Hsu HJ, Hsu CK, Chen TS, Hsu CH. Thyroid eye disease. QJM. 2016;109(1):67–8.
Article
PubMed
Google Scholar
Kiljanski J, Nebes V, Stachura I, Kennerdell JS, Wall JR. Should Graves’ disease be considered a collagen disorder of the thyroid, skeletal muscle and connective tissue? Horm Metab Res. 1995;27(12):528–32.
Article
CAS
PubMed
Google Scholar
Gopinath B, Wescombe L, Nguyen B, Wall JR. Can autoimmunity against calsequestrin explain the eye and eyelid muscle inflammation of thyroid eye disease? Orbit. 2009;28(4):256–61.
Article
PubMed
Google Scholar
Wiersinga WM, Bartalena L. Epidemiology and prevention of Graves’ ophthalmopathy. Thyroid. 2002;12(10):855–60.
Article
PubMed
Google Scholar
Stan MN, Bahn RS. Risk factors for development or deterioration of Graves’ ophthalmopathy. Thyroid. 2010;20(7):777–83.
Article
PubMed
PubMed Central
Google Scholar
Rosenbaum JT, Choi D, Wong A, Wilson DJ, Grossniklaus HE, Harrington CA, et al. The role of the immune response in the pathogenesis of thyroid eye disease: a reassessment. PLoS ONE. 2015;10(9):e0137654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu FF, Yang LZ. Bioinformatic analysis identifies potentially key differentially expressed genes and pathways in orbital adipose tissues of patients with thyroid eye disease. Acta Endocrinol (Buchar). 2019;5(1):1–8.
Google Scholar
Lee BW, Kumar VB, Biswas P, Ko AC, Alameddine RM, Granet DB, et al. Transcriptome analysis of orbital adipose tissue in active thyroid eye disease using next generation RNA sequencing technology. Open Ophthalmol J. 2018;12:41–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumari S, Nie J, Chen HS, Ma H, Stewart R, Li X, et al. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS ONE. 2012;7(11):e50411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Y, Chen D, Yu W, Yan L. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas. 2019;156:7.
Article
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 2018;19(4):575–92.
PubMed
Google Scholar
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA. Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS ONE. 2011;6(10):e26683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubbard EL, Catalina MD, Heuer S, Bachali P, Robl R, Geraci NS, et al. Analysis of gene expression from systemic lupus erythematosus synovium reveals myeloid cell-driven pathogenesis of lupus arthritis. Sci Rep. 2020;10(1):17361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raza W, Wang J, Jousset A, Friman VP, Mei X, Wang S, et al. Bacterial community richness shifts the balance between volatile organic compound-mediated microbe-pathogen and microbe-plant interactions. Proc Biol Sci. 2020;287(1925):20200403.
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, Zha L, Zeng X, Yu Z. Identification of biomarkers related to systemic sclerosis with or without pulmonary hypertension using co-expression analysis. J Comput Biol J Comput Mol Cell Biol. 2020;27(10):1519–31.
Article
CAS
Google Scholar
Li H, Yang C, Zhang J, Zhong W, Zhu L, Chen Y. Identification of potential key mRNAs and LncRNAs for psoriasis by bioinformatic analysis using weighted gene co-expression network analysis. Mol Genet Genomics MGG. 2020;295(3):741–9.
Article
CAS
PubMed
Google Scholar
Guo R, Chu A, Gong Y. Identification of cancer stem cell-related biomarkers in intestinal-type and diffuse-type gastric cancer by stemness index and weighted correlation network analysis. J Transl Med. 2020;18(1):418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Guo J, Zhou Q, Huang W, Xu C, Long X. A novel immune-related prognostic index for predicting breast cancer overall survival. Breast Cancer. 2020. https://doi.org/10.1007/s12282-020-01175-z.
Article
PubMed
Google Scholar
Li X, Yang Y, Sun G, Dai W, Jie X, Du Y, et al. Promising targets and drugs in rheumatoid arthritis: a module-based and cumulatively scoring approach. Bone Jt Res. 2020;9(8):501–14.
Article
Google Scholar
Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006;2(8):e130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giulietti M, Righetti A, Principato G, Piva F. LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis. 2018;39(8):1016–25.
Article
CAS
PubMed
Google Scholar
Zhou XG, Huang XL, Liang SY, Tang SM, Wu SK, Huang TT, et al. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther. 2018;11:2815–30.
Article
PubMed
PubMed Central
Google Scholar
Randhawa V, Pathania S. Advancing from protein interactomes and gene co-expression networks towards multi-omics-based composite networks: approaches for predicting and extracting biological knowledge. Brief Funct Genomics. 2020. https://doi.org/10.1093/bfgp/elaa015.
Article
PubMed
Google Scholar
Zhang J, Huang K. Pan-cancer analysis of frequent DNA co-methylation patterns reveals consistent epigenetic landscape changes in multiple cancers. BMC Genomics. 2017;18(Suppl 1):1045.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Huang K. Normalized lmQCM: an algorithm for detecting weak quasi-cliques in weighted graph with applications in gene co-expression module discovery in cancers. Cancer informatics. 2014;13(Suppl 3):137–46.
PubMed
Google Scholar
Xiang S, Huang Z, Wang T, Han Z, Yu CY, Ni D, et al. Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer’s disease patients. BMC Med Genomics. 2018;11(Suppl 6):115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helm BR, Zhan X, Pandya PH, Murray ME, Pollok KE, Renbarger JL, Ferguson MJ, Han Z, Ni D, Zhang J, Huang K. Gene co-expression networks restructured gene fusion in rhabdomyosarcoma cancers. Genes. 2019;10(9):665.
