Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157–60.
PubMed
PubMed Central
Google Scholar
National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. CDC COVID-19 Science Briefs. Atlanta (GA): Centers for Disease Control and Prevention (US); 2020–. Science Brief: Omicron (B.1.1.529) Variant. 2021 Dec 2.
Queen D. Another year another variant: COVID 3.0-omicron. Int Wound J. 2022;19(1):5. https://doi.org/10.1111/iwj.13739.
Article
PubMed
Google Scholar
Abdullah F, Myers J, Basu D, Tintinger G, Ueckermann V, Mathebula M, et al. Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in tshwane, south africa. Int J Infect Dis. 2022;116:38–42. https://doi.org/10.1016/j.ijid.2021.12.357 (Epub 2021 Dec 28).
Article
CAS
PubMed
Google Scholar
Colona VL, Vasiliou V, Watt J, Novelli G, Reichardt JKV. Update on human genetic susceptibility to COVID-19: susceptibility to virus and response. Hum Genom. 2021;15(1):57. https://doi.org/10.1186/s40246-021-00356-x.Erratum.In:HumGenomics.2021Sep18;15(1):59.
Article
CAS
Google Scholar
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 20(5):533–534. https://doi.org/10.1016/S1473-3099(20)30120-1. Epub 2020 Feb 19. Erratum in: Lancet Infect Dis. 2020; 20(9):e215.
O’Toole Á, Hill V, Pybus OG, Watts A, Bogoch II, Khan K, et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Res. 2021;6:121.
PubMed
PubMed Central
Google Scholar
CDC. Centers for disease control and prevention. Covid.cdc.gov “Covid.cdc.gov “.2022; Retrieved 19/04, 2022, from https://covid.cdc.gov/covid-data-tracker.
Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, et al. Protection against the Omicron variant from previous SARS-CoV-2 Infection. N Engl J Med. 2022. https://doi.org/10.1056/NEJMc2200133.
Article
PubMed
PubMed Central
Google Scholar
Chaguza C, Coppi A, Earnest R, Ferguson D, Kerantzas N, Warner F, et al. Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons. Med (N Y). 2022. https://doi.org/10.1016/j.medj.2022.03.010.
Article
Google Scholar
Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science. 2022. https://doi.org/10.1126/science.abn4947.
Article
PubMed
PubMed Central
Google Scholar
COVID-19 Reinfection Data (2022). Retrieved 19/04; 2022, from https://coronavirus.health.ny.gov/covid-19-reinfection-data.
Novelli G, Biancolella M, Mehrian-Shai R, Colona VL, Brito AF, Grubaugh ND, et al. COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genom. 2021;15(1):27. https://doi.org/10.1186/s40246-021-00326-3.
Article
CAS
Google Scholar
Muhsen K, Maimon N, Mizrahi A, Varticovschi B, Bodenheimer O, Gelbshtein U, et al. Effects of BNT162b2 Covid-19 vaccine booster in long-term care facilities in Israel. N Engl J Med. 2022;386(4):399–401. https://doi.org/10.1056/NEJMc2117385 (Epub 2021 Dec 22).
Article
CAS
PubMed
Google Scholar
Tenforde MW, Self WH, Adams K, Gaglani M, Ginde AA, McNeal T, et al. Influenza and other viruses in the acutely Ill (IVY) network association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA. 2021;326(20):2043–54. https://doi.org/10.1001/jama.2021.19499.
Article
CAS
PubMed
Google Scholar
Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21(10):626–36. https://doi.org/10.1038/s41577-021-00592-1 (Epub 2021 Aug 9).
Article
CAS
PubMed
PubMed Central
Google Scholar
Collie S, Champion J, Moultrie H, Bekker LG, Gray G. Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. N Engl J Med. 2022;386(5):494–6. https://doi.org/10.1056/NEJMc2119270 (Epub 2021 Dec 29).
