Auffray C, Imbeaud S, Roux-Rouquié M, Hood L. From functional genomics to systems biology: concepts and practices. C R Biol. 2003;326(10–11):879–92.
Article
CAS
PubMed
Google Scholar
Goldfeder RL, Priest JR, Zook JM, Grove ME, Waggott D, Wheeler MT, et al. Medical implications of technical accuracy in genome sequencing. Genome Med. 2016;8(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.
Article
CAS
PubMed
Google Scholar
Yue T, Wang H. Deep Learning for Genomics: A Concise Overview. 2018
Honoré B, Østergaard M, Vorum H. Functional genomics studied by proteomics. BioEssays. 2004;26(8):901–15.
Article
PubMed
CAS
Google Scholar
Talukder A, Barham C, Li X, Hu H. Interpretation of deep learning in genomics and epigenomics. Brief Bioinform. 2020;2:447.
Google Scholar
Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science (80-). 2016;354(6313):769–73.
Article
CAS
Google Scholar
Kulasingam V, Pavlou MP, Diamandis EP. Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nat Rev Cancer. 2010;10(5):371–8.
Article
CAS
PubMed
Google Scholar
Nariai N, Kolaczyk ED, Kasif S. Probabilistic protein function prediction from heterogeneous genome-wide data. PLoS One. 2007;2(3):e337.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.
Article
CAS
PubMed
Google Scholar
Koumakis L. Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J. 2020;18:1466–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning and its applications in biomedicine. Genom Proteom Bioinform. 2018;16(1):17–32.
Article
Google Scholar
Telenti A, Lippert C, Chang PC, DePristo M. Deep learning of genomic variation and regulatory network data. Hum Mol Genet. 2018;27(R1):R63-71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopp W, Monti R, Tamburrini A, Ohler U, Akalin A. Deep learning for genomics using Janggu. Nat Commun. 2020;11(1):3488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deep learning for genomics. Nat Genet. 2019;51(1):1–1.
Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun. 2019;10(1):5407.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hsieh T-C, Mensah MA, Pantel JT, Aguilar D, Bar O, Bayat A, et al. PEDIA: prioritization of exome data by image analysis. Genet Med. 2019;21(12):2807–14.
Article
PubMed
PubMed Central
Google Scholar
Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics. 2016;32(17):i639–48.
Article
CAS
PubMed
Google Scholar
Arloth J, Eraslan G, Andlauer TFM, Martins J, Iurato S, Kühnel B, et al. DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLOS Comput Biol. 2020;16(2):e1007616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.
Article
CAS
PubMed
Google Scholar
Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Tan XP, Tor SB, Lim CS. Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf. 2020;36:101538.
Google Scholar
Muzio G, O’Bray L, Borgwardt K. Biological network analysis with deep learning. Brief Bioinform. 2021;22(2):1515–30.
Article
PubMed
Google Scholar
Maraziotis I, Dragomir A, Bezerianos A. Gene networks inference from expression data using a recurrent neuro-fuzzy approach. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2005. p. 4834–7.
LeCun Y. 1.1 Deep learning hardware: past, present, and future. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE; 2019. p. 12–9.
Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF, et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell. 2020;38(5):672-684.e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, et al. Predicting the clinical impact of human mutation with deep neural networks. Nat Genet. 2018;50(8):1161–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanchantin J, Singh R, Wang B, Qi Y. Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks. World Sci. 2017;3:254–65.
Google Scholar
Albaradei S, Magana-Mora A, Thafar M, Uludag M, Bajic VB, Gojobori T, et al. Splice2Deep: an ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA. Gene X. 2020;5:100035.
CAS
PubMed
PubMed Central
Google Scholar
Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal snp and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983.
Article
CAS
PubMed
Google Scholar
Liu Q, Xia F, Yin Q, Jiang R. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics. 2018;2:1147.
Google Scholar
Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12–8.
Article
CAS
PubMed
Google Scholar
Al-Stouhi S, Reddy CK. Transfer learning for class imbalance problems with inadequate data. Knowl Inf Syst. 2016;48(1):201–28.
Article
PubMed
Google Scholar
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21(1):6.
Article
Google Scholar
Handelman GS, Kok HK, Chandra RV, Razavi AH, Huang S, Brooks M, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am J Roentgenol. 2019;212(1):38–43.
Article
Google Scholar
England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. Am J Roentgenol. 2019;212(3):513–9.
Article
Google Scholar
Eraslan G, Avsec Ž, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet. 2019;20(7):389–403.
Article
CAS
PubMed
Google Scholar
Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12–8.