Article
CAS
PubMed Central
Google Scholar
Weiler DL. Thyroid eye disease: a review. Clin Exp Optom. 2017;100(1):20–5.
Article
PubMed
Google Scholar
Grusha Ia O, Ismailova DS, Gankovskaia OA. Risk factors of corneal damage in patients with Thyroid Eye Disease. Vestn Oftalmol. 2010;126(6):35–8.
CAS
PubMed
Google Scholar
Rasaei R, Sarodaya N, Kim KS, Ramakrishna S, Hong SH. Importance of deubiquitination in macrophage-mediated viral response and inflammation. Int J Mol Sci. 2020;21(21):8090.
Article
CAS
PubMed Central
Google Scholar
Hos NJ, Fischer J, Hos D, Hejazi Z, Calabrese C, Ganesan R, Murthy AMV, Rybniker J, Kumar S, Krönke M, Robinson N. TRIM21 is targeted for chaperone-mediated autophagy during Salmonella typhimurium infection. J Immunol. 2020;205(9):2456–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chitrakar A, Budda SA, Henderson JG, Axtell RC, Zenewicz LA. E3 ubiquitin ligase Von Hippel-Lindau protein promotes Th17 differentiation. J Immunol. 2020;205(4):1009–23.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhu YF, Wang Q, Xu J, Yan N, Xu J, et al. The haplotype of UBE2L3 gene is associated with Hashimoto’s thyroiditis in a Chinese Han population. BMC Endocr Disord. 2016;16:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsurumaru M, Kawasaki E, Ida H, Migita K, Moriuchi A, Fukushima K, et al. Evidence for the role of small ubiquitin-like modifier 4 as a general autoimmunity locus in the Japanese population. J Clin Endocrinol Metab. 2006;91(8):3138–43.
Article
CAS
PubMed
Google Scholar
Tsimokha AS, Artamonova TO, Diakonov EE, Khodorkovskii MA, Tomilin AN. Post-translational modifications of extracellular proteasome. Molecules (Basel, Switzerland). 2020;25(15):3504.
Article
CAS
Google Scholar
Nagayama Y, Nakahara M, Shimamura M, Horie I, Arima K, Abiru N. Prophylactic and therapeutic efficacies of a selective inhibitor of the immunoproteasome for Hashimoto’s thyroiditis, but not for Graves’ hyperthyroidism, in mice. Clin Exp Immunol. 2012;168(3):268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corrigan TS, Lotti Diaz LM, Border SE, Ratigan SC, Kasper KQ, Sojka D, et al. Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):1387–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalal S, Shook PL, Singh M, Singh K. Cardioprotective potential of exogenous ubiquitin. Cardiovasc Drugs Ther. 2020. https://doi.org/10.1007/s10557-020-07042-539.
Article
PubMed
Google Scholar
Kimura HJ, Chen CY, Tzou SC, Rocchi R, Landek-Salgado MA, Suzuki K, et al. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice. PLoS ONE. 2009;4(11): e7857.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee WM, Paik JS, Cho WK, Oh EH, Lee SB, Yang SW. Rapamycin enhances TNF-α-induced secretion of IL-6 and IL-8 through suppressing PDCD4 degradation in orbital fibroblasts. Curr Eye Res. 2013;38(6):699–706.
Article
CAS
PubMed
Google Scholar
Khalil R, Kenny C, Hill RS, Mochida GH, Nasir R, Partlow JN, et al. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features. Am J Med Genet B Neuropsychiatr Genet. 2018;177(8):736–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama S, Iwakami Y, Hang Z, Kin R, Zhou Y, Yasuta Y, et al. Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization. Sci Rep. 2020;10(1):19214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levin A, Minis A, Lalazar G, Rodriguez J, Steller H. PSMD5 inactivation promotes 26S proteasome assembly DURING colorectal tumor progression. Cancer Res. 2018;78(13):3458–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imai F, Yoshizawa A, Fujimori-Tonou N, Kawakami K, Masai I. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development (Cambridge, England). 2010;137(19):3257–68.
Article
CAS
Google Scholar
Mintie CA, Singh CK, Ndiaye MA, Barrett-Wilt GA, Ahmad N. Identification of molecular targets of dietary grape-mediated chemoprevention of Ultraviolet B skin carcinogenesis: a comparative quantitative proteomics analysis. J Proteome Res. 2019;18(10):3741–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pihlajamäki J, Boes T, Kim EY, Dearie F, Kim BW, Schroeder J, et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab. 2009;94(9):3521–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. MicroRNA-130a is elevated in thyroid eye disease and increases lipid accumulation in fibroblasts through the suppression of AMPK. Invest Ophthalmol Vis Sci. 2021;62(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Hou SY, Qi X, Deng M, Cao JM, Tong BD, et al. LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED-derived orbital fibroblast activation through cell adhesion factors. J Clin Endocrinol Metab. 2021;106(8):e2866–86.
Article
PubMed
Google Scholar
Woeller CF, Roztocil E, Hammond C, Feldon SE. TSHR signaling stimulates proliferation through PI3K/Akt and induction of miR-146a and miR-155 in thyroid eye disease orbital fibroblasts. Invest Ophthalmol Vis Sci. 2019;60(13):4336–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khong JJ, McNab A. Medical treatment in thyroid eye disease in 2020. Br J Ophthalmol. 2021;105(3):299–305.
Article
PubMed
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar