Yoder JA, Litman GW. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics. 2011;63:123–41.
Article
CAS
PubMed
Google Scholar
Flajnik MF, Du Pasquier L. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 2004;25:640–4.
Article
CAS
PubMed
Google Scholar
Tassia MG, Whelan NV, Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proc Natl Acad Sci USA. 2017;114:7055–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol. 2015;15:32.
Article
PubMed
PubMed Central
Google Scholar
Schartl M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech. 2014;7:181–92.
PubMed
Google Scholar
Yohe LR, Liu L, Dávalos LM, Liberles DA. Protocols for the molecular evolutionary analysis of membrane protein gene duplicates. Methods Mol Biol. 2019;1851:49–62.
Article
CAS
PubMed
Google Scholar
Gu X, Zhang Z, Huang W. Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc Natl Acad Sci USA. 2005;102:707–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet. 2017;13:e1006867.
Article
PubMed
PubMed Central
Google Scholar
Whitehead A, Crawford DL. Variation within and among species in gene expression: raw material for evolution. Mol Ecol. 2006;15:1197–211.
Article
CAS
PubMed
Google Scholar
Rohlfs RV, Harrigan P, Nielsen R. Modeling gene expression evolution with an extended ornstein-uhlenbeck process accounting for within-species variation. Mol Biol Evol. 2014. https://doi.org/10.1093/molbev/mst190.
Article
PubMed
Google Scholar
Loehlin DW, Carroll SB. Expression of tandem gene duplicates is often greater than twofold. Proc Natl Acad Sci USA. 2016;113:5988–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohlfs RV, Nielsen R. Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution. Syst Biol. 2015;64:695–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Gudibanda A, Ugwuowo U, Trail F, Townsend JP. Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biol Rev. 2018;32:249–64.
Article
CAS
Google Scholar
Hodgins-Davis A, Rice DP, Townsend JP. Gene expression evolves under a house-of-cards model of stabilizing selection. Mol Biol Evol. 2015. https://doi.org/10.1093/molbev/msv094.
Article
PubMed
PubMed Central
Google Scholar
Lemos B, Meiklejohn CD, Cáceres M, Hartl DL. Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. Evolution. 2005;59:126–37.
Article
CAS
PubMed
Google Scholar
Metzger BPH, Duveau F, Yuan DC, Tryban S, Yang B, Wittkopp PJ. Contrasting frequencies and effects of cis- and trans-regulatory mutations affecting gene expression. Mol Biol Evol. 2016;33:1131–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bedford T, Hartl DL. Optimization of gene expression by natural selection. Proc Natl Acad Sci USA. 2009;106:1133–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011;13:59–69.
Article
PubMed
Google Scholar
Labbé P, Milesi P, Yébakima A, Pasteur N, Weill M, Lenormand T. GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens. Evolution. 2014;68:2092–101.
Article
PubMed
Google Scholar
Nelson JA. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. J Fish Biol. 2016;88:10–25.
Article
CAS
PubMed
Google Scholar
Pörtner H-O, Bock C, Mark FC. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol. 2017;220:2685–96.
Article
PubMed
Google Scholar
Bernal MA, Donelson JM, Veilleux HD, Ryu T, Munday PL, Ravasi T. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol Ecol. 2018. https://doi.org/10.1111/mec.14884.
Article
PubMed
Google Scholar
Bernal MA, Schunter C, Lehmann R, Lightfoot DJ, Allan BJM, Veilleux HD, et al. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Sci Adv. 2020;6:eaay3423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernal MA, Ravasi T, Rodgers GG, Munday PL, Donelson JM. Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl. 2022. https://doi.org/10.1111/eva.13337.
Article
PubMed
PubMed Central
Google Scholar
Alrafiah A, Karyka E, Coldicott I, Iremonger K, Lewis KE, Ning K, et al. Plastin 3 promotes motor neuron axonal growth and extends survival in a mouse model of spinal muscular atrophy. Mol Ther Methods Clin Dev. 2018. https://doi.org/10.1016/j.omtm.2018.01.007.
Article
PubMed
PubMed Central
Google Scholar
Bernal MA, Schmidt E, Donelson JM, Munday PL, Ravasi T. Molecular response of the brain to cross-generational warming in a coral reef fish. Front Mar Sci. 2022. https://doi.org/10.3389/fmars.2022.784418.
Article
Google Scholar
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol. 2022;35:205–24.
Article
PubMed
PubMed Central
Google Scholar
Middleton D, Gonzelez F. The extensive polymorphism of KIR genes. Immunology. 2010;129:8–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trowsdale J, Jones DC, Barrow AD, Traherne JA. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol Rev. 2015;267:117–36.
Article
CAS
PubMed
Google Scholar
Pelak K, Need AC, Fellay J, Shianna KV, Feng S, Urban TJ, et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol. 2011;9: e1001208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tukwasibwe S, Nakimuli A, Traherne J, Chazara O, Jayaraman J, Trowsdale J, et al. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell Mol Immunol. 2020. https://doi.org/10.1038/s41423-020-0482-z.
Article
PubMed
PubMed Central
Google Scholar
Sorgho PA, Djigma FW, Martinson JJ, Yonli AT, Nagalo BM, Compaore TR, et al. Role of Killer cell immunoglobulin-like receptors (KIR) genes in stages of HIV-1 infection among patients from Burkina Faso. Biomol Concepts. 2019;10:226–36.
Article
CAS
PubMed
Google Scholar
Agrawal S, Prakash S. Significance of KIR like natural killer cell receptors in autoimmune disorders. Clin Immunol. 2020;216:108449.
Article
CAS
PubMed
Google Scholar
Mansouri M, Villard J, Ramzi M, Alavianmehr A, Farjadian S. Impact of donor KIRs and recipient KIR/HLA class I combinations on GVHD in patients with acute leukemia after HLA-matched sibling HSCT. Hum Immunol. 2020;81:285–92.
Article
CAS
PubMed
Google Scholar
Rahim MMA, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev. 2015;267:137–47.
Article
CAS
PubMed
Google Scholar
Lee SH, Girard S, Macina D, Busà M, Zafer A, Belouchi A, et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet. 2001;28:42–5.
Article
CAS
PubMed
Google Scholar
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci. 2012;367:800–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guselnikov SV, Taranin AV. Unraveling the LRC evolution in mammals: IGSF1 and A1BG provide the keys. Genome Biol Evol. 2019;11:1586–601.
Article
PubMed
PubMed Central
Google Scholar
Futas J, Horin P. Natural killer cell receptor genes in the family equidae: not only Ly49. PLoS ONE. 2013;8:e64736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, et al. Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts. J Immunol. 2014;193:6016–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrow AD, Trowsdale J. The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev. 2008;224:98–123.
Article
CAS
PubMed
Google Scholar
Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT. Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol. 2002;23:81–8.
Article
CAS
PubMed
Google Scholar
Hudson LE, Allen RL. Leukocyte Ig-like receptors: a model for MHC class I disease associations. Front Immunol. 2016;7:281.
Article
PubMed
PubMed Central
Google Scholar
Hogan L, Bhuju S, Jones DC, Laing K, Trowsdale J, Butcher P, et al. Characterisation of bovine leukocyte Ig-like receptors. PLoS ONE. 2012;7:e34291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology. 2005;115:433–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tun T, Kubagawa Y, Dennis G, Burrows PD, Cooper MD, Kubagawa H. Genomic structure of mouse PIR-A6, an activating member of the paired immunoglobulin-like receptor gene family. Tissue Antigens. 2003;61:220–30.
Article
CAS
PubMed
Google Scholar
Schwartz JC, Hammond JA. The unique evolution of the pig LRC, a single KIR but expansion of LILR and a novel Ig receptor family. Immunogenetics. 2018;70:661–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schenkel AR, Kingry LC, Slayden RA. The ly49 gene family: a brief guide to the nomenclature, genetics, and role in intracellular infection. Front Immunol. 2013;4:90.
Article
PubMed
PubMed Central
Google Scholar
Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P. Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol. 2009;182:3618–27.
Article
CAS
PubMed
Google Scholar
Rojo S, Burshtyn DN, Long EO, Wagtmann N. Type I transmembrane receptor with inhibitory function in mouse mast cells and NK cells. J Immunol. 1997;158:9–12.
CAS
PubMed
Google Scholar
Wang LL, Mehta IK, LeBlanc PA, Yokoyama WM. Mouse natural killer cells express gp49B1, a structural homologue of human killer inhibitory receptors. J Immunol. 1997;158:13–7.
CAS
PubMed
Google Scholar
Shen L, Stuge TB, Zhou H, Khayat M, Barker KS, Quiniou SMA, et al. Channel catfish cytotoxic cells: a mini-review. Dev Comp Immunol. 2002;26:141–9.
Article
CAS
PubMed
Google Scholar
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. Fish Shellfish Immunol. 2013;35:197–206.
Article
CAS
PubMed
Google Scholar
Litman GW, Hawke NA, Yoder JA. Novel immune-type receptor genes. Immunol Rev. 2001;181:250–9.
Article
CAS
PubMed
Google Scholar
Yoder JA. Form, function and phylogenetics of NITRs in bony fish. Dev Comp Immunol. 2009;33:135–44.
Article
CAS
PubMed
Google Scholar
Cannon JP, Haire RN, Magis AT, Eason DD, Winfrey KN, Hernandez Prada JA, et al. A bony fish immunological receptor of the NITR multigene family mediates allogeneic recognition. Immunity. 2008;29:228–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei S, Zhou J-M, Chen X, Shah RN, Liu J, Orcutt TM, et al. The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenetics. 2007;59:813–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Traver D, Yoder JA. Chapter 19: immunology. In: Cartner SC, Eisen JS, Farmer SC, Guillemin KJ, Kent ML, Sanders GE, editors. The zebrafish in biomedical research. Academic Press; 2020. p. 191–216.
Chapter
Google Scholar
Dornburg A, Wcisel DJ, Zapfe K, Ferraro E, Roupe-Abrams L, Thompson AW, et al. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. https://doi.org/10.1101/2021.06.11.448072
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48:427–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson A, Hawkins M, Parey E, Wcisel D, Ota T, Kawasaki K, et al. The genome of the bowfin (Amia calva) illuminates the developmental evolution of ray-finned fishes. https://doi.org/10.21203/rs.3.rs-92055/v1
Wcisel DJ, Ota T, Litman GW, Yoder JA. Spotted gar and the evolution of innate immune receptors. J Exp Zool B Mol Dev Evol. 2017;328:666–84.
Article
PubMed
PubMed Central
Google Scholar
Wcisel DJ, Yoder JA. The confounding complexity of innate immune receptors within and between teleost species. Fish Shellfish Immunol. 2016;53:24–34.
Article
CAS
PubMed
Google Scholar
Rodríguez-Nunez I, Wcisel DJ, Litman GW, Yoder JA. Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish: deciphering the differences. Dev Comp Immunol. 2014;46:24–34.
Article
PubMed
PubMed Central
Google Scholar
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, et al. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Cold Spring Harbor Laboratory; 2022; https://doi.org/10.1101/2022.04.21.489081.abstract
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000. https://doi.org/10.1016/s0092-8674(00)81683-9.
Article
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. https://doi.org/10.1016/j.cell.2011.02.013.
Article
PubMed
Google Scholar
Haupt S, Haupt Y. P53 at the start of the 21st century: lessons from elephants. F1000Res. 2017;6:2041.
Article
PubMed
PubMed Central
Google Scholar
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, et al. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2010;2:a001198.
Article
PubMed
PubMed Central
Google Scholar
Nunney L. Size matters: height, cell number and a person’s risk of cancer. Proc Biol Sci. 2018. https://doi.org/10.1098/rspb.2018.1743.
Article
PubMed
PubMed Central
Google Scholar
Casás-Selves M, Degregori J. How cancer shapes evolution, and how evolution shapes cancer. Evolution. 2011;4:624–34.
PubMed
PubMed Central
Google Scholar
White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46:S7-15.
Article
PubMed
PubMed Central
Google Scholar
Vazquez JM, Sulak M, Chigurupati S, Lynch VJ. A zombie LIF Gene in elephants is upregulated by TP53 to Induce apoptosis in response to DNA damage. Cell Rep. 2018;24:1765–76.
Article
CAS
PubMed
Google Scholar
Dornburg A, Wang Z, Wang J, Mo ES, López-Giráldez F, Townsend JP. Comparative genomics within and across bilaterians illuminates the evolutionary history of ALK and LTK proto-oncogene origination and diversification. Genome Biol Evol. 2021. https://doi.org/10.1093/gbe/evaa228.
Article
PubMed
Google Scholar
De Munck S, Provost M, Kurikawa M, Omori I, Mukohyama J, Felix J, et al. Structural basis of cytokine-mediated activation of ALK family receptors. Nature. 2021;600:143–7.
Article
PubMed
Google Scholar
Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13:685–700.
Article
CAS
PubMed
Google Scholar
Janostiak R, Malvi P, Wajapeyee N. Anaplastic lymphoma kinase confers resistance to BRAF kinase inhibitors in melanoma. iScience. 2019;16:453–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katayama R. Resistance to anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) in patients with lung cancer: single mutations, compound mutations, and other mechanisms of drug resistance. Ther Strateg Overcome ALK Resist Cancer. 2021. https://doi.org/10.1016/b978-0-12-821774-0.00015-2.
Article
Google Scholar
Englund C, Lorén CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B, et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature. 2003;425:512–6.
Article
CAS
PubMed
Google Scholar
Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S, et al. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell. 2002;109:639–49.
Article
CAS
PubMed
Google Scholar
Reshetnyak AV, Murray PB, Shi X, Mo ES, Mohanty J, Tome F, et al. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: hierarchy and specificity of ligand–receptor interactions. Proc Natl Acad Sci. 2015. https://doi.org/10.1073/pnas.1520099112.
Article
PubMed
PubMed Central
Google Scholar
Mo ES, Cheng Q, Reshetnyak AV, Schlessinger J, Nicoli S. Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc Natl Acad Sci. 2017. https://doi.org/10.1073/pnas.1710254114.
Article
PubMed
PubMed Central
Google Scholar
Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6:457–64.
Article
CAS
PubMed
Google Scholar
Murata Y, Saito Y, Kotani T, Matozaki T. CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci. 2018;109:2349–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dornburg A, Yoder JA. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics. 2022. https://doi.org/10.1007/s00251-021-01232-7.
Article
PubMed
Google Scholar
van Beek EM, Cochrane F, Barclay AN, van den Berg TK. Signal regulatory proteins in the immune system. J Immunol. 2005;175:7781–7.
Article
PubMed
Google Scholar
Ichigotani Y, Matsuda S, Machida K, Oshima K, Iwamoto T, Yamaki K, et al. Molecular cloning of a novel human gene (SIRP-B2) which encodes a new member of the SIRP/SHPS-1 protein family. J Hum Genet. 2000;45:378–82.
Article
CAS
PubMed
Google Scholar
Viertlboeck BC, Schmitt R, Göbel TW. The chicken immunoregulatory receptor families SIRP, TREM, and CMRF35/CD300L. Immunogenetics. 2006;58:180–90.
Article
CAS
PubMed
Google Scholar
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 2017;276:145–64.
Article
CAS
PubMed
Google Scholar
Liu L, Xiang Y-R. “Eating” Cancer cells by blocking CD47 signaling: Cancer therapy by targeting the innate immune checkpoint. Cancer Transl Med. 2017. https://doi.org/10.4103/ctm.ctm_26_17.
Article
PubMed
PubMed Central
Google Scholar
Oronsky B, Carter C, Reid T, Brinkhaus F, Knox SJ. Just eat it: a review of CD47 and SIRP-α antagonism. Semin Oncol. 2020;47:117–24.
Article
CAS
PubMed
Google Scholar
Petrova PS, Viller NN, Wong M, Pang X, Lin GHY, Dodge K, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 2017;23:1068–79.
Article
CAS
PubMed
Google Scholar
Brooke G, Holbrook JD, Brown MH, Barclay AN. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J Immunol. 2004;173:2562–70.
Article
CAS
PubMed
Google Scholar
Seiffert M, Brossart P, Cant C, Cella M, Colonna M, Brugger W, et al. Signal-regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34(+)CD38(-) hematopoietic cells. Blood. 2001;97:2741–9.
Article
CAS
PubMed
Google Scholar
Willingham SB, Volkmer J-P, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci. 2012. https://doi.org/10.1073/pnas.1121623109.
Article
PubMed
PubMed Central
Google Scholar
Yeh KC, Wu SH, Murphy JT, Lagarias JC. A cyanobacterial phytochrome two-component light sensory system. Science. 1997;277:1505–8.
Article
CAS
PubMed
Google Scholar
Mörner CT. Untersuchung der proteїnsubstanzen in den leichtbrechenden medien des auges I. De Gruyter. 1894;18:61–106.
Google Scholar
de Jong WW, Leunissen JA, Voorter CE. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol. 1993;10:103–26.
PubMed
Google Scholar
Crandall KA, Hillis DM. Rhodopsin evolution in the dark. Nature. 1997;387:667–8.
Article
CAS
PubMed
Google Scholar
Chang BSW, Jönsson K, Kazmi MA, Donoghue MJ, Sakmar TP. Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol. 2002;19:1483–9.
Article
CAS
PubMed
Google Scholar
Liu Y, Cui Y, Chi H, Xia Y, Liu H, Rossiter SJ, et al. Scotopic rod vision in tetrapods arose from multiple early adaptive shifts in the rate of retinal release. Proc Natl Acad Sci USA. 2019;116:12627–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama S, Tada T, Zhang H, Britt L. Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA. 2008;105:13480–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pohl N, Sison-Mangus MP, Yee EN, Liswi SW, Briscoe AD. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies. BMC Evol Biol BioMed Central. 2009;9:1–16.
Google Scholar
Dornburg A, Santini F, Alfaro ME. The influence of model averaging on clade posteriors: an example using the triggerfishes (Family Balistidae). Syst Biol. 2008;57:905–19.
Article
CAS
PubMed
Google Scholar
Dornburg A, Near TJ. The emerging phylogenetic perspective on the evolution of actinopterygian fishes. Ann Rev Ecol Evol Syst. 2021. https://doi.org/10.1146/annurev-ecolsys-122120-122554.
Article
Google Scholar
Yu Z, Fischer R. Light sensing and responses in fungi. Nat Rev Microbiol. 2018;17:25–36.
Article
Google Scholar
Vierstra RD. Cyanophytochromes, bacteriophytochromes, and plant phytochromes. Histidine Kinases Signal Transduct. 2003. https://doi.org/10.1016/b978-012372484-7/50014-x.
Article
Google Scholar
Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. Fungi, hidden in soil or up in the air: light makes a difference. Ann Rev Microbiol. 2010. https://doi.org/10.1146/annurev.micro.112408.134000.
Article
Google Scholar
Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, et al. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol. 2016;26:1577–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corrochano LM. Light in the fungal world: from photoreception to gene transcription and beyond. Annu Rev Genet. 2019;53:149–70.
Article
CAS
PubMed
Google Scholar
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, et al. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol. 2018;27:216–32.
Article
CAS
PubMed
Google Scholar
Wang Z, Li N, Li J, Dunlap JC, Trail F, Townsend JP. The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. MBio. 2016;7:e02148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wistow G. The human crystallin gene families. Hum Genom BioMed Central. 2012;6:1–10.
Google Scholar
Wistow G, Slingsby C. Structure and evolution of crystallins. In: Encyclopedia of the eye. Academic Press; 2010. p. 229–38.
Chapter
Google Scholar
Kappé G, Purkiss AG, van Genesen ST, Slingsby C, Lubsen NH. Explosive expansion of betagamma-crystallin genes in the ancestral vertebrate. J Mol Evol. 2010;71:219–30.
Article
PubMed
PubMed Central
Google Scholar
Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet. 2003;11:784–93.
Article
CAS
PubMed
Google Scholar
Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet. 1998;7:471–4.
Article
CAS
PubMed
Google Scholar
Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Fielding HJ. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis. 2008;14:1157.
CAS
PubMed
PubMed Central
Google Scholar
Brakenhoff RH, Aarts HJ, Reek FH, Lubsen NH, Schoenmakers JG. Human gamma-crystallin genes: a gene family on its way to extinction. J Mol Biol. 1990;216:519–32.
Article
CAS
PubMed
Google Scholar
Lubsen NH, Aarts HJ, Schoenmakers JG. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol. 1988;51:47–76.
Article
CAS
PubMed
Google Scholar
Ovchinnikov YuA. Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett. 1982;148:179–91.
Article
CAS
PubMed
Google Scholar
Nathans J, Hogness DS. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983;34:807–14.
Article
CAS
PubMed
Google Scholar
Terakita A. The opsins. Genome Biol BioMed Central. 2005;6:1–9.
Google Scholar
Chi H, Cui Y, Rossiter SJ, Liu Y. Convergent spectral shifts to blue-green vision in mammals extends the known sensitivity of vertebrate M/LWS pigments. Proc Natl Acad Sci USA. 2020;117:8303–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986. https://doi.org/10.1126/science.2937147.
Article
PubMed
Google Scholar
Musilova Z, Salzburger W, Cortesi F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu Rev Cell Dev Biol. 2021;37:441–68.
Article
CAS
PubMed
Google Scholar
Lin J-J, Wang F-Y, Li W-H, Wang T-Y. The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci Rep. 2017;7:15568.
Article
PubMed
PubMed Central
Google Scholar
Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA. 2009;106:8980–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eaton KM, Bernal MA, Backenstose NJC, Yule DL, Krabbenhoft TJ. Nanopore amplicon sequencing reveals molecular convergence and local adaptation of rhodopsin in great lakes salmonids. Genom Biol Evol. 2021. https://doi.org/10.1093/gbe/evaa237.
Article
Google Scholar
Hill J, Enbody ED, Pettersson ME, Sprehn CG, Bekkevold D, Folkvord A, et al. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin. Proc Natl Acad Sci USA. 2019;116:18473–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoder EB, Parker CE, Tew A, Jones CD, Dornburg A. Decoupled spectral tuning and eye size diversification patterns in an Antarctic adaptive radiation. bioRxiv. 2022. https://doi.org/10.1101/2022.09.28.509872
Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun. 2019;10:1221.
Article
PubMed
PubMed Central
Google Scholar
Davidoff C. Cone opsin gene variants in color blindness and other vision disorders. 2015.
Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci USA. 2009;106:13410–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández R, Gabaldón T. Gene gain and loss across the metazoan tree of life. Nat Ecol Evol. 2020;4:524–33.
Article
PubMed
PubMed Central
Google Scholar
Suh S, Choi EH, Atanaskova MN. The expression of opsins in the human skin and its implications for photobiomodulation: a systematic review. Photodermatol Photoimmunol Photomed. 2020;36:329–38.
Article
PubMed
PubMed Central
Google Scholar
Moraes MN, de Assis LVM, Provencio I, de Castrucci AM. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res. 2021;385:519–38.
Article
CAS
PubMed
Google Scholar
Mäthger LM, Roberts SB, Hanlon RT. Evidence for distributed light sensing in the skin of cuttlefish. Sepia officinalis Biol Lett. 2010;6:600–3.
Article
PubMed
Google Scholar
Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med. 2019;51:370–82.
Article
PubMed
Google Scholar
Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.
Article
CAS
PubMed
Google Scholar
Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999;96:725–36.
Article
CAS
PubMed
Google Scholar
Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci. 1997;20:595–631.
Article
CAS
PubMed
Google Scholar
Kaupp UB. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci. 2010;11:188–200.
Article
CAS
PubMed
Google Scholar
Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res. 2010;20:1–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genom. 2012;13:103–14.
Article
CAS
Google Scholar
Niimura Y, Matsui A, Touhara K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 2014;24:1485–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yohe LR, Fabbri M, Hanson M, Bhullar B-AS. Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change. Curr Zool. 2020;66:505–14.
Article
PubMed
PubMed Central
Google Scholar
Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Ann Rev Genet. 2005. https://doi.org/10.1146/annurev.genet.39.073003.112240.
Article
PubMed
Google Scholar
Niimura Y, Nei M. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE. 2007. https://doi.org/10.1371/journal.pone.0000708.
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Gracia A, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009. https://doi.org/10.1038/hdy.2009.55.
Article
PubMed
Google Scholar
Bear DM, Lassance J-M, Hoekstra HE, Datta SR. The evolving neural and genetic architecture of vertebrate olfaction. Curr Biol. 2016;26:R1039–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato T, Hirono J, Hamana H, Ishikawa T, Shimizu A, Takashima I, et al. Architecture of odor information processing in the olfactory system. Anat Sci Int. 2008;83:195–206.
Article
CAS
PubMed
Google Scholar
Dehara Y, Hashiguchi Y, Matsubara K, Yanai T, Kubo M, Kumazawa Y. Characterization of squamate olfactory receptor genes and their transcripts by the high-throughput sequencing approach. Genome Biol Evol. 2012;4:602–16.
Article
PubMed
PubMed Central
Google Scholar
McBride CS. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci USA. 2007;104:4996–5001.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride CS, Arguello JR, O’Meara BC. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics. 2007;177:1395–416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden S, Bekaert M, Goodbla A, Murphy WJ, Dávalos LM, Teeling EC. A cluster of olfactory receptor genes linked to frugivory in bats. Mol Biol Evol. 2014;31:917–27.
Article
CAS
PubMed
Google Scholar
Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG, Whiteman NK. Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci USA. 2015;112:3026–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould F, Estock M, Hillier NK, Powell B, Groot AT, Ward CM, et al. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc Natl Acad Sci USA. 2010;107:8660–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, et al. Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci USA. 2011;108:11235–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006;125:143–60.
Article
CAS
PubMed
Google Scholar
Malnic B, Hirono J, Sato T, Buck LB. Combinatorial receptor codes for odors. Cell. 1999;96:713–23.
Article
CAS
PubMed
Google Scholar
Magklara A, Lomvardas S. Stochastic gene expression in mammals: lessons from olfaction. Trends Cell Biol. 2013;23:449–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nara K, Saraiva LR, Ye X, Buck LB. A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci. 2011;31:9179–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez I. Singular expression of olfactory receptor genes. Cell. 2013;155:274–7.
Article
CAS
PubMed
Google Scholar
McClintock TS, Adipietro K, Titlow WB, Breheny P, Walz A, Mombaerts P, et al. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors. J Neurosci. 2014;34:15669–78.
Article
PubMed
PubMed Central
Google Scholar
Bushdid C, Magnasco MO, Vosshall LB, Keller A. Humans can discriminate more than 1 trillion olfactory stimuli. Science. 2014. https://doi.org/10.1126/science.1249168.
Article
PubMed
PubMed Central
Google Scholar
Haverkamp A, Hansson BS, Knaden M. Combinatorial codes and labeled lines: how insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front Physiol. 2018;9:49.
Article
PubMed
PubMed Central
Google Scholar
Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, et al. The tuatara genome reveals ancient features of amniote evolution. Nature. 2020;584:403–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drum Z, Lanno S, Gregory S, Shimshak S, Barr W, Gatesman A, et al. Genomics analysis of drosophila sechellia response to morinda citrifolia fruit diet. G3. 2022. https://doi.org/10.1093/g3journal/jkac153.
Article
PubMed
PubMed Central
Google Scholar
Shiao M-S, Chang J-M, Fan W-L, Lu M-YJ, Notredame C, Fang S, et al. Expression divergence of chemosensory genes between drosophila sechellia and its sibling species and its implications for host shift. Genome Biol Evol. 2015;7:2843–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drum ZA, Lanno SM, Gregory SM, Shimshak SJ, Ahamed M, Barr W, et al. Genomics analysis of hexanoic acid exposure in drosophila species. G3. 2022. https://doi.org/10.1093/g3journal/jkab354.
Article
PubMed
PubMed Central
Google Scholar
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, et al. Olfactory receptor and circuit evolution promote host specialization. Nature. 2020;579:402–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L, Silbering AF, et al. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron. 2017;93:661-76.e6.
Article
CAS
PubMed
Google Scholar
Dressler RL. Biology of the orchid bees (Euglossini). Ann Rev Ecol Syst. 1982. https://doi.org/10.1146/annurev.es.13.110182.002105.
Article
Google Scholar
Ackerman JD. Specificity and mutual dependency of the orchid-euglossine bee interaction. Biol J Linnean Soc. 1983;20:301–14. https://doi.org/10.1111/j.1095-8312.1983.tb01878.x.
Article
Google Scholar
Cameron SA. Phylogeny and biology of neotropical orchid bees (Euglossini). Annu Rev Entomol. 2004;49:377–404.
Article
CAS
PubMed
Google Scholar
Kimsey LS. The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Animal Behav. 1980;28(4):996–1004. https://doi.org/10.1016/S0003-3472(80)80088-1.
Article
Google Scholar
Eltz T, Sager A, Lunau K. Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191:575–81.
Article
PubMed
Google Scholar
Zimmermann Y, Roubik DW, Eltz T. Species-specific attraction to pheromonal analogues in orchid bees. Behav Ecol Sociobiol. 2006. https://doi.org/10.1007/s00265-006-0227-8.
Article
Google Scholar
Pokorny T, Vogler I, Losch R, Schlütting P, Juarez P, Bissantz N, et al. Blown by the wind: the ecology of male courtship display behavior in orchid bees. Ecology. 2017;98:1140–52.
Article
PubMed
Google Scholar
Stern DL, Dudley TR. Wing buzzing by male orchid bees, Eulaema meriana (Hymenoptera: Apidae). J Kansas Entomol Soc. 1991;64:88–94.
Google Scholar
Dodson CH. Ethology of some bees of the tribe Euglossini (Hymenoptera: Apidae). J Kansas Entomol Soc. 1966;39:607–29.
Google Scholar
Zimmermann Y, Ramírez SR, Eltz T. Chemical niche differentiation among sympatric species of orchid bees. Ecology. 2009;90:2994–3008.
Article
PubMed
Google Scholar
Weber MG, Mitko L, Eltz T, Ramírez SR. Macroevolution of perfume signalling in orchid bees. Ecol Lett. 2016;19:1314–23.
Article
PubMed
Google Scholar
Brand P, Ramírez SR, Leese F, Quezada-Euan JJG, Tollrian R, Eltz T. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol. 2015;15:176.
Article
PubMed
PubMed Central
Google Scholar
Brand P, Saleh N, Pan H, Li C, Kapheim KM, Ramírez SR. The nuclear and mitochondrial genomes of the facultatively eusocial orchid bee. G3. 2017;7:2891–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoder AD, Larsen PA. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown. Front Neuroanat. 2014;8:153.
Article
PubMed
PubMed Central
Google Scholar
Yohe LR. Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats. Evolution. 2022. https://doi.org/10.1111/evo.14591.
Article
PubMed
Google Scholar
Arguello JR, Roman Arguello J, Cardoso-Moreira M, Grenier JK, Gottipati S, Clark AG, et al. Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nat Commun. 2016. https://doi.org/10.1038/ncomms11855.
Article
PubMed
PubMed Central
Google Scholar
Yohe LR, Brand P. Handling editor: Rebecca Fulle: evolutionary ecology of chemosensation and its role in sensory drive. Curr Zool. 2018;64:525–33.
Article
PubMed
PubMed Central
Google Scholar
Moriya-Ito K, Hayakawa T, Suzuki H, Hagino-Yamagishi K, Nikaido M. Evolution of vomeronasal receptor 1 (V1R) genes in the common marmoset (Callithrix jacchus). Gene. 2018;642:343–53.
Article
CAS
PubMed
Google Scholar
Perret M. Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol. 1992;59:1–25.
Article
CAS
Google Scholar
Aujard F. Effect of vomeronasal organ removal on male socio-sexual responses to female in a prosimian primate (Microcebus murinus). Physiol Behav. 1997. https://doi.org/10.1016/s0031-9384(97)00206-0.
Article
PubMed
Google Scholar
Buesching CD, Heistermann M, Hodges JK, Zimmermann E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 1998. https://doi.org/10.1159/000052718.
Article
Google Scholar
Eberle M, Kappeler PM. Sex in the dark: determinants and consequences of mixed male mating tactics in Microcebus murinus, a small solitary nocturnal primate. Behav Ecol Sociobiol. 2004;57(1):77–90. https://doi.org/10.1007/s00265-004-0826-1.
Article
Google Scholar
Wynn EH, Sánchez-Andrade G, Carss KJ, Logan DW. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics. 2012;13:415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grus WE, Zhang J. Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats. Gene. 2004;340:303–12.
