Wieschaus E, Nusslein-Volhard C, Kluding H: Kruppel, A gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol. 1984, 104: 172-186. 10.1016/0012-1606(84)90046-0.
Article
CAS
PubMed
Google Scholar
Black AR, Black JD, Azizkhan-Clifford J: Sp1 and Kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 2001, 188: 143-160. 10.1002/jcp.1111.
Article
CAS
PubMed
Google Scholar
Dang DT, Pevsner J, Yang VW: The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol. 2000, 32: 1103-1121. 10.1016/S1357-2725(00)00059-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaczynski J, Cook T, Urrutia R: Sp1- and Kruppel-like transcription factors. Genome Biol. 2003, 4: 206-10.1186/gb-2003-4-2-206.
Article
PubMed Central
PubMed
Google Scholar
Pearson R, Fleetwood J, Eaton S, Crossley M, et al: Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol. 2008, 40: 1996-2001. 10.1016/j.biocel.2007.07.018.
Article
CAS
PubMed
Google Scholar
Suske G, Bruford E, Philipsen S: Mammalian SP/KLF transcription factors: Bring in the family. Genomics. 2005, 85: 551-556. 10.1016/j.ygeno.2005.01.005.
Article
CAS
PubMed
Google Scholar
Turner J, Crossley M: Mammalian Kruppel-like transcription factors: More than just a pretty finger. Trends Biochem Sci. 1999, 24: 236-240. 10.1016/S0968-0004(99)01406-1.
Article
CAS
PubMed
Google Scholar
Geiman DE, Ton-That H, Johnson JM, Yang VW: Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res. 2000, 28: 1106-1113. 10.1093/nar/28.5.1106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schuh R, Aicher W, Gaul U, Cote S, et al: A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell. 1986, 47: 1025-1032. 10.1016/0092-8674(86)90817-2.
Article
CAS
PubMed
Google Scholar
Miller IJ, Bieker JJ: A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol. 1993, 13: 2776-2786.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anderson KP, Kern CB, Crable SC, Lingrel JB: Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: Identification of a new multigene family. Mol Cell Biol. 1995, 15: 5957-5965.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shields JM, Yang VW: Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor. Nucleic Acids Res. 1998, 26: 796-802. 10.1093/nar/26.3.796.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shields JM, Yang VW: Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. J Biol Chem. 1997, 272: 18504-18507. 10.1074/jbc.272.29.18504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shields JM, Christy RJ, Yang VW: Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem. 1996, 271: 20009-20017. 10.1074/jbc.271.33.20009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B: A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem. 1996, 271: 31384-31390. 10.1074/jbc.271.49.31384.
Article
CAS
PubMed
Google Scholar
Sogawa K, Imataka H, Yamasaki Y, Kusume H, et al: cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res. 1993, 21: 1527-1532. 10.1093/nar/21.7.1527.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conkright MD, Wani MA, Anderson KP, Lingrel JB: A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res. 1999, 27: 1263-1270. 10.1093/nar/27.5.1263.
Article
PubMed Central
CAS
PubMed
Google Scholar
Koritschoner NP, Bocco JL, Panzetta-Dutari GM, Dumur CI, et al: A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem. 1997, 272: 9573-9580. 10.1074/jbc.272.14.9573.
Article
CAS
PubMed
Google Scholar
Ratziu V, Lalazar A, Wong L, Dang Q, et al: Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA. 1998, 95: 9500-9505. 10.1073/pnas.95.16.9500.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, et al: Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992, 11: 3663-3671.
PubMed Central
CAS
PubMed
Google Scholar
Blok LJ, Grossmann ME, Perry JE, Tindall DJ: Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol. 1995, 9: 1610-1620. 10.1210/me.9.11.1610.
CAS
PubMed
Google Scholar
Cook T, Gebelein B, Mesa K, Mladek A, et al: Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998, 273: 25929-25936. 10.1074/jbc.273.40.25929.
Article
CAS
PubMed
Google Scholar
Chen Z, Lei T, Chen X, Zhang J, et al: Porcine KLF gene family: Structure, mapping, and phylogenetic analysis. Genomics. 2009, 95: 111-119.
