Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.
Article
PubMed
PubMed Central
Google Scholar
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, et al. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med. 2016;8(322):322ra9.
PubMed
PubMed Central
Google Scholar
Wright CF, West B, Tuke M, Jones SE, Patel K, Laver TW, et al. Assessing the pathogenicity, penetrance, and expressivity of putative disease-causing variants in a population setting. Am J Hum Genet. 2019;104(2):275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston JJ, Brennan ML, Radenbaugh B, Yoo SJ, Hernandez SM, Core NRP, et al. The ACMG SF v3.0 gene list increases returnable variant detection by 22% when compared with v2.0 in the ClinSeq cohort. Genet Med. 2022;24(3):736–43.
Article
PubMed
Google Scholar
Kelly MA, Caleshu C, Morales A, Buchan J, Wolf Z, Harrison SM, et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med. 2018;20(3):351–9.
Article
PubMed
PubMed Central
Google Scholar
Morales A, Kinnamon DD, Jordan E, Platt J, Vatta M, Dorschner MO, et al. Variant interpretation for dilated cardiomyopathy: refinement of the American College of Medical Genetics and Genomics/ClinGen Guidelines for the DCM Precision Medicine Study. Circ Genom Precis Med. 2020;13(2):e002480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kountouris P, Stephanou C, Lederer CW, Traeger-Synodinos J, Bento C, Harteveld CL, et al. Adapting the ACMG/AMP variant classification framework: a perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel. Hum Mutat. 2022;43(8):1089–96.
Article
PubMed
Google Scholar
Girodon E, Rebours V, Chen JM, Pagin A, Levy P, Férec C, et al. Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin Res Hepatol Gastroenterol. 2021;45(1):101497.
Article
CAS
PubMed
Google Scholar
Girodon E, Rebours V, Chen JM, Pagin A, Lévy P, Férec C, et al. Clinical interpretation of SPINK1 and CTRC variants in pancreatitis. Pancreatology. 2020;20(7):1354–67.
Article
CAS
PubMed
Google Scholar
Fortuno C, Mester J, Pesaran T, Weitzel JN, Dolinsky J, Yussuf A, et al. Suggested application of HER2+ breast tumor phenotype for germline TP53 variant classification within ACMG/AMP guidelines. Hum Mutat. 2020;41(9):1555–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E, et al. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat. 2018;39(11):1553–68.
Article
PubMed
PubMed Central
Google Scholar
Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, et al. Gene-specific criteria for PTEN variant curation: recommendations from the ClinGen PTEN Expert Panel. Hum Mutat. 2018;39(11):1581–92.
Article
PubMed
PubMed Central
Google Scholar
Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. 2018;39(11):1593–613.
Article
PubMed
PubMed Central
Google Scholar
Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadalo L, et al. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: an ENIGMA resource to support clinical variant classification. Hum Mutat. 2019;40(9):1557–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brandt T, Sack LM, Arjona D, Tan D, Mei H, Cui H, et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22(2):336–44.
Article
PubMed
Google Scholar
Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105–17.
Article
PubMed
PubMed Central
Google Scholar
Houge G, Laner A, Cirak S, de Leeuw N, Scheffer H, den Dunnen JT. Stepwise ABC system for classification of any type of genetic variant. Eur J Hum Genet. 2022;30(2):150–9.
Article
CAS
PubMed
Google Scholar
Kleeff J, Whitcomb DC, Shimosegawa T, Esposito I, Lerch MM, Gress T, et al. Chronic pancreatitis. Nat Rev Dis Prim. 2017;3:17060.
Article
PubMed
Google Scholar
Ru N, Xu XN, Cao Y, Zhu JH, Hu LH, Wu SY, et al. The impacts of genetic and environmental factors on the progression of chronic pancreatitis. Clin Gastroenterol Hepatol. 2022;20(6):e1378–87.
Article
PubMed
CAS
Google Scholar
Le Bodic L, Bignon JD, Raguenes O, Mercier B, Georgelin T, Schnee M, et al. The hereditary pancreatitis gene maps to long arm of chromosome 7. Hum Mol Genet. 1996;5(4):549–54.