Article
CAS
PubMed
Google Scholar
Lane RP, Young J, Newman T, Trask BJ. Species specificity in rodent pheromone receptor repertoires. Genome Res. 2004;14:603–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SH, Podlaha O, Grus WE, Zhang J. The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol Evol. 2011;3:401–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera JP. Testing the adaptive radiation hypothesis for the lemurs of Madagascar. R Soc Open Sci. 2017;4:161014.
Article
PubMed
PubMed Central
Google Scholar
Herrera JP, Dávalos LM. Phylogeny and divergence times of lemurs inferred with recent and ancient fossils in the tree. Syst Biol. 2016;65:772–91.
Article
PubMed
Google Scholar
Yohe LR, Davies KTJ, Rossiter SJ, Dávalos LM. Expressed vomeronasal type-1 receptors (V1rs) in bats uncover conserved sequences underlying social chemical signaling. Genome Biol Evol. 2019;11:2741–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet. 2012;8(7):e1002821. https://doi.org/10.1371/journal.pgen.1002821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han W, Yiran W, Zeng L, Zhao S. Building the chordata olfactory receptor database using more than 400,000 receptors annotated by genome2or. Sci China Life Sci. 2022. https://doi.org/10.1007/s11427-021-2081-6.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez FJ, Nebert DW. Evolution of the P450 gene superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990;6:182–6.
Article
CAS
PubMed
Google Scholar
Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 2004;14:1–18.
Article
CAS
PubMed
Google Scholar
Nebert DW. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res. 2017;67:38–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017. https://doi.org/10.1186/s12915-017-0454-7.
Article
PubMed
PubMed Central
Google Scholar
Schwertmann L, Focke O, Dirks J-H. Morphology, shape variation and movement of skeletal elements in starfish (Asterias rubens). J Anat. 2019;234:656–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nebert DW. Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol. 1991;5:1203–14.
Article
CAS
PubMed
Google Scholar
Nebert DW. Drug-metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol. 1994;47:25–37.
Article
CAS
PubMed
Google Scholar
Pascussi J-M, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem M-J, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol. 2008;48:1–32.
Article
CAS
PubMed
Google Scholar
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120431.
Article
PubMed
PubMed Central
Google Scholar
Scheer N, Kapelyukh Y, Chatham L, Rode A, Buechel S, Wolf CR. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol Pharmacol. 2012;82:1022–9.
Article
CAS
PubMed
Google Scholar
Shows TB, Alper CA, Bootsma D, Dorf M, Douglas T, Huisman T, et al. International system for human gene nomenclature (1979) ISGN (1979). Cytogenet Cell Genet. 1979;25:96–116.
Article
CAS
PubMed
Google Scholar
Shows TB, McAlpine PJ, Boucheix C, Collins FS, Conneally PM, Frézal J, et al. Guidelines for human gene nomenclature: an international system for human gene nomenclature (ISGN, 1987). Cytogenet Cell Genet. 1987;46:11–28.
Article
CAS
PubMed
Google Scholar
Bruford EA, Braschi B, Denny P, Jones TEM, Seal RL, Tweedie S. Guidelines for human gene nomenclature. Nat Genet. 2020;52:754–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snell GD. Gene and chromosome mutations. In: Little CC, Snell GD, editors. Biology of the laboratory mouse. Philadelphia: Blakiston Co.; 2012. p. 34–247.
Google Scholar
Borrego F. The CD300 molecules: an emerging family of regulators of the immune system. Blood. 2013;121:1951–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitallé J, Terrén I, Orrantia A, Zenarruzabeitia O, Borrego F. CD300 receptor family in viral infections. Eur J Immunol. 2019;49:364–74.
Article
PubMed
Google Scholar
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, et al. The expression and function of CD300 molecules in the main players of allergic responses: mast cells, basophils and eosinophils. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093173.
Article
PubMed
PubMed Central
Google Scholar
Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–93.
Article
CAS
PubMed
Google Scholar
Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, et al. The P450 gene superfamily: recommended nomenclature. DNA. 1987;6:1–11.
Article
CAS
PubMed
Google Scholar
Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, et al. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989;8:1–13.
Article
CAS
PubMed
Google Scholar
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. Mol Plant. 2021;14:1244–65.
Article
CAS
PubMed
Google Scholar
Agnarsson I, Kuntner M. Taxonomy in a changing world: seeking solutions for a science in crisis. Syst Biol. 2007. https://doi.org/10.1080/10635150701424546.
Article
PubMed
Google Scholar
Olender T, Jones TEM, Bruford E, Lancet D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol Biol. 2020;20:42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res. 2021;49(D1):D939–46.
Article
CAS
PubMed
Google Scholar
McCarthy FM, Jones TEM, Kwitek AE, Smith CL, Vize PD, Westerfield M, et al. The case for standardising gene nomenclature across vertebrates. Preprints; 2021 [cited 2022 Sep 8]; https://www.preprints.org/manuscript/202109.0485/v1
Dornburg A, Ota T, Criscitiello MF, Irene Salinas J, Sunyer O, Magadán S, et al. From IgZ to IgT: a call for a common nomenclature for immunoglobulin heavy chain genes of ray-finned fish. Zebrafish. 2021;18:343–5. https://doi.org/10.1089/zeb.2021.0071.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Swindells MB. Getting the most from PSI–BLAST. Trends Biochem Sci Elsevier. 2002;27:161–4.
Article
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Article
PubMed
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–11.
PubMed
Google Scholar
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.
Article
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, et al. RevBayes: bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst Biol Oxford Academic. 2016;65:726–36.
Article
Google Scholar
Lewis PO, Chen M-H, Kuo L, Lewis LA, Fučíková K, Neupane S, et al. Estimating bayesian phylogenetic information content. Syst Biol. 2016. https://doi.org/10.1093/sysbio/syw042.
Article
PubMed
PubMed Central
Google Scholar
Salichos L, Leonidas S, Antonis R. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497:327–31.
Article
CAS
PubMed
Google Scholar
Chen M-Y, Liang D, Zhang P. Selecting question-specific genes to reduce incongruence in phylogenomics: a case study of jawed vertebrate backbone phylogeny. Syst Biol. 2015;64:1104–20.
Article
CAS
PubMed
Google Scholar
Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol. 2013;30:2134–44.
Article
CAS
PubMed
Google Scholar
Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1:126.
Article
PubMed
PubMed Central
Google Scholar
Townsend JP, Su Z, Tekle YI. Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Syst Biol. 2012;61:835–49.
Article
CAS
PubMed
Google Scholar
Gilbert PS, Chang J, Pan C, Sobel EM, Sinsheimer JS, Faircloth BC, et al. Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes. Mol Phylogenet Evol. 2015;92:140–6.