Article
CAS
PubMed
Google Scholar
Pérez-Enciso M, Zingaretti LM. A guide for using deep learning for complex trait genomic prediction. Genes (Basel). 2019;10(7):12258.
Article
CAS
Google Scholar
Abnizova I, Boekhorst RT, Orlov YL. Computational errors and biases in short read next generation sequencing. J Proteom Bioinform. 2017;10(1):400089.
Article
Google Scholar
Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. Analysis of error profiles in deep next-generation sequencing data. Genome Biol. 2019;20(1):50.
Article
PubMed
PubMed Central
Google Scholar
Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, et al. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci Rep. 2018;8(1):10950.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horner DS, Pavesi G, Castrignano T, De Meo PD, Liuni S, Sammeth M, et al. Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform. 2010;11(2):181–97.
Article
CAS
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. Science. 2012;7:4458.
Google Scholar
Hwang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep. 2015;5(1):17875.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotlarz K, Mielczarek M, Suchocki T, Czech B, Guldbrandtsen B, Szyda J. The application of deep learning for the classification of correct and incorrect SNP genotypes from whole-genome DNA sequencing pipelines. J Appl Genet. 2020;61(4):607–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumaran M, Subramanian U, Devarajan B. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data. BMC Bioinform. 2019;20(1):342.
Article
CAS
Google Scholar
Luo R, Sedlazeck FJ, Lam T, Schatz MC, Kong H, Genome H. Clairvoyante: a multi-task convolutional deep neural network for variant calling in single molecule sequencing. Science. 2018;3:7745.
Google Scholar
Cai L, Chu C, Zhang X, Wu Y, Gao J. Concod: an effective integration framework of consensus-based calling deletions from next-generation sequencing data. Int J Data Min Bioinform. 2017;17(2):153.
Article
Google Scholar
Cai L, Wu Y, Gao J. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network. BMC Bioinform. 2019;20(1):665.
Article
Google Scholar
Ravasio V, Ritelli M, Legati A, Giacopuzzi E. GARFIELD-NGS: genomic vARiants FIltering by dEep learning moDels in NGS. Bioinformatics. 2018;34(17):3038–40.
Article
CAS
PubMed
Google Scholar
Singh A, Bhatia P. Intelli-NGS: intelligent NGS, a deep neural network-based artificial intelligence to delineate good and bad variant calls from IonTorrent sequencer data. bioRxiv. 2019;12:879403.
Google Scholar
Müller H, Jimenez-Heredia R, Krolo A, Hirschmugl T, Dmytrus J, Boztug K, et al. VCF.Filter: interactive prioritization of disease-linked genetic variants from sequencing data. Nucleic Acids Res. 2017;45(W1):W567-72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet. 2017;18(10):599–612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines. J Mol Diagn. 2018;20(1):4–27.
Article
CAS
PubMed
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng PC. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper GM. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudellioua I, Kulmanov M, Schofield PN, Gkoutos GV, Hoehndorf R. DeepPVP: phenotype-based prioritization of causative variants using deep learning. BMC Bioinform. 2019;20(1):65.
Article
Google Scholar
Hoffman GE, Bendl J, Girdhar K, Schadt EE, Roussos P. Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Res. 2019;3:5589.
Google Scholar
Tupler R, Perini G, Green MR. Expressing the human genome. Nature. 2001;409(6822):832–3.
Article
CAS
PubMed
Google Scholar
Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun. 2020;11(1):6141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun. 2020;11(1):6141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angerer P, Simon L, Tritschler S, Wolf FA, Fischer D, Theis FJ. Single cells make big data: new challenges and opportunities in transcriptomics. Curr Opin Syst Biol. 2017;4:85–91.
Article
Google Scholar
Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer. 2020;2(2):5589.
Article
Google Scholar
Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci. 2016;19(9):1131–41.
Article
PubMed
CAS
Google Scholar
Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci. 2015;112(23):7285–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gundogdu P, Loucera C, Alamo-Alvarez I, Dopazo J, Nepomuceno I. Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data. BioData Min. 2022;15(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535-548.e24.
Article
CAS
PubMed
Google Scholar
Bogard N, Linder J, Rosenberg AB, Seelig G. A deep neural network for predicting and engineering alternative polyadenylation. Cell. 2019;71:9886.
Google Scholar
Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 2020;31(7):107663.
Article
CAS
PubMed
Google Scholar
Li Y, Shi W, Wasserman WW. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinform. 2018;19(1):202.
