Blum M, Ott T. Animal left-right asymmetry. Curr Biol. 2018;28(7):R301-r304. https://doi.org/10.1016/j.cub.2018.02.073.
Article
CAS
PubMed
Google Scholar
Soofi M, Alpert MA, Barbadora J, Mukerji B, Mukerji V. Human laterality disorders: pathogenesis, clinical manifestations, diagnosis, and management. Am J Med Sci. 2021;362(3):233–42. https://doi.org/10.1016/j.amjms.2021.05.020.
Article
PubMed
Google Scholar
Sutherland MJ, Ware SM. Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet. 2009;151(4):307–17. https://doi.org/10.1002/ajmg.c.30228.
Article
CAS
Google Scholar
Soofi M, Alpert MA, Barbadora J, Mukerji B, Mukerji V. Human laterality disorders: pathogenesis, clinical manifestations, diagnosis, and management. Am J Med Sci. 2021. https://doi.org/10.1016/j.amjms.2021.05.020.
Article
PubMed
Google Scholar
Kathiriya IS, Srivastava D. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. Am J Med Genet. 2000;97(4):271–9. https://doi.org/10.1002/1096-8628(200024)97:4%3c271::aid-ajmg1277%3e3.0.co;2-o.
Article
CAS
PubMed
Google Scholar
Alongi AM, Kirklin JK, Deng L, Padilla L, Pavnica J, Romp RL, et al. Surgical management of heterotaxy syndrome: current challenges and opportunities. World J Pediatr Congenit Heart Surg. 2020;11(2):166–76. https://doi.org/10.1177/2150135119893650.
Article
PubMed
Google Scholar
Banka P, Adar A, Schaetzle B, Sleeper LA, Emani S, Geva T. Changes in prognosis of heterotaxy syndrome over time. Pediatrics. 2020. https://doi.org/10.1542/peds.2019-3345.
Article
PubMed
Google Scholar
Swisher M, Jonas R, Tian X, Lee ES, Lo CW, Leatherbury L. Increased postoperative and respiratory complications in patients with congenital heart disease associated with heterotaxy. J Thorac Cardiovasc Surg. 2011;141(3):637–44. https://doi.org/10.1016/j.jtcvs.2010.07.082.
Article
PubMed
Google Scholar
Kim JS, Seo JW, Lee YM, Chi JG. Cardiac laterality and ventricular looping in retinoic acid-treated rat embryos. J Korean Med Sci. 1999;14(2):138–46. https://doi.org/10.3346/jkms.1999.14.2.138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Splitt M, Wright C, Sen D, Goodship J. Left-isomerism sequence and maternal type-1 diabetes. Lancet. 1999;354(9175):305–6. https://doi.org/10.1016/s0140-6736(99)01942-x.
Article
CAS
PubMed
Google Scholar
Kuehl KS, Loffredo C. Risk factors for heart disease associated with abnormal sidedness. Teratology. 2002;66(5):242–8. https://doi.org/10.1002/tera.10099.
Article
CAS
PubMed
Google Scholar
Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18(5):861–71. https://doi.org/10.1093/hmg/ddn411.
Article
CAS
PubMed
Google Scholar
Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, et al. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999;64(3):712–21. https://doi.org/10.1086/302289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999;82(1):70–6. https://doi.org/10.1002/(sici)1096-8628(19990101)82:1%3c70::aid-ajmg14%3e3.0.co;2-y.
Article
CAS
PubMed
Google Scholar
Zhu L, Harutyunyan KG, Peng JL, Wang J, Schwartz RJ, Belmont JW. Identification of a novel role of ZIC3 in regulating cardiac development. Hum Mol Genet. 2007;16(14):1649–60. https://doi.org/10.1093/hmg/ddm106.
Article
CAS
PubMed
Google Scholar
Kaasinen E, Aittomäki K, Eronen M, Vahteristo P, Karhu A, Mecklin JP, et al. Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Hum Mol Genet. 2010;19(14):2747–53. https://doi.org/10.1093/hmg/ddq164.
Article
CAS
PubMed
Google Scholar
Bamford RN, Roessler E, Burdine RD, Saplakoğlu U, dela Cruz J, Splitt M, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26(3):365–9. https://doi.org/10.1038/81695.