Article
PubMed
Google Scholar
Davis JT, Chinazzi M, Perra N, Mu K, Pastore Y, Piontti A, et al. Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature. 2021;600(7887):127–32. https://doi.org/10.1038/s41586-021-04130-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green MS. Did the hesitancy in declaring COVID-19 a pandemic reflect a need to redefine the term? Lancet. 2020;395(10229):1034–5. https://doi.org/10.1016/S0140-6736(20)30630-9 (Epub 2020 Mar 13).
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. World Health Organization. Who.int “who.int”. 2022; Retrieved 19/04, 2022, from https://www.who.int/news/item/13-10-2021-who-announces-proposed-members-of-its-scientific-advisory-group-for-the-origins-of-novel-pathogens-(sago).
COVID is here to stay. countries must decide how to adapt. Nature. 2022;601(7892):165. https://doi.org/10.1038/d41586-022-00057-y.
Article
CAS
Google Scholar
Adam D. Will Omicron end the pandemic? Here’s What Experts Say Nature. 2022;602(7895):20–1. https://doi.org/10.1038/d41586-022-00210-7.
Article
CAS
PubMed
Google Scholar
Happi CT, Nkengasong JN. Two years of COVID-19 in Africa: lessons for the world. Nature. 2022.
Servick K. Is it time to live with COVID-19? Some scientists warn of ‘endemic delusion’. Science. 2022.
Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 2022;602(7897):481–6. https://doi.org/10.1038/s41586-021-04353-x (Epub 2021 Dec 23).
Article
CAS
PubMed
Google Scholar
Kumar A, Narayan RK, Prasoon P, Kumari C, Kaur G, Kumar S, et al. COVID-19 mechanisms in the human body-what we know so far. Front Immunol. 2021;1(12):693938. https://doi.org/10.3389/fimmu.2021.693938.
Article
CAS
Google Scholar
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. https://doi.org/10.1016/S0140-6736(20)30211-7 (Epub 2020 Jan 30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Novelli A, Andreani M, Biancolella M, Liberatoscioli L, Passarelli C, Colona VL, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610–4. https://doi.org/10.1111/tan.14047 (Epub 2020 Sep 3).
Article
CAS
PubMed
Google Scholar
Chao JY, Derespina KR, Herold BC, Goldman DL, Aldrich M, Weingarten J, et al. Clinical characteristics and outcomes of hospitalized and critically Ill children and adolescents with coronavirus disease 2019 at a tertiary care medical center in New York City. J Pediatr. 2020;223:14-19.e2. https://doi.org/10.1016/j.jpeds.2020.05.006 (Epub 2020 May 11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020;41(12):1100–15. https://doi.org/10.1016/j.it.2020.10.004 (Epub 2020 Oct 14).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Bastard P, Human Genetic Effort COVID, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022. https://doi.org/10.1038/s41586-022-04447-0.
Article
PubMed
PubMed Central
Google Scholar
Colona VL, Biancolella M, Novelli A, Novelli G. Will GWAS eventually allow the identification of genomic biomarkers for COVID-19 severity and mortality? J Clin Invest. 2021;131(23):e155011. https://doi.org/10.1172/JCI155011.
Article
CAS
PubMed
Google Scholar
Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021;398(10302):747–58. https://doi.org/10.1016/S0140-6736(21)01755-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and predictors of long COVID. Nat Med. 2021; 27(4):626–631. https://doi.org/10.1038/s41591-021-01292-y. Epub 2021 Mar 10. Erratum in: Nat Med. 2021; 27(6):1116.
Visco V, Vitale C, Rispoli A, Izzo C, Virtuoso N, Ferruzzi GJ, et al. Post-COVID-19 Syndrome: Involvement and Interactions between respiratory, cardiovascular and nervous systems. J Clin Med. 2022;11(3):524. https://doi.org/10.3390/jcm11030524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser E. Persistent pulmonary disease after acute covid-19. BMJ. 2021;21(373):n1565. https://doi.org/10.1136/bmj.n1565.
Article
Google Scholar
Grist JT, Chen M, Collier GJ, Raman B, Abueid G, McIntyre A, et al. Hyperpolarized 129Xe MRI abnormalities in dyspneic patients 3 months after COVID-19 pneumonia: preliminary results. Radiology. 2021;301(1):E353–60. https://doi.org/10.1148/radiol.2021210033 (Epub 2021 May 25).
