Willett WC. Balancing life-style and genomics research for disease prevention. Science. 2002;296:695–8.
Article
CAS
PubMed
Google Scholar
Rappaport SM, Smith MT. Epidemiology. Environment and disease risks. Science. 2010;330:460–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, Ritchie M, Schmitt C, Sarigiannis DA, Thomas DC, et al. Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health. 2017;38:279–94.
Article
PubMed
Google Scholar
Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.
Article
CAS
Google Scholar
Miller GW, Jones DP. The nature of nurture: refining the definition of the exposome. Toxicol Sci. 2014;137:1–2.
Article
CAS
PubMed
Google Scholar
Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, et al. The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122:535–44.
PubMed
PubMed Central
Google Scholar
Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, Kogevinas M, Kyrtopoulos S, Nieuwenhuijsen M, Phillips DH, et al. The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health. 2017;220:142–51.
Article
CAS
PubMed
Google Scholar
Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB. Biomonitoring in the era of the exposome. Environ Health Perspect. 2016;125:502–10.
Article
PubMed
PubMed Central
Google Scholar
Dennis KK, Auerbach SS, Balshaw DM, Cui Y, Fallin MD, Smith MT, Spira A, Sumner S, Miller GW. The importance of the biological impact of exposure to the concept of the exposome. Environ Health Perspect. 2016;124:1504–10.
Article
PubMed
PubMed Central
Google Scholar
Stingone JA, Buck Louis GM, Nakayama SF, Vermeulen RC, Kwok RK, Cui Y, Balshaw DM, Teitelbaum SL. Toward greater implementation of the exposome research paradigm within environmental epidemiology. Annu Rev Public Health. 2017;38:315–27.
Article
PubMed
Google Scholar
Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.
Article
CAS
PubMed
Google Scholar
Nicholson G, Rantalainen M, Maher AD, Li JV, Malmodin D, Ahmadi KR, Faber JH, Hallgrimsdottir IB, Barrett A, Toft H, et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol Syst Biol. 2011;7:525.
Article
PubMed
PubMed Central
Google Scholar
Ghini V, Saccenti E, Tenori L, Assfalg M, Luchinat C. Allostasis and resilience of the human individual metabolic phenotype. J Proteome Res. 2015;14:2951–62.
Article
CAS
PubMed
Google Scholar
Maitre L, Lau CE, Vizcaino E, Robinson O, Casas M, Siskos AP, Want EJ, Athersuch T, Slama R, Vrijheid M, et al. Assessment of metabolic phenotypic variability in children’s urine using 1H NMR spectroscopy. Sci Rep. 2017;7:46082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel CJ, Rehkopf DH, Leppert JT, Bortz WM, Cullen MR, Chertow GM, Ioannidis JP. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States national health and nutrition examination survey. Int J Epidemiol. 2013;42:1795–810.
Article
PubMed
PubMed Central
Google Scholar
Patel CJ, Cullen MR, Ioannidis JP, Butte AJ. Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol. 2012;41:828–43.
Article
PubMed
PubMed Central
Google Scholar
Patel CJ, Bhattacharya J, Butte AJ. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One. 2010;5:e10746.
Article
PubMed
PubMed Central
Google Scholar
McGinnis DP, Brownstein JS, Patel CJ. Environment-wide association study of blood pressure in the National Health and Nutrition Examination Survey (1999–2012). Sci Rep. 2016;6:30373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ioannidis JP. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med. 2016;35:1749–62.
Article
PubMed
Google Scholar
Ioannidis JP, Tarone R, McLaughlin JK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology. 2011;22:450–6.
Article
PubMed
Google Scholar
Patel CJ, Burford B, Ioannidis JP. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J Clin Epidemiol. 2015;68:1046–58.
Article
PubMed
PubMed Central
Google Scholar
Patel CJ, Manrai AK, Corona E, Kohane IS. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length. Int J Epidemiol. 2017;46:44–56.
PubMed
Google Scholar
Athersuch TJ. The role of metabolomics in characterizing the human exposome. Bioanalysis. 2012;4:2207–12.