Article
CAS
PubMed
Google Scholar
Li AH, Hanchard NA, Azamian M, D’Alessandro LCA, Coban-Akdemir Z, Lopez KN, et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet. 2019;27(4):563–73. https://doi.org/10.1038/s41431-018-0307-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, et al. Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat. 2020;41(12):2167–78. https://doi.org/10.1002/humu.24132.
Article
CAS
PubMed
Google Scholar
Sempou E, Khokha MK. Genes and mechanisms of heterotaxy: patients drive the search. Curr Opin Genet Dev. 2019;56:34–40. https://doi.org/10.1016/j.gde.2019.05.003.
Article
CAS
PubMed
Google Scholar
Bolkier Y, Barel O, Marek-Yagel D, Atias-Varon D, Kagan M, Vardi A, et al. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet. 2021. https://doi.org/10.1136/jmedgenet-2021-107775.
Article
PubMed
Google Scholar
Liang S, Shi X, Yu C, Shao X, Zhou H, Li X, et al. Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165906. https://doi.org/10.1016/j.bbadis.2020.165906.
Article
CAS
PubMed
Google Scholar
Huang Y, Li W, Chu D, Zheng J, Ji G, Li M, et al. Overexpression of matrix metalloproteinase-21 is associated with poor overall survival of patients with colorectal cancer. J Gastrointest Surg. 2011;15(7):1188–94. https://doi.org/10.1007/s11605-011-1519-5.
Article
PubMed
Google Scholar
Zhao Z, Yan L, Li S, Sun H, Zhou Y, Li X. Increased MMP-21 expression in esophageal squamous cell carcinoma is associated with progression and prognosis. Med Oncol. 2014;31(8):91. https://doi.org/10.1007/s12032-014-0091-8.
Article
CAS
PubMed
Google Scholar
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. https://doi.org/10.1016/j.cardiores.2005.12.002.
Article
CAS
PubMed
Google Scholar
Marchenko GN, Marchenko ND, Strongin AY. The structure and regulation of the human and mouse matrix metalloproteinase-21 gene and protein. Biochem J. 2003;372(Pt 2):503–15. https://doi.org/10.1042/bj20030174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahokas K, Lohi J, Lohi H, Elomaa O, Karjalainen-Lindsberg ML, Kere J, et al. Matrix metalloproteinase-21, the human orthologue for XMMP, is expressed during fetal development and in cancer. Gene. 2002;301(1–2):31–41. https://doi.org/10.1016/s0378-1119(02)01088-0.
Article
CAS
PubMed
Google Scholar
Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521(7553):520–4. https://doi.org/10.1038/nature14269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guimier A, Gabriel GC, Bajolle F, Tsang M, Liu H, Noll A, et al. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat Genet. 2015;47(11):1260–3. https://doi.org/10.1038/ng.3376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perles Z, Moon S, Ta-Shma A, Yaacov B, Francescatto L, Edvardson S, et al. A human laterality disorder caused by a homozygous deleterious mutation in MMP21. J Med Genet. 2015;52(12):840–7. https://doi.org/10.1136/jmedgenet-2015-103336.
Article
CAS
PubMed
Google Scholar
Yuan ZZ, Fan LL, Jiang ZC, Yang YF, Tan ZP. A novel nonsense MMP21 variant causes dextrocardia and congenital heart disease in a Han Chinese patient. Front Cardiovasc Med. 2020;7:582350. https://doi.org/10.3389/fcvm.2020.582350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akawi N, McRae J, Ansari M, Balasubramanian M, Blyth M, Brady AF, et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet. 2015;47(11):1363–9. https://doi.org/10.1038/ng.3410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.
Article
CAS
PubMed
Google Scholar
Li Z, Li B, Wang J, Lu Y, Chen AFY, Sun K, et al. GAA deficiency promotes angiogenesis through upregulation of Rac1 induced by autophagy disorder. Biochim Biophys Acta Mol Cell Res. 2021;1868(5):118969. https://doi.org/10.1016/j.bbamcr.2021.118969.