Article
PubMed
Google Scholar
Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, Solis-Navarro L, Burgos F, Puppo H, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2021;27(4):328–37. https://doi.org/10.1016/j.pulmoe.2020.10.013.
Article
CAS
PubMed
Google Scholar
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-021-01283-z (Epub 2021 Mar 22).
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgess LC, Venugopalan L, Badger J, Street T, Alon G, Jarvis JC, et al. Effect of neuromuscular electrical stimulation on the recovery of people with COVID-19 admitted to the intensive care unit: a narrative review. J Rehabil Med. 2021;53(3):jrm00164. https://doi.org/10.2340/16501977-2805.
Article
PubMed
Google Scholar
Fernández-de-Las-Peñas C, Rodríguez-Jiménez J, Fuensalida-Novo S, Palacios-Ceña M, Gómez-Mayordomo V, Florencio LL, et al. Myalgia as a symptom at hospital admission by severe acute respiratory syndrome coronavirus 2 infection is associated with persistent musculoskeletal pain as long-term post-COVID sequelae: a case-control study. Pain. 2021;162(12):2832–40. https://doi.org/10.1097/j.pain.0000000000002306.
Article
CAS
PubMed
Google Scholar
Farr E, Wolfe AR, Deshmukh S, Rydberg L, Soriano R, Walter JM, et al. Diaphragm dysfunction in severe COVID-19 as determined by neuromuscular ultrasound. Ann Clin Transl Neurol. 2021;8(8):1745–9. https://doi.org/10.1002/acn3.51416 (Epub 2021 Jul 11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez B, Nansoz S, Cameron DR, Z’Graggen WJ. Is myopathy part of long-Covid? Clin Neurophysiol. 2021;132(6):1241–2. https://doi.org/10.1016/j.clinph.2021.03.008 (Epub 2021 Mar 26).
Article
PubMed
PubMed Central
Google Scholar
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza RF, Santos NO, Dos Santos FA, et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4):700. https://doi.org/10.3390/v13040700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stöbe S, Richter S, Seige M, Stehr S, Laufs U, Hagendorff A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin Res Cardiol. 2020;109(12):1549–66. https://doi.org/10.1007/s00392-020-01727-5 (Epub 2020 Aug 14).
Article
CAS
PubMed
PubMed Central
Google Scholar
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27. https://doi.org/10.1016/S2215-0366(21)00084-5 (Epub 2021 Apr 6).
Article
PubMed
PubMed Central
Google Scholar
Garcia-Azorin D, Layos-Romero A, Porta-Etessam J, Membrilla JA, Caronna E, Gonzalez-Martinez A, et al. Post-COVID-19 persistent headache: a multicentric 9-months follow-up study of 905 patients. Cephalalgia. 2022;15:3331024211068074. https://doi.org/10.1177/03331024211068074.
Article
Google Scholar
Xydakis MS, Albers MW, Holbrook EH, Lyon DM, Shih RY, Frasnelli JA, et al. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 2021;20(9):753–61. https://doi.org/10.1016/S1474-4422(21)00182-4 (Epub 2021 Jul 30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzatenta A, Montagnini C, Brasacchio A, Sartucci F, Neri G. Electrophysiological and olfactometric evaluation of long-term COVID-19. Physiol Rep. 2021;9(18):e14992.
CAS
PubMed
PubMed Central
Google Scholar
Guedj E, Lazarini F, Morbelli S, Ceccaldi M, Hautefort C, Kas A, et al. Long COVID and the brain network of Proust’s madeleine: targeting the olfactory pathway. Clin Microbiol Infect. 2021;27(9):1196–8. https://doi.org/10.1016/j.cmi.2021.05.015 (Epub 2021 May 17).
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers.” Ann Clin Transl Neurol. 2021;8(5):1073–85. https://doi.org/10.1002/acn3.51350 (Epub 2021 Mar 30).