Article
CAS
PubMed
Google Scholar
Athersuch T. Metabolome analyses in exposome studies: profiling methods for a vast chemical space. Arch Biochem Biophys. 2016;589:177–86.
Article
CAS
PubMed
Google Scholar
Athersuch TJ, Keun HC. Metabolic profiling in human exposome studies. Mutagenesis. 2015;30:755–62.
CAS
PubMed
Google Scholar
Dona AC, Jimenez B, Schafer H, Humpfer E, Spraul M, Lewis MR, Pearce JT, Holmes E, Lindon JC, Nicholson JK. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem. 2014;86:9887–94.
Article
CAS
PubMed
Google Scholar
Lewis MR, Pearce JT, Spagou K, Green M, Dona AC, Yuen AH, David M, Berry DJ, Chappell K, Horneffer-van der Sluis V, et al. Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Anal Chem. 2016;88:9004–13.
Article
CAS
PubMed
Google Scholar
Jones DP. Sequencing the exposome: a call to action. Tox Rep. 2016;3:29–45.
CAS
Google Scholar
Walker DI, Go YM, Liu K, Pennell KD, Jones DP. Population screening for biological and environmental properties of the human metabolic phenotype: implications for personalized medicine. In: Holmes E, Nicholson JK, Darzi AW, Lindon JC, editors. Metabolic Phenotyping in personalized and public healthcare. London: Elsevier; 2016. p. 167–211.
Comisarow MB, Marshall AG. Fourier-transform ion-cyclotron resonance spectroscopy. Chem Phys Lett. 1974;25:282–3.
Article
CAS
Google Scholar
Rodgers RP, Schaub TM, Marshall AG. Petroleomics: MS returns to its roots. Anal Chem. 2005;77:20. A-27 A
Article
Google Scholar
Johnson JM, Strobel FH, Reed M, Pohl J, Jones DP. A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clin Chim Acta. 2008;396:43–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.
Article
CAS
PubMed
Google Scholar
Go YM, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, Strobel F, Quyyumi AA, Ziegler TR, Pennell KD, et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol Sci. 2015;148:531–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. The blood exposome and its role in discovering causes of disease. Environ Health Perspect. 2014;122:769–74.
PubMed
PubMed Central
Google Scholar
Walker DI, Mallon CT, Hopke PK, Uppal K, Go YM, Rohrbeck P, Pennell KD, Jones DP. Deployment-associated exposure surveillance with high-resolution metabolomics. J Occup Environ Med. 2016;58:S12–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uppal K, Walker DI, Liu K, Li S, Go YM, Jones DP. Computational metabolomics: a framework for the million metabolome. Chem Res Toxicol. 2016;29:1956–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JM, Yu T, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst. 2010;135:2864–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warth B, Spangler S, Fang M, Johnson CH, Forsberg EM, Granados A, Martin RL, Domingo-Almenara X, Huan T, Rinehart D, et al. Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal Chem. 2017;89:11505–13.
Article
CAS
PubMed
Google Scholar
Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics. 2013;9:S132–43.
Article
PubMed
Google Scholar
Liu KH, Walker DI, Uppal K, Tran V, Rohrbeck P, Mallon TM, Jones DP. High-resolution metabolomics assessment of military personnel: evaluating analytical strategies for chemical detection. J Occup Environ Med. 2016;58:S53–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu T, Park Y, Johnson JM, Jones DP. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics. 2009;25:1930–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, Trausinger G, Sinner F, Pieber T, Magnes C. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinform. 2015;16:118.
Article
Google Scholar
Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, Jones DP. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform. 2013;14:15.
Article
Google Scholar
Uppal K, Walker DI, Jones DP. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem. 2017;89:1063–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205.
Article
CAS
PubMed
Google Scholar
Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40:W127–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9:e1003123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker DI, Uppal K, Zhang L, Vermeulen R, Smith M, Hu W, Purdue MP, Tang X, Reiss B, Kim S, et al. High-resolution metabolomics of occupational exposure to trichloroethylene. Int J Epidemiol. 2016;45:1517–27.
Article
PubMed
PubMed Central
Google Scholar
Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN—a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.
Article
CAS
PubMed
Google Scholar
Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, Djoumbou Y, Mandal R, Aziat F, Dong E, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–7.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:10.
Article
Google Scholar
Trupp M, Altman T, Fulcher CA, Caspi R, Krummenacker M, Paley S, Karp PD. Beyond the genome (BTG) is a (PGDB) pathway genome database: HumanCyc. Genome Biol. 2010;11:O12.
Zamboni N, Saghatelian A, Patti GJ. Defining the metabolome: size, flux, and regulation. Mol Cell. 2015;58:699–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12:797–813.
Article
CAS
PubMed
Google Scholar
Metz TO, Baker ES, Schymanski EL, Renslow RS, Thomas DG, Causon TJ, Webb IK, Hann S, Smith RD, Teeguarden JG. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis. 2017;9:81–98.
Article
PubMed
Google Scholar
Castle AL, Fiehn O, Kaddurah-Daouk R, Lindon JC. Metabolomics standards workshop and the development of international standards for reporting metabolomics experimental results. Brief Bioinform. 2006;7:159–65.
Article
CAS
PubMed
Google Scholar
Uppal K, Ma C, Go YM, Jones DP. xMWAS: a data-driven integration and differential network analysis tool. Bioinformatics. 2017:btx656.
Roede JR, Uppal K, Park Y, Tran V, Jones DP. Transcriptome-metabolome wide association study (TMWAS) of maneb and paraquat neurotoxicity reveals network level interactions in toxicologic mechanism. Toxicol Rep. 2014;1:435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, Fitch A, Greenblatt RM, Kingsley L, Guidot DM, et al. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome. 2016;4:3.
Article
PubMed
PubMed Central
Google Scholar
Chandler JD, Hu X, Ko EJ, Park S, Lee YT, Orr M, Fernandes J, Uppal K, Kang SM, Jones DP, Go YM. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol. 2016;311:R906–16.
Article
PubMed
PubMed Central
Google Scholar
Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008;105:9880–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturmberg JP, Bennett JM, Martin CM, Picard M. ‘Multimorbidity’ as the manifestation of network disturbances. J Eval Clin Pract. 2017;23:199–208.
Article
PubMed
Google Scholar
Sturla SJ, Boobis AR, FitzGerald RE, Hoeng J, Kavlock RJ, Schirmer K, Whelan M, Wilks MF, Peitsch MC. Systems toxicology: from basic research to risk assessment. Chem Res Toxicol. 2014;27:314–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ioannidis JP, Loy EY, Poulton R, Chia KS. Researching genetic versus nongenetic determinants of disease: a comparison and proposed unification. Sci Transl Med. 2009;1:7ps8.
Article
PubMed
Google Scholar
Patel CJ, Ji J, Sundquist J, Ioannidis JP, Sundquist K. Systematic assessment of pharmaceutical prescriptions in association with cancer risk: a method to conduct a population-wide medication-wide longitudinal study. Sci Rep. 2016;6:31308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel CJ, Ioannidis JP. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68:1096–100.
Article
PubMed
PubMed Central
Google Scholar
Patel CJ, Manrai AK. Development of exposome correlation globes to map out environment-wide associations. In: Altman RB, Dunker AK, Hunter L, Ritchie MD, Murray TA, Klein TE, editors. Biocomputing 2015 Proceedings of the Pacific Symposium: Kohala Coast, Hawaii, USA: 4-8 January 2015. New Jersey: World Scientific Pub Co Inc.; 2015. p. 231-42.
Patel CJ, Pho N, McDuffie M, Easton-Marks J, Kothan C, Kohane IS, Avillach P. A database of human exposomes and phenomes from the US National Health and Nutrition Examination Survey. Sci Data. 2017;3.
Patel CJ, Ioannidis JP. Studying the elusive environment in large scale. JAMA. 2014;311:2173–4.
Article
CAS
PubMed
PubMed Central
Google Scholar