Article
CAS
PubMed
Google Scholar
Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res. 2006;99(3):323–31. https://doi.org/10.1161/01.RES.0000234807.16034.fe.
Article
CAS
PubMed
Google Scholar
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91(2):279–88. https://doi.org/10.1093/cvr/cvr098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75(2):346–59. https://doi.org/10.1016/j.bcp.2007.07.004.
Article
CAS
PubMed
Google Scholar
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra R. Matrix metalloproteinases in health and disease. Biomolecules. 2020. https://doi.org/10.3390/biom10081138.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81:241–330. https://doi.org/10.1016/bs.apha.2017.08.002.
Article
CAS
PubMed
Google Scholar
Raza QS, Vanderploeg JL, Jacobs JR. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during drosophila heart development. PLoS ONE. 2017;12(2):e0171905. https://doi.org/10.1371/journal.pone.0171905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995;375(6528):244–7. https://doi.org/10.1038/375244a0.
Article
CAS
PubMed
Google Scholar
Suenaga N, Mori H, Itoh Y, Seiki M. CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. Oncogene. 2005;24(5):859–68. https://doi.org/10.1038/sj.onc.1208258.
Article
CAS
PubMed
Google Scholar
Wells JR, Padua MB, Ware SM. The genetic landscape of cardiovascular left-right patterning defects. Curr Opin Genet Dev. 2022;75:101937. https://doi.org/10.1016/j.gde.2022.101937.
Article
CAS
PubMed
Google Scholar
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American heart association. Circulation. 2018;138(21):e653–711. https://doi.org/10.1161/cir.0000000000000606.
Article
PubMed
PubMed Central
Google Scholar
Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, et al. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol. 2011;353(2):321–30. https://doi.org/10.1016/j.ydbio.2011.03.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cristo F, Inácio JM, de Almeida S, Mendes P, Martins DS, Maio J, et al. Functional study of DAND5 variant in patients with congenital heart disease and laterality defects. BMC Med Genet. 2017;18(1):77. https://doi.org/10.1186/s12881-017-0444-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolkier Y, Barel O, Marek-Yagel D, Atias-Varon D, Kagan M, Vardi A, et al. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet. 2022;59(7):691–6. https://doi.org/10.1136/jmedgenet-2021-107775.
Article
PubMed
Google Scholar
Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development. 2001;128(15):2953–62.
Article
CAS
Google Scholar
Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD. The rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development. 2011;138(1):45–54. https://doi.org/10.1242/dev.052985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci USA. 2011;108(7):2915–20. https://doi.org/10.1073/pnas.1019645108.
Article
PubMed
PubMed Central
Google Scholar
Del Viso F, Huang F, Myers J, Chalfant M, Zhang Y, Reza N, et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev Cell. 2016;38(5):478–92. https://doi.org/10.1016/j.devcel.2016.08.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu J, Vicencio AG, Yeager ME, Kashgarian M, Haddad GG, Eickelberg O. Differential expression of matrix metalloproteinases and their inhibitors in human and mouse lung development. Thromb Haemost. 2005;94(1):175–83. https://doi.org/10.1160/th04-10-0656.
Article
CAS
PubMed
Google Scholar
Muñoz-Sáez E, Moracho N, Learte AIR, Arroyo AG, Sánchez-Camacho C. Dynamic expression of membrane type 1-matrix metalloproteinase (Mt1-mmp/Mmp14) in the mouse embryo. Cells. 2021. https://doi.org/10.3390/cells10092448.
Article
PubMed
PubMed Central
Google Scholar
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, et al. Emerging roles of MT-MMPs in embryonic development. Dev Dyn. 2021. https://doi.org/10.1002/dvdy.398.
Article
PubMed
Google Scholar
Ahokas K, Lohi J, Illman SA, Llano E, Elomaa O, Impola U, et al. Matrix metalloproteinase-21 is expressed epithelially during development and in cancer and is up-regulated by transforming growth factor-beta1 in keratinocytes. Lab Invest. 2003;83(12):1887–99. https://doi.org/10.1097/01.lab.0000106721.86126.39.
Article
CAS
PubMed
Google Scholar