Article
PubMed
Google Scholar
Whitcomb DC, Preston RA, Aston CE, Sossenheimer MJ, Barua PS, Zhang Y, et al. A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology. 1996;110(6):1975–80.
Article
CAS
PubMed
Google Scholar
Pandya A, Blanton SH, Landa B, Javaheri R, Melvin E, Nance WE, et al. Linkage studies in a large kindred with hereditary pancreatitis confirms mapping of the gene to a 16-cM region on 7q. Genomics. 1996;38(2):227–30.
Article
CAS
PubMed
Google Scholar
Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996;14(2):141–5.
Article
CAS
PubMed
Google Scholar
Masson E, Rebours V, Buscail L, Frete F, Pagenault M, Lachaux A, et al. The reversion variant (p.Arg90Leu) at the evolutionarily adaptive p.Arg90 site in CELA3B predisposes to chronic pancreatitis. Hum Mutat. 2021;42(4):385–91.
Article
CAS
PubMed
Google Scholar
Chen JM, Férec C. Chronic pancreatitis: genetics and pathogenesis. Annu Rev Genom Hum Genet. 2009;10:63–87.
Article
CAS
Google Scholar
Masson E, Zou WB, Génin E, Cooper DN, Le Gac G, Fichou Y, et al. A proposed general variant classification framework using chronic pancreatitis as a disease model. medRxiv 2022.06.03.22275950; https://doi.org/10.1101/2022.06.03.22275950 2022.
Le Maréchal C, Masson E, Chen JM, Morel F, Ruszniewski P, Levy P, et al. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet. 2006;38(12):1372–4.
Article
PubMed
CAS
Google Scholar
Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339(10):653–8.
Article
CAS
PubMed
Google Scholar
Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med. 1998;339(10):645–52.
Article
CAS
PubMed
Google Scholar
Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25(2):213–6.
Article
CAS
PubMed
Google Scholar
Rosendahl J, Witt H, Szmola R, Bhatia E, Ozsvari B, Landt O, et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 2008;40(1):78–82.
Article
CAS
PubMed
Google Scholar
Masson E, Chen JM, Scotet V, Le Maréchal C, Férec C. Association of rare chymotrypsinogen C (CTRC) gene variations in patients with idiopathic chronic pancreatitis. Hum Genet. 2008;123(1):83–91.
Article
CAS
PubMed
Google Scholar
Masson E, Chen JM, Audrézet MP, Cooper DN, Férec C. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS ONE. 2013;8(8):e73522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosendahl J, Landt O, Bernadova J, Kovacs P, Teich N, Bodeker H, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated? Gut. 2013;62(4):582–92.
Article
CAS
PubMed
Google Scholar
Jalaly NY, Moran RA, Fargahi F, Khashab MA, Kamal A, Lennon AM, et al. An evaluation of factors associated with pathogenic PRSS1, SPINK1, CTFR, and/or CTRC genetic variants in patients with idiopathic pancreatitis. Am J Gastroenterol. 2017;112(8):1320–9.
Article
CAS
PubMed
Google Scholar
Zou WB, Tang XY, Zhou DZ, Qian YY, Hu LH, Yu FF, et al. SPINK1, PRSS1, CTRC, and CFTR genotypes influence disease onset and clinical outcomes in chronic pancreatitis. Clin Transl Gastroenterol. 2018;9(11):204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cho SM, Shin S, Lee KA. PRSS1, SPINK1, CFTR, and CTRC pathogenic variants in Korean patients with idiopathic pancreatitis. Ann Lab Med. 2016;36(6):555–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemeth BC, Sahin-Tóth M. The Genetic Risk Factors in Chronic Pancreatitis Database. http://www.pancreasgenetics.org/index.php. Accessed 23 May 2022.
Zou WB, Cooper DN, Masson E, Pu N, Liao Z, Férec C, et al. Trypsinogen (PRSS1 and PRSS2) gene dosage correlates with pancreatitis risk across genetic and transgenic studies: a systematic review and re-analysis. Hum Genet. 2022;141(8):1327–38.
