Jez JM, Flynn TG, Penning TM: A nomenclature system for the aldo-keto reductase superfamily. Adv Exp Med Biol. 1997, 414: 579-600. 10.1007/978-1-4615-5871-2_66.
Article
CAS
PubMed
Google Scholar
Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM: Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997, 326: 625-636.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hyndman D, Bauman DR, Heredia VV, Penning TM: The aldo-keto reductase superfamily homepage. Chem Biol Interact. 2003, 143-144: 621-631.
Article
CAS
PubMed
Google Scholar
Drury JE, Hyndman D, Jin Y, et al: The aldo-keto reductase superfamily homepage: 2006 update. Enzymology and Molecular Biology of Carbonyl Metabolism. Edited by: Weiner H, Maser E, Lindhal R. 2007, Purdue Press, West Lafayette, IN, 184-197.
Google Scholar
Barski OA, Tipparaju SM, Bhatnagar A: The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008, 40: 553-624. 10.1080/03602530802431439.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jin Y, Penning TM: Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol. 2007, 47: 263-292. 10.1146/annurev.pharmtox.47.120505.105337.
Article
CAS
PubMed
Google Scholar
Kozma E, Brown E, Ellis EM, Lapthorn AJ: The crystal structure of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily. J Biol Chem. 2002, 277: 16285-16293. 10.1074/jbc.M110808200.
Article
CAS
PubMed
Google Scholar
Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK: The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry. 2002, 41: 8785-8795. 10.1021/bi025786n.
Article
CAS
PubMed
Google Scholar
Gulbis JM, Mann S, Mackinnon R: Structure of a voltage-dependent K+ channel β subunit. Cell. 1999, 97: 943-952. 10.1016/S0092-8674(00)80805-3.
Article
CAS
PubMed
Google Scholar
Bennett MJ, Albert RH, Jez JM, Ma H, et al: Steroid recognition and regulation of hormone action: Crystal structure of testosterone and NADP+ bound to 3α-hydroxysteroid/dihydrodiol dehydrogenase. Structure. 1997, 5: 799-812. 10.1016/S0969-2126(97)00234-7.
Article
CAS
PubMed
Google Scholar
Couture JF, De Jesus-Tran KP, Roy AM, Cantin L, et al: Comparison of crystal structures of human type 3 3α-hydroxysteroid dehydrogenase reveals an "induced-fit" mechanism and a conserved basic motif involved in the binding of androgen. Protein Sci. 2005, 14: 1485-1497.
Article
PubMed Central
CAS
PubMed
Google Scholar
Askonas LJ, Ricigliano JW, Penning TM: The kinetic mechanism catalysed by homogeneous rat liver 3α-hydroxysteroid dehydrogenase. Evidence for binary and ternary dead-end complexes containing non-steroidal anti-inflammatory drugs. Biochem J. 1991, 278: 835-841.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B: NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem J. 1997, 326: 683-692.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trauger JW, Jiang A, Stearns BA, Lograsso PV: Kinetics of allopregnanolone formation catalyzed by human 3α-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry. 2002, 41: 13451-13459. 10.1021/bi026109w.
Article
CAS
PubMed
Google Scholar
Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, et al: Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: Enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry. 1994, 33: 2021-2032. 10.1021/bi00174a007.
Article
CAS
PubMed
Google Scholar
Penning TM: Molecular determinants of steroid recognition and catalysis in aldo-keto reductases. Lessons from 3α-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1999, 69: 211-225. 10.1016/S0960-0760(99)00038-2.
Article
CAS
PubMed
Google Scholar
Schlegel BP, Jez JM, Penning TM: Mutagenesis of 3α-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases. Biochemistry. 1998, 37: 3538-3548. 10.1021/bi9723055.
Article
CAS
PubMed
Google Scholar
Jez JM, Flynn TG, Penning TM: A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997, 54: 639-647. 10.1016/S0006-2952(97)84253-0.
Article
CAS
PubMed
Google Scholar
Bennett MJ, Schlegel BP, Jez JM, Penning TM, Lewis M: Structure of 3α-hydroxysteroid/dihydrodiol dehydrogenase com-plexed with NADP+. Biochemistry. 1996, 35: 10702-10711. 10.1021/bi9604688.
Article
CAS
PubMed
Google Scholar
Grimshaw CE, Bohren KM, Lai CJ, Gabbay KH: Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Biochemistry. 1995, 34: 14374-14384. 10.1021/bi00044a014.
Article
CAS
PubMed
Google Scholar
Kondo KH, Kai MH, Setoguchi Y, Eggertsen G, et al: Cloning and expression of cDNA of human Δ4-3-oxosteroid 5β-reductase and substrate specificity of the expressed enzyme. Eur J Biochem. 1994, 219: 357-363. 10.1111/j.1432-1033.1994.tb19947.x.
Article
CAS
PubMed
Google Scholar
Penning TM, Ma H, Jez JM: Engineering steroid hormone specificity into aldo-keto reductases. Chem Biol Interact. 2001, 130-132: 659-671.
Article
CAS
PubMed
Google Scholar
Jez JM, Penning TM: Engineering steroid 5β-reductase activity into rat liver 3α-hydroxysteroid dehydrogenase. Biochemistry. 1998, 37: 9695-9703. 10.1021/bi980294p.
Article
CAS
PubMed
Google Scholar
Drury JE, Penning TM: Δ4-3-ketosteroid 5β-reductase (AKR1D1): Properties and role in bile acid synthesis. Enzymology and Molecular Biology of Carbonyl Metabolism. Edited by: Weiner H, Maser E, Lindhal R. 2007, Purdue Press, West Lafayette, IN, 332-340.