Article
PubMed
PubMed Central
Google Scholar
Granados Mendoza C, Naumann J, Samain M-S, Goetghebeur P, De Smet Y, Wanke S. A genome-scale mining strategy for recovering novel rapidly-evolving nuclear single-copy genes for addressing shallow-scale phylogenetics in Hydrangea. BMC Evol Biol. 2015;15:132.
Article
PubMed
PubMed Central
Google Scholar
Dornburg A, Townsend JP, Wang Z. Maximizing power in phylogenetics and phylogenomics: a perspective illuminated by fungal big data. Adv Genet. 2017;100:1–47.
Article
CAS
PubMed
Google Scholar
Dornburg A, Su Z, Townsend JP. Optimal rates for phylogenetic inference and experimental design in the era of genome-scale data sets. Syst Biol. 2019;68:145–56.
Article
PubMed
Google Scholar
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol. 2020;18:e3000862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graybeal A. Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst Biol. 1994;43:174–93.
Article
Google Scholar
Roje DM. Incorporating molecular phylogenetics with larval morphology while mitigating the effects of substitution saturation on phylogeny estimation: a new hypothesis of relationships for the flatfish family pleuronectidae (Percomorpha: Pleuronectiformes). Mol Phylogenet Evol. 2010;56:586–600.
Article
PubMed
Google Scholar
Mueller RL. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Syst Biol. 2006;55:289–300.
Article
PubMed
Google Scholar
Dornburg A, Townsend JP, Brooks W, Spriggs E, Eytan RI, Moore JA, et al. New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Mol Phylogenet Evol. 2017;110:27–38.
Article
PubMed
Google Scholar
Duchêne DA, Mather N, Van Der Wal C, Ho SYW. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst Biol. 2022;71:676–89.
Article
PubMed
Google Scholar
Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 2011;9:e1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Field DJ, Berv JS, Hsiang AY, Lanfear R, Landis MJ, Dornburg A. Timing the extant avian radiation: The rise of modern birds, and the importance of modeling molecular rate variation. https://doi.org/10.7287/peerj.preprints.27521.
Rosenfeld JA, DeSalle R. E value cutoff and eukaryotic genome content phylogenetics. Mol Phylogenet Evol. 2012;63(2):342–50. https://doi.org/10.1016/j.ympev.2012.01.003.
Article
PubMed
Google Scholar
Townsend JP, Lopez-Giraldez F. Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Syst Biol. 2010;59:446–57.
Article
CAS
PubMed
Google Scholar
Townsend JP, Leuenberger C. Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol. 2011;60(3):358–65. https://doi.org/10.1093/sysbio/syq097.
Article
PubMed
Google Scholar
Betancur-R R, Li C, Munroe TA, Ballesteros JA, Ortí G. Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Syst Biol. 2013;62:763–85.
Article
PubMed
Google Scholar
Lartillot N. Phylogenetic patterns of GC-biased gene conversion in placental mammals and the evolutionary dynamics of recombination landscapes. Mol Biol Evol. 2013;30:489–502.
Article
CAS
PubMed
Google Scholar
Townsend JP, López-Giráldez F, Friedman R. The phylogenetic informativeness of nucleotide and amino acid sequences for reconstructing the vertebrate tree. J Mol Evol. 2008;67:437–47.
Article
CAS
PubMed
Google Scholar
Dornburg A, Townsend JP, Friedman M, Near TJ. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol Biol. 2014;14:169.
Article
PubMed
PubMed Central
Google Scholar
Parker E, Dornburg A, Domínguez-Domínguez O, Piller KR. Assessing phylogenetic information to reveal uncertainty in historical data: An example using Goodeinae (Teleostei: Cyprinodontiformes: Goodeidae). Mol Phylogenet Evol. 2019;134:282–90.
Article
PubMed
Google Scholar
Dornburg A, Fisk JN, Tamagnan J, Townsend JP. PhyInformR: phylogenetic experimental design and phylogenomic data exploration in R. BMC Evol Biol. 2016;16:262.
Article
PubMed
PubMed Central
Google Scholar
Papp B, Pál C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast. Nature. 2003;424:194–7.
Article
CAS
PubMed
Google Scholar
Kuraku S, Meyer A. Whole genome duplications and the radiation of vertebrates. In: Dittmar K, Liberles D, editors. Evolution after gene duplication. Hoboken: Wiley; 2010. p. 299–311.
Google Scholar
Ohno S. Evolution by Gene Duplication. Cham: Springer; 2014.
Google Scholar
Yokoyama S, Takenaka N. The molecular basis of adaptive evolution of squirrelfish rhodopsins. Mol Biol Evol. 2004;21:2071–8.
Article
CAS
PubMed
Google Scholar
Stroud JT, Losos JB. Ecological opportunity and adaptive radiation. Ann Rev Ecol Evol Syst. 2016. https://doi.org/10.1146/annurev-ecolsys-121415-032254.
Article
Google Scholar
Dornburg A, Sidlauskas B, Santini F, Sorenson L, Near TJ, Alfaro ME. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae). Evolution. 2011;65:1912–26.
Article
PubMed
Google Scholar
Price SA, Schmitz L, Oufiero CE, Eytan RI, Dornburg A, Smith WL, et al. Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna. Proc Biol Sci. 2014;281:20140321.
CAS
PubMed
PubMed Central
Google Scholar
Daane JM, Dornburg A, Smits P, MacGuigan DJ, Brent Hawkins M, Near TJ, et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol. 2019;3:1102–9.
Article
PubMed
PubMed Central
Google Scholar
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould SJ. The structure of evolutionary theory. Harvard: Harvard University Press; 2002.
Book
Google Scholar
Rudnicki R, Tiuryn J, Wójtowicz D. A model for the evolution of paralog families in genomes. J Math Biol Springer. 2006;53:759–70.
Article
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71. https://doi.org/10.1093/bioinformatics/btl097.
Article
CAS
PubMed
Google Scholar
Chauve C, Doyon J-P, El-Mabrouk N. Gene family evolution by duplication, speciation, and loss. J Comput Biol. 2008;15:1043–62. https://doi.org/10.1089/cmb.2008.0054.
Article
CAS
PubMed
Google Scholar
Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P. Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet. 2010;6:e1001192.
Article
PubMed
PubMed Central
Google Scholar
Guethlein LA, Norman PJ, Heijmans CMC, de Groot NG, Hilton HG, Babrzadeh F, et al. Two orangutan species have evolved different KIR alleles and haplotypes. J Immunol. 2017;198:3157–69.