Article
CAS
PubMed
PubMed Central
Google Scholar
MacIntosh BJ, Ji X, Chen JJ, Gilboa A, Roudaia E, Sekuler AB, Gao F, et al. Brain structure and function in people recovering from COVID-19 after hospital discharge or self-isolation: a longitudinal observational study protocol. CMAJ Open. 2021;9(4):E1114–9. https://doi.org/10.9778/cmajo.20210023.
Article
PubMed
PubMed Central
Google Scholar
Lorkiewicz P, Waszkiewicz N. Biomarkers of Post-COVID depression. J Clin Med. 2021;10(18):4142. https://doi.org/10.3390/jcm10184142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raahimi MM, Kane A, Moore CE, Alareed AW. Late onset of Guillain-Barré syndrome following SARS-CoV-2 infection: part of “long COVID-19 syndrome”? BMJ Case Rep. 2021;14(1):e240178. https://doi.org/10.1136/bcr-2020-240178.
Article
PubMed
PubMed Central
Google Scholar
Kakumoto T, Kobayashi S, Yuuki H, Kainaga M, Shirota Y, Hamada M, et al. Cranial nerve involvement and dysautonomia in post-COVID-19 Guillain-Barré syndrome. Intern Med. 2021;60(21):3477–80. https://doi.org/10.2169/internalmedicine.7355-21 (Epub 2021 Aug 24).
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Bueno JA, García-Trujillo L, Urbaneja P, Ciano-Petersen NL, Postigo-Pozo MJ, Martínez-Tomás C, et al. Miller-fisher syndrome after SARS-CoV-2 infection. Eur J Neurol. 2020;27(9):1759–61. https://doi.org/10.1111/ene.14383.
Article
CAS
PubMed
Google Scholar
Salihefendic N, Zildzic M, Huseinagic H. Ischemic vasculitis as a cause of brain disorder’s in patients with long Covid: case report. Med Arch. 2021;75(6):471–4. https://doi.org/10.5455/medarh.2021.75.471-474.
Article
PubMed
PubMed Central
Google Scholar
Barizien N, Le Guen M, Russel S, Touche P, Huang F, Vallée A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci Rep. 2021;11(1):14042. https://doi.org/10.1038/s41598-021-93546-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Gyebi GA, Batiha GE. Covid-19-induced dysautonomia: a menace of sympathetic storm. ASN Neuro. 2021;13:17590914211057636. https://doi.org/10.1177/17590914211057635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bo HX, Li W, Yang Y, Wang Y, Zhang Q, Cheung T, et al. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol Med. 2021;51(6):1052–3. https://doi.org/10.1017/S0033291720000999 (Epub 2020 Mar 27).
Article
PubMed
Google Scholar
Gilio L, Galifi G, Centonze D, Stampanoni BM. Case report: overlap between long covid and functional neurological disorders. Front Neurol. 2022;28(12):811276. https://doi.org/10.3389/fneur.2021.811276.
Article
Google Scholar
Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18–22. https://doi.org/10.1016/j.bbi.2020.03.031 (Epub 2020 Mar 30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Azizi SA, Azizi SA. Neurological injuries in COVID-19 patients: direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. J Neurovirol. 2020;26(5):631–41. https://doi.org/10.1007/s13365-020-00903-7 (Epub 2020 Sep 2).
Article
CAS
PubMed
Google Scholar
Kanberg N, Simrén J, Edén A, Andersson LM, Nilsson S, Ashton NJ, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine. 2021;70: 103512. https://doi.org/10.1016/j.ebiom.2021.103512 (Epub 2021 Jul 29).
Article
CAS
PubMed
PubMed Central
Google Scholar
Carroll E, Neumann H, Aguero-Rosenfeld ME, Lighter J, Czeisler BM, Melmed K, et al. Post-COVID-19 inflammatory syndrome manifesting as refractory status epilepticus. Epilepsia. 2020;61(10):e135–9. https://doi.org/10.1111/epi.16683 (Epub 2020 Sep 18).
Article
CAS
PubMed
Google Scholar
Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267(8):2179–84. https://doi.org/10.1007/s00415-020-09929-7 (Epub 2020 May 26).