Article
CAS
PubMed
Google Scholar
Chen JM, Herzig AF, Genin E, Masson E, Cooper DN, Férec C. Scale and scope of gene-alcohol interactions in chronic pancreatitis: a systematic review. Genes (Basel). 2021;12(4):471.
Article
CAS
Google Scholar
Hegyi E, Sahin-Tóth M. Genetic risk in chronic pancreatitis: the trypsin-dependent pathway. Dig Dis Sci. 2017;62(7):1692–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahin-Tóth M. Genetic risk in chronic pancreatitis: the misfolding-dependent pathway. Curr Opin Gastroenterol. 2017;33(5):390–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Toth M. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 2019;156(7):1951-68.e1.
Article
CAS
PubMed
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.
Article
CAS
PubMed
Google Scholar
Rebours V, Levy P, Ruszniewski P. An overview of hereditary pancreatitis. Dig Liver Dis. 2012;44(1):8–15.
Article
CAS
PubMed
Google Scholar
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JM, Le Maréchal C, Lucas D, Raguénès O, Férec C. “Loss of function” mutations in the cationic trypsinogen gene (PRSS1) may act as a protective factor against pancreatitis. Mol Genet Metab. 2003;79(1):67–70.
Article
CAS
PubMed
Google Scholar
Witt H, Sahin-Tóth M, Landt O, Chen JM, Kahne T, Drenth JP, et al. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet. 2006;38(6):668–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beer S, Zhou J, Szabo A, Keiles S, Chandak GR, Witt H, et al. Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut. 2013;62(11):1616–24.
Article
CAS
PubMed
Google Scholar
Kume K, Masamune A, Kikuta K, Shimosegawa T. [-215G>A; IVS3+2T>C] mutation in the SPINK1 gene causes exon 3 skipping and loss of the trypsin binding site. Gut. 2006;55(8):1214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou WB, Boulling A, Masson E, Cooper DN, Liao Z, Li ZS, et al. Clarifying the clinical relevance of SPINK1 intronic variants in chronic pancreatitis. Gut. 2016;65(5):884–6.
Article
CAS
PubMed
Google Scholar
Venet T, Masson E, Talbotec C, Billiemaz K, Touraine R, Gay C, et al. Severe infantile isolated exocrine pancreatic insufficiency caused by the complete functional loss of the SPINK1 gene. Hum Mutat. 2017;38(12):1660–5.
Article
CAS
PubMed
Google Scholar
Masson E, Hammel P, Garceau C, Benech C, Quemener-Redon S, Chen JM, et al. Characterization of two deletions of the CTRC locus. Mol Genet Metab. 2013;109(3):296–300.
Article
CAS
PubMed
Google Scholar
Whiffin N, Minikel E, Walsh R, O’Donnell-Luria AH, Karczewski K, Ing AY, et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med. 2017;19(10):1151–8.
Article
PubMed
PubMed Central
Google Scholar
Ragoussis V, Pagnamenta AT, Haines RL, Giacopuzzi E, McClatchey MA, Sampson JR, et al. Using data from the 100,000 Genomes Project to resolve conflicting interpretations of a recurrent TUBB2A mutation. J Med Genet. 2022;59(4):366–9.
Article
PubMed
Google Scholar
Hanany M, Sharon D. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19% of genes and 10% of reported pathogenic variants. J Med Genet. 2019;56(8):536–42.
Article
CAS
PubMed
Google Scholar
Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE. Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation. Genome Med. 2017;9(1):13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Minikel EV, MacArthur DG. Publicly available data provide evidence against NR1H3 R415Q causing multiple sclerosis. Neuron. 2016;92(2):336–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulling A, Keiles S, Masson E, Chen JM, Férec C. Functional analysis of eight missense mutations in the SPINK1 gene. Pancreas. 2012;41(2):329–30.