Article
CAS
PubMed
Google Scholar
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: co-evolution of hominid natural killer cell receptors and MHC. Front Immunol. 2019;10:177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mager DL, McQueen KL, Wee V, Freeman JD. Evolution of natural killer cell receptors: coexistence of functional Ly49 and KIR genes in baboons. Curr Biol. 2001;11:626–30.
Article
CAS
PubMed
Google Scholar
Bruijnesteijn J, de Groot N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics. 2022;74:313–26.
Article
CAS
PubMed
Google Scholar
Cadavid LF, Lun C-M. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics. 2009;61:27–41.
Article
CAS
PubMed
Google Scholar
Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, et al. A novel system of polymorphic and diverse NK cell receptors in primates. PLoS Genet. 2009;5:e1000688.
Article
PubMed
PubMed Central
Google Scholar
Hoelsbrekken SE, Nylenna Ø, Saether PC, Slettedal IO, Ryan JC, Fossum S, et al. Cutting edge: molecular cloning of a killer cell Ig-like receptor in the mouse and rat. J Immunol. 2003;170:2259–63.
Article
CAS
PubMed
Google Scholar
Sambrook JG, Sehra H, Coggill P, Humphray S, Palmer S, Sims S, et al. Identification of a single killer immunoglobulin-like receptor (KIR) gene in the porcine leukocyte receptor complex on chromosome 6q. Immunogenetics. 2006;58:481–6.
Article
CAS
PubMed
Google Scholar
Barten R, Trowsdale J. The human Ly-49L gene. Immunogenetics. 1999;49:731–4.
Article
CAS
PubMed
Google Scholar
Guethlein LA, Flodin LR, Adams EJ, Parham P. NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J Immunol. 2002;169:220–9.
Article
CAS
PubMed
Google Scholar
Gagnier L, Wilhelm BT, Mager DL. Ly49 genes in non-rodent mammals. Immunogenetics. 2003;55:109–15.
Article
CAS
PubMed
Google Scholar
Schwartz JC, Gibson MS, Heimeier D, Koren S, Phillippy AM, Bickhart DM, et al. The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics. 2017;69:255–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Futas J, Oppelt J, Janova E, Musilova P, Horin P. Complex variation in the KLRA (LY49) immunity-related genomic region in horses. Hladnikia. 2020;96:257–67.
CAS
Google Scholar
Holland HL, Weber HK. Enzymatic hydroxylation reactions. Curr Opin Biotechnol. 2000;11:547–53.
Article
CAS
PubMed
Google Scholar
Bell EL, Finnigan W, France SP, Green AP, Hayes MA, Hepworth LJ, et al. Biocatalysis. Nat Rev Methods Primers. 2021. https://doi.org/10.1038/s43586-021-00044-z.
Article
Google Scholar
Nelson DR. Cytochrome P450 and the individuality of species. Arch Biochem Biophys. 1999;369:1–10.
Article
CAS
PubMed
Google Scholar
Hernandez D, Janmohamed A, Chandan P, Phillips IR, Shephard EA. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics. 2004;14:117–30.
Article
CAS
PubMed
Google Scholar
Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106:357–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jörnvall H. MDR-alcohol dehydrogenases. Chem Biol Interact. 2017;276:75–6.
Article
PubMed
Google Scholar
Holmes RS. Alcohol dehydrogenases: a family of isozymes with differential functions. Alcohol Alcohol Suppl. 1994;2:127–30.
CAS
PubMed
Google Scholar
Vasiliou V, Bairoch A, Tipton KF, Nebert DW. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics. 1999;9:421–34.
CAS
PubMed
Google Scholar
Shortall K, Djeghader A, Magner E, Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front Mol Biosci. 2021;8:659550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49:e324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.
Article
CAS
PubMed
Google Scholar
Edmondson DE, Binda C. Monoamine oxidases. Subcell Biochem. 2018;87:117–39.
Article
CAS
PubMed
Google Scholar
Benedetti MS. Biotransformation of xenobiotics by amine oxidases. Fundam Clin Pharmacol. 2001;15:75–84.
Article
CAS
PubMed
Google Scholar
de Oliveira FK, Santos LO, Buffon JG. Mechanism of action, sources, and application of peroxidases. Food Res Int. 2021;143:110266.
Article
PubMed
Google Scholar
O’Brien PJ. Peroxidases. Chem Biol Interact. 2000;129:113–39.
Article
PubMed
Google Scholar
Goyal MM, Basak A. Human catalase: looking for complete identity. Protein Cell. 2010;1:888–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamocky M, Furtmüller PG, Obinger C. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 2008;10:1527–48.
Article
CAS
PubMed
Google Scholar
Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv. 2017;35:815–31.
Article
PubMed
Google Scholar
Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome p450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28:38–42.
Article
CAS
PubMed
Google Scholar
Waskell L, Kim J-JP. Electron transfer partners of cytochrome P450. In: Paul R, de Montellano O, editors. Cytochrome P450. Cham: Springer; 2015. p. 33–68.
Google Scholar
Chen S, Wu K, Knox R. Structure-function studies of DT-diaphorase (NQO1) and NRH: quinone oxidoreductase (NQO2). Free Radic Biol Med. 2000;29:276–84.
Article
CAS
PubMed
Google Scholar
Penning TM. The aldo-keto reductases (AKRs): overview. Chem Biol Interact. 2015;234:236–46.
Article
CAS
PubMed
Google Scholar
Forrest GL, Gonzalez B. Carbonyl reductase. Chem Biol Interact. 2000;129:21–40.
Article
CAS
PubMed
Google Scholar
Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci. 2002;11:636–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, et al. Biocatalytic oxidation reactions: a chemist’s perspective. Angew Chem Int Ed Engl. 2018;57:9238–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodani SD, Hammock BD. The 2014 Bernard B. brodie award lecture—epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos. 2015;43(5):788–802. https://doi.org/10.1124/dmd.115.063339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautheron J, Jéru I. The multifaceted role of epoxide hydrolases in human health and disease. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010013.
Article
PubMed
PubMed Central
Google Scholar
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv. 2020;43: 107574.
Article
CAS
PubMed
Google Scholar
Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB, Sebastião M, et al. Lipases and esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev. 1995;1:315–71.
Article
CAS
PubMed
Google Scholar
Fojan P, Jonson PH, Petersen MT, Petersen SB. What distinguishes an esterase from a lipase: a novel structural approach. Biochimie. 2000;82:1033–41.
Article
CAS
PubMed
Google Scholar
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, et al. The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev. 2019;99:1153–222.
Article
CAS
PubMed
Google Scholar
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet. 2015;30:30–51.
Article
CAS
PubMed
Google Scholar
Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum Genom. 2004;1:460–4.