Article
CAS
PubMed
PubMed Central
Google Scholar
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/S1474-4422(20)30308-2 (Epub 2020 Oct 5).
Article
CAS
PubMed
PubMed Central
Google Scholar
Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022. https://doi.org/10.1038/s41586-022-04569-5.
Article
PubMed
PubMed Central
Google Scholar
Nolen LT, Mukerji SS, Mejia NI. Post-acute neurological consequences of COVID-19: an unequal burden. Nat Med. 2022;28(1):20–3. https://doi.org/10.1038/s41591-021-01647-5.
Article
CAS
PubMed
Google Scholar
The Lancet Neurology. Long COVID: understanding the neurological effects. Lancet Neurol. 2021;20(4):247. https://doi.org/10.1016/S1474-4422(21)00059-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarrott B, Head R, Pringle KG, Lumbers ER, Martin JH. “LONG COVID”-A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol Res Perspect. 2022;10(1):e00911. https://doi.org/10.1002/prp2.911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrillo S, Piermarini E, Pastore A, Vasco G, Schirinzi T, Carrozzo R, et al. Nrf2-inducers counteract neurodegeneration in frataxin-silenced motor neurons: disclosing new therapeutic targets for Friedreich’s ataxia. Int J Mol Sci. 2017;18(10):2173. https://doi.org/10.3390/ijms18102173.
Article
CAS
PubMed Central
Google Scholar
Petrillo S, Schirinzi T, Di Lazzaro G, D’Amico J, Colona VL, Bertini E, et al. Systemic activation of Nrf2 pathway in Parkinson’s disease. Mov Disord. 2020;35(1):180–4. https://doi.org/10.1002/mds.27878 (Epub 2019 Nov 4).
Article
CAS
PubMed
Google Scholar
Satoh T, Trudler D, Oh CK, Lipton SA. Potential therapeutic use of the rosemary diterpene carnosic acid for alzheimer’s disease, parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel). 2022;11(1):124. https://doi.org/10.3390/antiox11010124.
Article
CAS
Google Scholar
Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021;118(34):e2024358118. https://doi.org/10.1073/pnas.2024358118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rovere Querini P, De Lorenzo R, Conte C, Brioni E, Lanzani C, Yacoub MR, et al. Post-COVID-19 follow-up clinic: depicting chronicity of a new disease. Acta Biomed. 2020;91(9-S):22–8.
CAS
PubMed
PubMed Central
Google Scholar
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479(4):537–59. https://doi.org/10.1042/BCJ20220016.
Article
CAS
PubMed
Google Scholar
Casanova JL, Abel L. Mechanisms of viral inflammation and disease in humans. Science. 2021;374(6571):1080–6. https://doi.org/10.1126/science.abj7965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastassopoulou C, Gkizarioti Z, Patrinos GP, Tsakris A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum Genom. 2020;14(1):40. https://doi.org/10.1186/s40246-020-00290-4.
Article
CAS
Google Scholar
Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q, et al. A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nat Immunol. 2021; https://doi.org/10.1038/s41590-021-01030-z. Epub 2021 Oct 18. Erratum in: Nat Immunol. 2021 Nov 24.
Zhang Q, Bastard P, Effort CHG, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022. https://doi.org/10.1038/s41586-022-04447-0.
Article
PubMed
PubMed Central
Google Scholar
Fink-Baldauf IM, Stuart WD, Brewington JJ, Guo M, Maeda Y. CRISPRi links COVID-19 GWAS loci to LZTFL1 and RAVER1. EBioMedicine. 2022;75:103806. https://doi.org/10.1016/j.ebiom.2021.103806 (Epub 2022 Jan 6).
Article
CAS
PubMed
PubMed Central
Google Scholar
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–477. https://doi.org/10.1038/s41586-021-03767-x. Epub 2021 Jul 8.