Article
PubMed
Google Scholar
Schnúr A, Beer S, Witt H, Hegyi P, Sahin-Tóth M. Functional effects of 13 rare PRSS1 variants presumed to cause chronic pancreatitis. Gut. 2014;63(2):337–43.
Article
PubMed
CAS
Google Scholar
Whitcomb DC, LaRusch J, Krasinskas AM, Klei L, Smith JP, Brand RE, et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet. 2012;44(12):1349–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulling A, Sato M, Masson E, Genin E, Chen JM, Férec C. Identification of a functional PRSS1 promoter variant in linkage disequilibrium with the chronic pancreatitis-protecting rs10273639. Gut. 2015;64(11):1837–8.
Article
CAS
PubMed
Google Scholar
Herzig AF, Genin E, Cooper DN, Masson E, Férec C, Chen JM. Role of the common PRSS1-PRSS2 haplotype in alcoholic and non-alcoholic chronic pancreatitis: meta- and re-analyses. Genes (Basel). 2020;11(11):1349.
Article
CAS
Google Scholar
Boulling A, Masson E, Zou WB, Paliwal S, Wu H, Issarapu P, et al. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype. Hum Mutat. 2017;38(8):1014–24.
Article
CAS
PubMed
Google Scholar
Szabó A, Toldi V, Gazda LD, Demcsak A, Tozser J, Sahin-Tóth M. Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. J Biol Chem. 2021;296:100343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pu N, Masson E, Cooper DN, Genin E, Férec C, Chen JM. Chronic pancreatitis: the true pathogenic culprit within the SPINK1 N34S-containing haplotype is no longer at large. Genes (Basel). 2021;12(11):1683.
Article
CAS
Google Scholar
Boulling A, Le Maréchal C, Trouvé P, Raguénès O, Chen JM, Férec C. Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur J Hum Genet. 2007;15(9):936–42.
Article
CAS
PubMed
Google Scholar
Király O, Wartmann T, Sahin-Tóth M. Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut. 2007;56(10):1433–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into autosomal dominant polycystic kidney disease from genetic studies. Clin J Am Soc Nephrol. 2021;16(5):790–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butnariu LI, Tarca E, Cojocaru E, Rusu C, Moisa SM, Leon Constantin MM, et al. Genetic modifying factors of cystic fibrosis phenotype: a challenge for modern medicine. J Clin Med. 2021;10(24):5821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durkie M, Chong J, Valluru MK, Harris PC, Ong ACM. Biallelic inheritance of hypomorphic PKD1 variants is highly prevalent in very early onset polycystic kidney disease. Genet Med. 2021;23(4):689–97.
Article
CAS
PubMed
Google Scholar
The Human Protein Atlas. https://www.proteinatlas.org. Accessed 12 April 2022.
gnomAD (Genome Aggregation Database). https://gnomad.broadinstitute.org/. Accessed 12 April 2022.
Masson E, Le Maréchal C, Delcenserie R, Chen JM, Férec C. Hereditary pancreatitis caused by a double gain-of-function trypsinogen mutation. Hum Genet. 2008;123(5):521–9.
Article
CAS
PubMed
Google Scholar
Grocock CJ, Rebours V, Delhaye MN, Andren-Sandberg A, Weiss FU, Mountford R, et al. The variable phenotype of the p.A16V mutation of cationic trypsinogen (PRSS1) in pancreatitis families. Gut. 2010;59(3):357–63.
Article
CAS
PubMed
Google Scholar
Szabó A, Sahin-Tóth M. Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem. 2012;287(24):20701–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Génin E, Cooper DN, Masson E, Férec C, Chen JM. NGS mismapping confounds the clinical interpretation of the PRSS1 pAla16Val (c.47C>T) variant in chronic pancreatitis. Gut. 2022;71(4):841–2.
Article
PubMed
CAS
Google Scholar
Yilmaz B, Ekiz F, Karakas E, Aykut A, Simsek Z, Coban S, et al. A rare PRSS1 mutation in a Turkish family with hereditary chronic pancreatitis. Turk J Gastroenterol. 2012;23(6):826–7.