Article
CAS
Google Scholar
Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun. 2020;11(1):2338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torroja C, Sanchez-Cabo F. Digitaldlsorter: deep-learning on scRNA-seq to deconvolute gene expression data. Front Genet. 2019;10:77458.
Article
CAS
Google Scholar
Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kundaje A. Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS One. 2019;71:466689.
Google Scholar
Zhang Z, Pan Z, Ying Y, Xie Z, Adhikari S, Phillips J, et al. Deep-learning augmented RNA-seq analysis of transcript splicing. Nat Methods. 2019;16(4):307–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bretschneider H, Gandhi S, Deshwar AG, Zuberi K, Frey BJ. COSSMO: predicting competitive alternative splice site selection using deep learning. In: Bioinformatics. 2018.
Lo Bosco G, Rizzo R, Fiannaca A, La Rosa M, Urso A. A deep learning model for epigenomic studies. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE; 2016. p. 688–92.
Cazaly E, Saad J, Wang W, Heckman C, Ollikainen M, Tang J. Making sense of the epigenome using data integration approaches. Front Pharmacol. 2019;19:10.
Google Scholar
Li W, Wong WH, Jiang R. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning. Nucleic Acids Res. 2019;47(10):e60–e60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017;18(1):67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin Q, Wu M, Liu Q, Lv H, Jiang R. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics. 2019;20(2):193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006;13(2):115–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinform. 2021;22(1):360–79.
Article
CAS
PubMed
Google Scholar
Lesko LJ, Woodcock J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov. 2004;3(9):763–9.
Article
CAS
PubMed
Google Scholar
Roden DM. Pharmacogenomics: challenges and opportunities. Ann Intern Med. 2006;145(10):749.
Article
PubMed
PubMed Central
Google Scholar
Pang K, Wan Y-W, Choi WT, Donehower LA, Sun J, Pant D, et al. Combinatorial therapy discovery using mixed integer linear programming. Bioinformatics. 2014;30(10):1456–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016;8(1):115.
Article
PubMed
PubMed Central
Google Scholar
White RE. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol. 2000;40(1):133–57.
Article
CAS
PubMed
Google Scholar
Feala JD, Cortes J, Duxbury PM, Piermarocchi C, McCulloch AD, Paternostro G. Systems approaches and algorithms for discovery of combinatorial therapies. Wiley Interdiscip Rev Syst Biol Med. 2010;2(2):181–93.
Article
PubMed
Google Scholar
Sun X, Bao J, You Z, Chen X, Cui J. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination. Oncotarget. 2016;7(39):63995–4006.
Article
PubMed
PubMed Central
Google Scholar
Goswami CP, Cheng L, Alexander P, Singal A, Li L. A new drug combinatory effect prediction algorithm on the cancer cell based on gene expression and dose-response curve. CPT Pharmacometrics Syst Pharmacol. 2015;4(2):80–90.
Article
CAS
Google Scholar
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018;34(9):1538–46.
Article
CAS
PubMed
Google Scholar
Kalamara A, Tobalina L, Saez-Rodriguez J. How to find the right drug for each patient? advances and challenges in pharmacogenomics. Curr Opin Syst Biol. 2018;10:53–62.
Article
PubMed
PubMed Central
Google Scholar
Chiu Y-C, Chen H-IH, Zhang T, Zhang S, Gorthi A, Wang L-J, et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genom. 2019;12(51):18.
Article
Google Scholar
Wang Y, Li F, Bharathwaj M, Rosas NC, Leier A, Akutsu T, et al. DeepBL: a deep learning-based approach for in silico discovery of beta-lactamases. Brief Bioinform. 2020;7:8859.
Google Scholar
Yu D, Deng L. Deep learning and its applications to signal and information processing exploratory DSP. IEEE Signal Process Mag. 2011;28(1):145–54.
Article
CAS
Google Scholar
Fukushima K, Miyake S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition. In 1982. p. 267–85.
Hinton GE. Reducing the dimensionality of data with neural networks. Science (80-). 2006;313(5786):504–7.
Article
CAS
Google Scholar
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–54.
Article
PubMed
Google Scholar
Shi L, Wang Z. Computational strategies for scalable genomics analysis. Genes (Basel). 2019;10(12):1–8.
Article
CAS
Google Scholar
Nelson D, Wang J. Introduction to artificial neural systems. Neurocomputing. 1992;4(6):328–30.
Article
Google Scholar
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.
Article
Google Scholar
Zell A. Simulation Neuronaler Netze. London: Addison-Wesley; 1994. p. 73.
Google Scholar
Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genom. 2018;19(S2):84.
Article
CAS
Google Scholar
Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Comput Sci. 2018;132:679–88.