Chamnanphon M, Pongpanich M, Suttichet TB, Jantarabenjakul W, Torvorapanit P, Putcharoen O, Sodsai P, Phokaew C, Hirankarn N, Chariyavilaskul P, Shotelersuk V. Host genetic factors of COVID-19 susceptibility and disease severity in a Thai population. J Hum Genet. 2022;11:1–7. https://doi.org/10.1038/s10038-021-01009-6.
Article
CAS
Google Scholar
Sánchez EG, Pérez-Núñez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines (Basel). 2017;5(4):42. https://doi.org/10.3390/vaccines5040042.
Article
CAS
Google Scholar
Regan JA, Abdulrahim JW, Bihlmeyer NA, Haynes C, Kwee LC, Patel MR, Shah SH. Phenome-wide association study of severe COVID-19 genetic risk variants. J Am Heart Assoc. 2022;11(5):e024004. https://doi.org/10.1161/JAHA.121.024004.
Article
PubMed
PubMed Central
Google Scholar
Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;12(4):9. https://doi.org/10.1186/1471-2350-4-9.
Article
CAS
Google Scholar
Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011;365(17):1612–23. https://doi.org/10.1056/NEJMra1100030.
Article
CAS
PubMed
Google Scholar
Dutta M, Dutta P, Medhi S, Borkakoty B, Biswas D. Polymorphism of HLA class I and class II alleles in influenza A(H1N1)pdm09 virus infected population of Assam Northeast India. J Med Virol. 2018;90(5):854–60. https://doi.org/10.1002/jmv.25018.
Article
CAS
PubMed
Google Scholar
Ma Y, Yuan B, Yi J, Zhuang R, Wang J, Zhang Y, et al. The genetic polymorphisms of HLA are strongly correlated with the disease severity after Hantaan virus infection in the Chinese Han population. Clin Dev Immunol. 2012;2012:308237. https://doi.org/10.1155/2012/308237 (Epub 2012 Oct 8).
Article
CAS
PubMed
PubMed Central
Google Scholar
Migliorini F, Torsiello E, Spiezia F, Oliva F, Tingart M, Maffulli N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):84. https://doi.org/10.1186/s40001-021-00563-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner J, Suwalski P, Holtgrewe M, Rakitko A, Thibeault C, Müller M, et al. Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01. EClinicalMedicine. 2021;40:101099. https://doi.org/10.1016/j.eclinm.2021.101099 (Epub 2021 Sep 2).
Article
PubMed
PubMed Central
Google Scholar
Latini A, Agolini E, Novelli A, Borgiani P, Giannini R, Gravina P, et al. COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes (Basel). 2020;11(9):1010. https://doi.org/10.3390/genes11091010.
Article
CAS
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052 (Epub 2020 Mar 5).
Article
PubMed
PubMed Central
Google Scholar
David A, Parkinson N, Peacock TP, Pairo-Castineira E, Khanna T, Cobat A, et al. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr Res Transl Med. 2022;70(2):103333. https://doi.org/10.1016/j.retram.2022.103333.
Article
PubMed
Google Scholar
Pandey RK, Srivastava A, Singh PP, Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. Infect Genet Evol. 2022;98:105206. https://doi.org/10.1016/j.meegid.2022.105206 (Epub 2022 Jan 5).
Article
CAS
PubMed
PubMed Central
Google Scholar
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, et al. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis. 2021;12(4):310. https://doi.org/10.1038/s41419-021-03513-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freitas AT, Calhau C, Antunes G, Araújo B, Bandeira M, Barreira S, et al. Vitamin D-related polymorphisms and vitamin D levels as risk biomarkers of COVID-19 disease severity. Sci Rep. 2021;11(1):20837. https://doi.org/10.1038/s41598-021-99952-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauss D, Freiwald T, McGregor R, Yan B, Wang L, Nova-Lamperti E, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat Immunol. 2022;23(1):62–74. https://doi.org/10.1038/s41590-021-01080-3 (Epub 2021 Nov 11).
Article
CAS
PubMed
Google Scholar
Hung AM, Shah SC, Bick AG, Yu Z, Chen HC, Hunt CM, et al. APOL1 Risk variants, acute kidney injury, and death in participants with African ancestry hospitalized With COVID-19 from the million veteran program. JAMA Intern Med. 2022. https://doi.org/10.1001/jamainternmed.2021.8538.