Article
PubMed
Google Scholar
Nemoda Z, Sahin-Tóth M. The tetra-aspartate motif in the activation peptide of human cationic trypsinogen is essential for autoactivation control but not for enteropeptidase recognition. J Biol Chem. 2005;280(33):29645–52.
Article
CAS
PubMed
Google Scholar
Joergensen MT, Geisz A, Brusgaard K, de Muckadell OBS, Hegyi P, Gerdes AM, et al. Intragenic duplication: a novel mutational mechanism in hereditary pancreatitis. Pancreas. 2011;40(4):540–6.
Article
PubMed
PubMed Central
Google Scholar
Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, et al. Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology. 1997;113(4):1063–8.
Article
CAS
PubMed
Google Scholar
Dytz MG, de Mendes MJ, de Castro Santos O, da Silva Santos ID, Rodacki M, Conceicao FL, et al. Hereditary pancreatitis associated with the N29T mutation of the PRSS1 gene in a Brazilian family: a case-control study. Medicine (Baltimore). 2015;94(37):e1508.
Article
CAS
Google Scholar
Arduino C, Salacone P, Pasini B, Brusco A, Salmin P, Bacillo E, et al. Association of a new cationic trypsinogen gene mutation (V39A) with chronic pancreatitis in an Italian family. Gut. 2005;54(11):1663–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teich N, Bauer N, Mossner J, Keim V. Mutational screening of patients with nonalcoholic chronic pancreatitis: identification of further trypsinogen variants. Am J Gastroenterol. 2002;97(2):341–6.
CAS
PubMed
Google Scholar
Németh BC, Patai ÁV, Sahin-Tóth M, Hegyi P. Misfolding cationic trypsinogen variant p.L104P causes hereditary pancreatitis. Gut. 2017;66(9):1727–8.
Article
PubMed
Google Scholar
Balazs A, Hegyi P, Sahin-Tóth M. Pathogenic cellular role of the p.L104P human cationic trypsinogen variant in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2016;310(7):477–86.
Article
Google Scholar
Pho-Iam T, Thongnoppakhun W, Yenchitsomanus PT, Limwongse C. A Thai family with hereditary pancreatitis and increased cancer risk due to a mutation in PRSS1 gene. World J Gastroenterol. 2005;11(11):1634–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kereszturi E, Szmola R, Kukor Z, Simon P, Weiss FU, Lerch MM, et al. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum Mutat. 2009;30(4):575–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, et al. Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J Clin Invest. 2020;130(1):189–202.
Article
CAS
PubMed
Google Scholar
Huang H, Swidnicka-Siergiejko AK, Daniluk J, Gaiser S, Yao Y, Peng L, et al. Transgenic expression of PRSS1R122H sensitizes mice to pancreatitis. Gastroenterology. 2020;158(4):1072-82 e7.
Article
CAS
PubMed
Google Scholar
Howes N, Greenhalf W, Rutherford S, O’Donnell M, Mountford R, Ellis I, et al. A new polymorphism for the RI22H mutation in hereditary pancreatitis. Gut. 2001;48(2):247–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Maréchal C, Chen JM, Le Gall C, Plessis G, Chipponi J, Chuzhanova NA, et al. Two novel severe mutations in the pancreatic secretory trypsin inhibitor gene (SPINK1) cause familial and/or hereditary pancreatitis. Hum Mutat. 2004;23(2):205.
Article
PubMed
Google Scholar
Kiraly O, Boulling A, Witt H, Le Marechal C, Chen JM, Rosendahl J, et al. Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1) cause autosomal dominant hereditary pancreatitis. Hum Mutat. 2007;28(5):469–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masson E, Le Marechal C, Levy P, Chuzhanova N, Ruszniewski P, Cooper DN, et al. Co-inheritance of a novel deletion of the entire SPINK1 gene with a CFTR missense mutation (L997F) in a family with chronic pancreatitis. Mol Genet Metab. 2007;92(1–2):168–75.
Article
CAS
PubMed
Google Scholar