiation of human dental papilla mesenchymal cells (hDPMCs). Histochem Cell Biol. 2008, 130: 1015-1025. 10.1007/s00418-008-0467-y.
Article
CAS
PubMed
Google Scholar
Oh J, Woo JM, Choi E, Kim T, et al: Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun. 2005, 331: 1374-1383. 10.1016/j.bbrc.2005.04.067.
Article
CAS
PubMed
Google Scholar
Mueller CG, Rissoan MC, Salinas B, Ait-Yahia S, et al: Polymerase chain reaction selects a novel disintegrin proteinase from CD40-activated germinal center dendritic cells. J Exp Med. 1997, 186: 655-663. 10.1084/jem.186.5.655.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhong JL, Poghosyan Z, Pennington CJ, Scott X, et al: Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma. Mol Cancer Res. 2008, 6: 383-394. 10.1158/1541-7786.MCR-07-2028.
Article
CAS
PubMed
Google Scholar
Thongngarm T, Jameekornrak A, Limwongse C, Sangasapaviliya A, et al: Association between ADAM33 polymorphisms and asthma in a Thai population. Asian Pac J Allergy Immunol. 2008, 26: 205-211.
CAS
PubMed
Google Scholar
Hirota T, Hasegawa K, Obara K, Matsuda A, et al: Association between ADAM33 polymorphisms and adult asthma in the Japanese population. Clin Exp Allergy. 2006, 36: 884-891. 10.1111/j.1365-2222.2006.02522.x.
Article
CAS
PubMed
Google Scholar
Chiba Y, Onoda S, Hattori Y, Maitani Y, et al: Upregulation of ADAM8 in the airways of mice with allergic bronchial asthma. Lung. 2009, 187: 179-185. 10.1007/s00408-009-9145-7.
Article
CAS
PubMed
Google Scholar
King NE, Zimmermann N, Pope SM, Fulkerson PC, et al: Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am J Respir Cell Mol Biol. 2004, 31: 257-265. 10.1165/rcmb.2004-0026OC.
Article
CAS
PubMed
Google Scholar
Sahin U, Weskamp G, Kelly K, Zhou HM, et al: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004, 164: 769-779. 10.1083/jcb.200307137.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Y, Herrera AH, Li Y, Belani KK, et al: Regulation of mature ADAM17 by redox agents for L-selectin shedding. J Immunol. 2009, 182: 2449-2457. 10.4049/jimmunol.0802770.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dierker T, Dreier R, Petersen A, Bordych C, et al: Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem. 2009, 284: 8013-8022. 10.1074/jbc.M806838200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brynskov J, Foegh P, Pedersen G, Ellervik C, et al: Tumour necrosis factor alpha converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease. Gut. 2002, 51: 37-43. 10.1136/gut.51.1.37.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oh ST, Schramme A, Stark A, Tilgen W, et al: The disintegrin-metalloproteinases ADAM 10, 12 and 17 are upregulated in invading peripheral tumor cells of basal cell carcinomas. J Cutan Pathol. 2009, 36: 395-401. 10.1111/j.1600-0560.2008.01082.x.
Article
PubMed
Google Scholar
Mezyk-Kopec R, Bzowska M, Stalinska K, Chelmicki T, et al: Identification of ADAM10 as a major TNF sheddase in ADAM17-deficient fibroblasts. Cytokine. 2009, 46: 309-315. 10.1016/j.cyto.2009.03.002.
Article
CAS
PubMed
Google Scholar
Porter S, Clark IM, Kevorkian L, Edwards DR: The ADAMTS metalloproteinases. Biochem J. 2005, 386: 15-27. 10.1042/BJ20040424.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blelloch R, Kimble J: Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature. 1999, 399: 586-590. 10.1038/21196.
Article
CAS
PubMed
Google Scholar
Liu CJ: The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. Nat Clin Pract Rheumatol. 2009, 5: 38-45. 10.1038/ncprheum0961.
Article
PubMed Central
PubMed
Google Scholar
Nagase H, Kashiwagi M: Aggrecanases and cartilage matrix degradation. Arthritis Res Ther. 2003, 5: 94-103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fosang AJ, Rogerson FM, East CJ, Stanton H: ADAMTS-5: The story so far. Eur Cell Mater. 2008, 15: 11-26.
CAS
PubMed
Google Scholar
Somerville RP, Longpre JM, Apel ED, Lewis RM, et al: ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem. 2004, 279: 35159-35175. 10.1074/jbc.M402380200.
Article
CAS
PubMed
Google Scholar
Nardi JB, Martos R, Walden KK, Lampe DJ, et al: Expression of lacunin, a large multidomain extracellular matrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. Insect Biochem Mol Biol. 1999, 29: 883-897. 10.1016/S0965-1748(99)00064-8.
Article
CAS
PubMed
Google Scholar
Kutz WE, Wang LW, Dagoneau N, Odrcic KJ, et al: Functional analysis of an ADAMTS10 signal peptide mutation in Weill-Marchesani syndrome demonstrates a long-range effect on secretion of the full-length enzyme. Hum Mutat. 2008, 29: 1425-1434. 10.1002/humu.20797.
Article
CAS
PubMed
Google Scholar
Gao S, De Geyter C, Kossowska K, Zhang H: FSH stimulates the expression of the ADAMTS-16 protease in mature human ovarian follicles. Mol Hum Reprod. 2007, 13: 465-471. 10.1093/molehr/gam037.
Article
CAS
PubMed
Google Scholar
Li SW, Arita M, Fertala A, Bao Y, et al: Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem J. 2001, 355: 271-278. 10.1042/0264-6021:3550271.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zheng X, Chung D, Takayama TK, Majerus EM, et al: Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001, 276: 41059-41063. 10.1074/jbc.C100515200.
Article
CAS
PubMed
Google Scholar
Bork P, Beckmann G: The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol. 1993, 231: 539-545. 10.1006/jmbi.1993.1305.
Article
CAS
PubMed
Google Scholar
Hirohata S, Wang LW, Miyagi M, Yan L, et al: Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J Biol Chem. 2002, 277: 12182-12189. 10.1074/jbc.M109665200.
Article
CAS
PubMed
Google Scholar
Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, et al: ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet. 2008, 40: 1119-1123. 10.1038/ng.199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall NG, Klenotic P, Anand-Apte B, Apte SS: ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases. Matrix Biol. 2003, 22: 501-510. 10.1016/S0945-053X(03)00075-1.
Article
CAS
PubMed
Google Scholar
Koo BH, Hurskainen T, Mielke K, Aung PP, et al: ADAMTSL3/punctin-2, a gene frequently mutated in colorectal tumors, is widely expressed in normal and malignant epithelial cells, vascular endothelial cells and other cell types, and its mRNA is reduced in colon cancer. Int J Cancer. 2007, 121: 1710-1716. 10.1002/ijc.22882.
Article
CAS
PubMed
Google Scholar
Buchner DA, Meisler MH: TSRC1, a widely expressed gene containing seven thrombospondin type I repeats. Gene. 2003, 307: 23-30.
Article
CAS
PubMed
Google Scholar
Ahram D, Sato TS, Kohilan A, Tayeh M, et al: A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis. Am J Hum Genet. 2009, 84: 274-278. 10.1016/j.ajhg.2009.01.007.
Article
PubMed Central
CAS
PubMed
Google Scholar