Article
PubMed
Google Scholar
Stravalaci M, Pagani I, Paraboschi EM, Pedotti M, Doni A, Scavello F, et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol. 2022;23(2):275–86. https://doi.org/10.1038/s41590-021-01114-w (Epub 2022 Jan 31).
Article
CAS
PubMed
Google Scholar
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671–92. https://doi.org/10.1016/j.cell.2021.02.029 (Epub 2021 Feb 16).
Article
CAS
PubMed
PubMed Central
Google Scholar
Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845–59. https://doi.org/10.1016/j.molimm.2003.10.005.
Article
CAS
PubMed
Google Scholar
Mantovani S, Daga S, Fallerini C, Baldassarri M, Benetti E, Picchiotti N, et al. Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes Immun. 2022;23(1):51–6. https://doi.org/10.1038/s41435-021-00157-1 (Epub 2021 Dec 24).
Article
CAS
PubMed
Google Scholar
Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife. 2021;2(10):e67569. https://doi.org/10.7554/eLife.67569.
Article
Google Scholar
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6(62):eab14348. https://doi.org/10.1126/sciimmunol.abl4348.
Article
Google Scholar
Arkin LM, Moon JJ, Tran JM, Asgari S, O’Farrelly C, Casanova JL, et al. From your nose to your toes: a review of severe acute respiratory syndrome coronavirus 2 pandemic-associated pernio. J Invest Dermatol. 2021;141(12):2791–6. https://doi.org/10.1016/j.jid.2021.05.024 (Epub 2021 Jul 15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. https://doi.org/10.1126/science.abd4585.
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. https://doi.org/10.1126/science.abd4570.
Article
PubMed
PubMed Central
Google Scholar
Carapito R, Li R, Helms J, Carapito C, Gujja S, Rolli V, et al. Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Sci Transl Med. 2022;14(628):7521. https://doi.org/10.1126/scitranslmed.abj7521.
Article
CAS
Google Scholar
Bastard P, Galerne A, Lefevre-Utile A, Briand C, Baruchel A, Durand P, et al. Different clinical presentations and outcomes of disseminated varicella in children with primary and acquired immunodeficiencies. Front Immunol. 2020;5(11):595478. https://doi.org/10.3389/fimmu.2020.595478.
Article
CAS
Google Scholar
Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2021;27(4):659–67. https://doi.org/10.1038/s41591-021-01281-1 (Epub 2021 Feb 25).
Article
CAS
PubMed
Google Scholar
Magg T, Okano T, Koenig LM, Boehmer DFR, Schwartz SL, Inoue K, et al. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol. 2021;6(60):eabf9564. https://doi.org/10.1126/sciimmunol.abf9564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huffman JE, Butler-Laporte G, Khan A, Pairo-Castineira E, Drivas TG, Peloso GM, et al. Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nat Genet. 2022;54(2):125–7. https://doi.org/10.1038/s41588-021-00996-8 (Epub 2022 Jan 13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelton JF, Shastri AJ, Fletez-Brant K, 23andMe COVID-19 Team, Aslibekyan S, Auton A. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat Genet. 2022;54(2):121–4. https://doi.org/10.1038/s41588-021-00986-w.
Article
CAS
PubMed
Google Scholar
e!Ensembl (2022). Retrieved 19/04, 2022 from https://www.ensembl.org.
Kantarcioglu B, Iqbal O, Lewis J, Carter CA, Singh M, Lievano F, et al. An Update on the status of vaccine development for SARS-CoV-2 including variants. Practical considerations for COVID-19 special populations. Clin Appl Thromb Hemost. 2022;28:10760296211056648. https://doi.org/10.1177/10760296211056648.
Article
PubMed
PubMed Central
Google Scholar
Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2021;385(12):1078–90. https://doi.org/10.1056/NEJMoa2110475 (Epub 2021 Aug 25).