Google Scholar
Di Costanzo L, Penning TM, Christianson DW: Aldo-keto reductases in which the conserved catalytic histidine is substituted. Chem Biol Interact. 2009, 178: 127-133. 10.1016/j.cbi.2008.10.046.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tipparaju SM, Barski OA, Srivastava S, Bhatnagar A: Catalytic mechanism and substrate specificity of the β-subunit of the voltage-gated potassium channel. Biochemistry. 2008, 47: 8840-8854. 10.1021/bi800301b.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weng J, Cao Y, Moss N, Zhou M: Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem. 2006, 281: 15194-15200. 10.1074/jbc.M513809200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tipparaju SM, Saxena N, Liu SQ, Kumar R, Bhatnagar A: Differential regulation of voltage-gated K+ channels by oxidized and reduced pyridine nucleotide coenzymes. Am J Physiol Cell Physiol. 2005, 288: C366-C376. 10.1152/ajpcell.00354.2004.
Article
CAS
PubMed
Google Scholar
Pan Y, Weng J, Cao Y, Bhosle RC, Zhou M: Functional coupling between the Kv1.1 channel and aldoketoreductase Kvβ1. J Biol Chem. 2008, 283: 8634-8642. 10.1074/jbc.M709304200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schlegel BP, Ratnam K, Penning TM: Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Biochemistry. 1998, 37: 11003-11011. 10.1021/bi980475r.
Article
CAS
PubMed
Google Scholar
Fujii Y, Watanabe K, Hayashi H, Urade Y, et al: Purification and characterization of rho-crystallin from Japanese common bullfrog lens. J Biol Chem. 1990, 265: 9914-9923.
CAS
PubMed
Google Scholar
Dayhoff MO, Barker WC, Hunt LT: Establishing homologies in protein sequences. Methods Enzymol. 1983, 91: 524-545.
Article
CAS
PubMed
Google Scholar
Nebert DW, Adesnik M, Coon MJ, et al: The P450 gene superfamily: recommended nomenclature. DNA. 1987, 6 (1): 1-11. 10.1089/dna.1987.6.1.
Article
CAS
PubMed
Google Scholar
Nishinaka T, Azuma Y, Ushijima S, Miki S, et al: Human testis specific protein: A new member of aldo-keto reductase superfamily. Chem Biol Interact. 2003, 143-144: 299-305.
Article
CAS
PubMed
Google Scholar
Azuma Y, Nishinaka T, Ushijima S, Soh J, et al: Characterization of htAKR, a novel gene product in the aldo-keto reductase family specifically expressed in human testis. Mol Hum Reprod. 2004, 10: 527-533. 10.1093/molehr/gah062.
Article
CAS
PubMed
Google Scholar
Bohren KM, Barski OA, Gabbay KH: Characterization of a novel murine aldo-keto reductase. Adv Exp Med Biol. 1997, 414: 455-464. 10.1007/978-1-4615-5871-2_52.
Article
CAS
PubMed
Google Scholar
Ciaccio PJ, Tew KD: cDNA and deduced amino acid sequences of a human colon dihydrodiol dehydrogenase. Biochim Biophys Acta. 1994, 1186: 129-132. 10.1016/0005-2728(94)90144-9.
Article
CAS
PubMed
Google Scholar
Qin KN, New MI, Cheng KC: Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3α-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993, 46: 673-679. 10.1016/0960-0760(93)90308-J.
Article
CAS
PubMed
Google Scholar
Stolz A, Hammond L, Lou H, Takikawa H, et al: cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993, 268: 10448-10457.
CAS
PubMed
Google Scholar
Penning TM, Jin Y, Heredia VV, Lewis M: Structure-function relationships in 3α-hydroxysteroid dehydrogenases: A comparison of the rat and human isoforms. J Steroid Biochem Mol Biol. 2003, 85: 247-255. 10.1016/S0960-0760(03)00236-X.
Article
CAS
PubMed
Google Scholar
Penning TM, Jin Y, Steckelbroeck S, Lanisnik-Rizner T, Lewis M: Structure-function of human 3α-hydroxysteroid dehydrogenases: Genes and proteins. Mol Cell Endocrinol. 2004, 215: 63-72. 10.1016/j.mce.2003.11.006.
Article
CAS
PubMed
Google Scholar
Praml C, Savelyeva L, Schwab M: Aflatoxin B1 aldehyde reductase (AFAR) genes cluster at 1p35-1p36.1 in a region frequently altered in human tumour cells. Oncogene. 2003, 22: 4765-4773. 10.1038/sj.onc.1206684.
Article
CAS
PubMed
Google Scholar
Blanchard RL, Freimuth RR, Buck J, Weinshilbourn RM, Coughtrie MW: A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics. 2004, 14: 199-211. 10.1097/00008571-200403000-00009.
Article
CAS
PubMed
Google Scholar
Kwok PY, Deng Q, Zakeri H, Taylor SL, Nickerson DA: Increasing the information content of STS-based genome maps: Identifying polymorphisms in mapped STSs. Genomics. 1996, 31: 123-126. 10.1006/geno.1996.0019.
Article
CAS
PubMed
Google Scholar
Wang DG, Fan JB, Siao CJ, Berno A, et al: Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998, 280: 1077-1082. 10.1126/science.280.5366.1077.
Article
CAS
PubMed
Google Scholar
Mattick JS, Makunin IV: Non-coding RNA. Hum Mol Genet. 2006, 15: R17-R29. 10.1093/hmg/ddl046.
Article
CAS
PubMed
Google Scholar