Article
Google Scholar
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional. Neural Netw. 2015;5:71143.
Google Scholar
Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–449.
Article
PubMed
Google Scholar
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8.
Article
CAS
PubMed
Google Scholar
Zeng W, Wang Y, Jiang R. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Bioinformatics. 2019;6:7110.
Google Scholar
Lysenkov V. Introducing deep learning-based methods into the variant calling analysis pipeline. Science. 2019;6:7789.
Google Scholar
Kelley DR, Reshef YA, Bileschi M, Belanger D, Mclean CY, Snoek J. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Science. 2018;71:739–50.
Google Scholar
Pu L, Govindaraj RG, Lemoine JM, Wu H, Brylinski M. DeepDrug3D: classification of ligand-binding pockets in proteins with a convolutional neural network. PLOS Comput Biol. 2019;15(2):e1006718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta G, Saini S. DAVI: deep learning based tool for alignment and single nucleotide variant identification. Science. 2019;2:1–27.
CAS
Google Scholar
Marhon SA, Cameron CJF, Kremer SC. Recurrent Neural Networks. In 2013. p. 29–65.
Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019;31(7):1235–70.
Article
PubMed
Google Scholar
Trieu T, Martinez-Fundichely A, Khurana E. DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure. Genome Biol. 2020;21(1):79.
Article
PubMed
PubMed Central
Google Scholar
Quang D, Xie X. FactorNet: A deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data. Methods. 2019;166:40–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.
Article
CAS
PubMed
Google Scholar
Park S, Min S, Choi H-S, Yoon S. Deep Recurrent Neural Network-Based Identification of Precursor microRNAs. In: Guyon I, Luxburg U V, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2017.
Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016;44(11):e107–e107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH, et al. DeepCLIP: predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids Res. 2020;22:7449.
Google Scholar
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. Science. 2015;6:7789.
Google Scholar
Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, et al. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics. 2017;33(13):1930–6.
Article
CAS
PubMed
Google Scholar
Deng L, Liu Y. Deep Learning in Natural Language Processing. Singapore: Springer; 2018.
Book
Google Scholar
Schuler GD, Epstein JA, Ohkawa H, Kans JA. [10] Entrez: Molecular biology database and retrieval system. In 1996. p. 141–62.
Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. 2013;
Du J, Jia P, Dai Y, Tao C, Zhao Z, Zhi D. Gene2vec: distributed representation of genes based on co-expression. BMC Genom. 2019;20(1):82.
Article
CAS
Google Scholar
Zhang X-M, Liang L, Liu L, Tang M-J. Graph neural networks and their current applications in bioinformatics. Front Genet. 2021;12:4799.
Google Scholar
Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. In: Proceedings 2005 IEEE International Joint Conference on Neural Networks, 2005. IEEE; p. 729–34.
Kwon Y, Yoo J, Choi Y-S, Son W-J, Lee D, Kang S. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation. J Cheminform. 2019;11(1):70.
Article
PubMed
PubMed Central
Google Scholar
Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kopp W, Monti R, Tamburrini A, Ohler U, Akalin A. Deep learning for genomics using Janggu. Nat Commun. 2020;11(1):3488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avsec Ž, Kreuzhuber R, Israeli J, Xu N, Cheng J, Shrikumar A, et al. The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. Nat Biotechnol. 2019;37(6):592–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen KM, Cofer EM, Zhou J, Troyanskaya OG. Selene: a PyTorch-based deep learning library for sequence data. Nat Methods. 2019;16(4):315–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2018;50(8):1171–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budach S, Marsico A. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics. 2018;34(17):3035–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neloy AA, Alam S, Bindu RA, Moni NJ. Machine Learning based Health Prediction System using IBM Cloud as PaaS. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE; 2019. p. 444–50.
Ciaburro G, Ayyadevara VK, Perrier A. Hands-On Machine Learning on Google Cloud Platform: Implementing smart and efficient analytics using Cloud ML Engine. Packt Publishing; 2018. 500 p.
Peng L, Peng M, Liao B, Huang G, Li W, Xie D. The advances and challenges of deep learning application in biological big data processing. Curr Bioinform. 2018;13(4):352–9.
Article
CAS
Google Scholar
Carneiro T, Da Medeiros NRV, Nepomuceno T, Bian G-B, De Albuquerque VHC, Filho PPR. Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access. 2018;6:61677–85.
Article
Google Scholar
Bisong E. Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley: Apress; 2019. p. 59–64.