Article
CAS
PubMed
Google Scholar
Levine-Tiefenbrun M, Yelin I, Alapi H, Herzel E, Kuint J, Chodick G, et al. Waning of SARS-CoV-2 booster viral-load reduction effectiveness. Nat Commun. 2022;13(1):1237. https://doi.org/10.1038/s41467-022-28936-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–154. https://doi.org/10.1038/s41579-020-00459-7. Epub 2020 Oct 6. Erratum in: Nat Rev Microbiol. 2022 Feb 23.
Choi A, Koch M, Wu K, Chu L, Ma L, Hill A, et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med. 2021Nov;27(11):2025–31. https://doi.org/10.1038/s41591-021-01527-y (Epub 2021 Sep 15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Barda N, Dagan N, Cohen C, Hernán MA, Lipsitch M, Kohane IS, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet. 2021;398(10316):2093–100. https://doi.org/10.1016/S0140-6736(21)02249-2 (Epub 2021 Oct 29).
Article
CAS
PubMed
PubMed Central
Google Scholar
Scobie HM, Johnson AG, Suthar AB, Severson R, Alden NB, Balter S, et al. Monitoring incidence of COVID-19 Cases, hospitalizations, and deaths, by vaccination status-13 U.S. jurisdictions, April 4-July 17, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(37):1284–90.
Article
CAS
Google Scholar
Muthukrishnan J, Vardhan V, Mangalesh S, Koley M, Shankar S, Yadav AK, et al. Vaccination status and COVID-19 related mortality: a hospital based cross sectional study. Med J Armed Forces India. 2021;77(Suppl 2):S278–82. https://doi.org/10.1016/j.mjafi.2021.06.034 (Epub 2021 Jul 26).
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein NP, Stockwell MS, Demarco M, Gaglani M, Kharbanda AB, Irving SA, et al. Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA vaccination in preventing COVID-19-associated emergency department and urgent care encounters and hospitalizations among nonimmunocompromised children and adolescents aged 5-17 years - VISION network, 10 States, April 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(9):352–8.
Article
CAS
Google Scholar
Heudel P, Favier B, Solodky ML, Assaad S, Chaumard N, Tredan O, et al. Survival and risk of COVID-19 after SARS-COV-2 vaccination in a series of 2391 cancer patients. Eur J Cancer. 2022;10(165):174–83. https://doi.org/10.1016/j.ejca.2022.01.035.
Article
CAS
Google Scholar
Citu IM, Citu C, Gorun F, Sas I, Tomescu L, Neamtu R, et al. Immunogenicity following administration of BNT162b2 and Ad26.COV2.S COVID-19 vaccines in the pregnant population during the third trimester. Viruses. 2022;14(2):307. https://doi.org/10.3390/v14020307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busic N, Lucijanic T, Barsic B, Luksic I, Busic I, Kurdija G, et al. Vaccination provides protection from respiratory deterioration and death among hospitalized COVID-19 patients: Differences between vector and mRNA vaccines. J Med Virol. 2022. https://doi.org/10.1002/jmv.27666.
Article
PubMed
PubMed Central
Google Scholar
Ferdinands JM, Rao S, Dixon BE, Mitchell PK, DeSilva MB, Irving SA, et al. Waning 2-dose and 3-dose effectiveness of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of delta and omicron variant predominance - VISION Network, 10 States, August 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(7):255–63.
Article
CAS
Google Scholar
WHO. World Health Organization. Who.int “who.int”.2022; Retrieved 19/04, 2022, from https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–73. https://doi.org/10.1038/381667a0.
Article
CAS
PubMed
Google Scholar
Haldane JBS, Jayakar SD. Equilibria under natural selection. J Genet. 1964;59:29–36.
Article
Google Scholar
Luzzatto L. Genetics of red cells and susceptibility to malaria. Blood. 1979;54(5):961–76.
Article
CAS
Google Scholar
Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;13(190):576–81. https://doi.org/10.1038/190576a0.
Article
Google Scholar
Bersani GL. altra epidemia [The parallel epidemic.]. Riv Psichiatr. 2022;57(2):101–5. https://doi.org/10.1708/3790.37742.
Article
PubMed
Google Scholar