Luo R, Sedlazeck FJ, Lam TW, Schatz MC. A multi-task convolutional deep neural network for variant calling in single molecule sequencing. Nat Commun. 2019;10(1):1–11.
CAS
Google Scholar
Ravasio V, Ritelli M, Legati A, Giacopuzzi E. GARFIELD-NGS: genomic vARiants fIltering by dEep learning moDels in NGS. Bioinformatics. 2018;34(17):3038–40.
Article
CAS
PubMed
Google Scholar
Singh A, Bhatia P. Intelli-NGS: Intelligent NGS, a deep neural network-based artificial intelligence to delineate good and bad variant calls from IonTorrent sequencer data. bioRxiv. 2019;2019:879403.
Google Scholar
Hsieh T-C, Mensah MA, Pantel JT, Aguilar D, Bar O, Bayat A, et al. PEDIA: prioritization of exome data by image analysis. Genet Med. 2019;21(12):2807–14.
Article
PubMed
PubMed Central
Google Scholar
Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med. 2019;25(1):60–4.
Article
CAS
PubMed
Google Scholar
Park S, Min S, Choi H, Yoon S. deepMiRGene: deep neural network based precursor microRNA prediction. Science. 2016;71:89968.
Google Scholar
Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016;26(7):990–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016;44(11):e107–e107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh S, Yang Y, Póczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant Biol. 2019;7(2):122–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genom. 2018;19(S2):84.
Article
CAS
Google Scholar
Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference with deep learning. Bioinformatics. 2016;32(12):1832–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng W, Wang Y, Jiang R. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Bioinformatics. 2019;2:7889.
Google Scholar
Kalkatawi M, Magana-Mora A, Jankovic B, Bajic VB. DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics. 2019;35(7):1125–32.
Article
CAS
PubMed
Google Scholar
Zuallaert J, Godin F, Kim M, Soete A, Saeys Y, De Neve W. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics. 2018;34(24):4180–8.
Article
CAS
PubMed
Google Scholar
Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, et al. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics. 2017;33(13):1930–6.
Article
CAS
PubMed
Google Scholar
Paggi JM, Bejerano G. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints. RNA. 2018;24(12):1647–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almagro AJJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–95.
Article
CAS
Google Scholar
Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun. 2019;10(1):5407.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH, et al. DeepCLIP: predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids Res. 2020;5:9956.
Google Scholar
Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics. 2016;32(17):i639–48.
Article
CAS
PubMed
Google Scholar
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning–based sequence model. Nat Methods. 2015;12(10):931–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanchantin J, Singh R, Lin Z, Qi Y. Deep Motif: visualizing genomic sequence classifications. Science. 2016;78:1–5.
Google Scholar
Li W, Wong WH, Jiang R. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning. Nucleic Acids Res. 2019;47(10):e60–e60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie L, He S, Song X, Bo X, Zhang Z. Deep learning-based transcriptome data classification for drug-target interaction prediction. BMC Genom. 2018;19(S7):667.
Article
CAS
Google Scholar
Kohut K, Limb S, Crawford G. The changing role of the genetic counsellor in the genomics Era. Curr Genet Med Rep. 2019;7(2):75–84.
Article
Google Scholar
Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genom. 2018;19(S2):84.
Article
CAS
Google Scholar
Frank H. Guenther. Neural Networks: Biological Models and Applications. In: Smel-ser NJ, Baltes PB editors, editor. Oxford: International Encyclopedia of the Social & Behavioral Sciences; 2001. p. 10534–7.
Eskiizmililer S. An intelligent Karyotyping architecture based on Artificial Neural Networks and features obtained by automated image analysis. 1993.
Catic A, Gurbeta L, Kurtovic-Kozaric A, Mehmedbasic S, Badnjevic A. Application of neural networks for classification of patau, edwards, down, turner and klinefelter syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. BMC Med Genom. 2018;11(1):19.
Article
Google Scholar
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.
Article
CAS
PubMed
Google Scholar
Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, Polyzos A, et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep. 2019;29(11):3367-3373.e4.
Article
CAS
PubMed
Google Scholar
Kalinin AA, Higgins GA, Reamaroon N, Soroushmehr S, Allyn-Feuer A, Dinov ID, et al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics. 2018;19(7):629–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–6.
Article
Google Scholar
Shen Z, Bao W, Huang D-S. Recurrent neural network for predicting transcription factor binding sites. Sci Rep. 2018;8(1):15270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997;45(11):2673–81.
Article
Google Scholar
Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–95.
Article
PubMed
CAS
Google Scholar
Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. Science. 2014;7:44598.
Google Scholar