Article
PubMed
Google Scholar
Parker-Katiraee L, Carson AR, Yamada T, Arnaud P, et al: Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet. 2007, 3: e65-10.1371/journal.pgen.0030065.
Article
PubMed Central
PubMed
Google Scholar
Hodge D, Coghill E, Keys J, Maguire T, et al: A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006, 107: 3359-3370. 10.1182/blood-2005-07-2888.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tallack MR, Keys JR, Humbert PO, Perkins AC: EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem. 2009, 284: 20966-20974. 10.1074/jbc.M109.006346.
Article
PubMed Central
CAS
PubMed
Google Scholar
Banerjee SS, Feinberg MW, Watanabe M, Gray S, et al: The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem. 2003, 278: 2581-2584. 10.1074/jbc.M210859200.
Article
PubMed
Google Scholar
Zhang X, Srinivasan SV, Lingrel JB: WWP1-dependent ubiquitination and degradation of the lung Kruppel-like factor, KLF2. Biochem Biophys Res Commun. 2004, 316: 139-148. 10.1016/j.bbrc.2004.02.033.
Article
CAS
PubMed
Google Scholar
Sebzda E, Zou Z, Lee JS, Wang T, et al: Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. Nat Immunol. 2008, 9: 292-300. 10.1038/ni1565.
Article
CAS
PubMed
Google Scholar
Das H, Kumar A, Lin Z, Patino WD, et al: Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci USA. 2006, 103: 6653-6658. 10.1073/pnas.0508235103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sue N, Jack BH, Eaton SA, Pearson RC, et al: Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol. 2008, 28: 3967-3978. 10.1128/MCB.01942-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turner J, Nicholas H, Bishop D, Matthews JM, et al: The LIM protein FHL3 binds basic Kruppel-like factor/Kruppel-like factor 3 and its co-repressor C-terminal-binding protein 2. J Biol Chem. 2003, 278: 12786-12795. 10.1074/jbc.M300587200.
Article
CAS
PubMed
Google Scholar
Swamynathan SK, Katz JP, Kaestner KH, Ashery-Padan R, et al: Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol Cell Biol. 2007, 27: 182-194. 10.1128/MCB.00846-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Swamynathan SK, Davis J, Piatigorsky J: Identification of candidate Klf4 target genes reveals the molecular basis of the diverse regulatory roles of Klf4 in the mouse cornea. Invest Ophthalmol Vis Sci. 2008, 49: 3360-3370. 10.1167/iovs.08-1811.
Article
PubMed Central
PubMed
Google Scholar
Evans PM, Chen X, Zhang W, Liu C: KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol Cell Biol. 2010, 30: 372-381. 10.1128/MCB.00063-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Evans PM, Zhang W, Chen X, Yang J, et al: Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem. 2007, 282: 33994-34002. 10.1074/jbc.M701847200.
Article
CAS
PubMed
Google Scholar
Wei Z, Yan Y, Zhang P, Andrianakos R, et al: Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells. 2009, 27: 2969-2978.
Article
CAS
PubMed
Google Scholar
Wei D, Kanai M, Jia Z, Le X, Xie K: Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res. 2008, 68: 4631-4639. 10.1158/0008-5472.CAN-07-5953.
Article
PubMed Central
CAS
PubMed
Google Scholar
Young RD, Swamynathan SK, Boote C, Mann M, et al: Stromal edema in klf4 conditional null mouse cornea is associated with altered collagen fibril organization and reduced proteoglycans. Invest Ophthalmol Vis Sci. 2009, 50: 4155-4161. 10.1167/iovs.09-3561.
Article
PubMed Central
PubMed
Google Scholar
Wan H, Luo F, Wert SE, Zhang L, et al: Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development. 2008, 135: 2563-2572. 10.1242/dev.021964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu N, Gu L, Findley HW, Chen C, et al: KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem. 2006, 281: 14711-14718. 10.1074/jbc.M513810200.
Article
CAS
PubMed
Google Scholar
Matsumura T, Suzuki T, Aizawa K, Munemosa Y, et al: The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Kruppel-like factor 5 through direct interaction. J Biol Chem. 2005, 280: 12123-12129.
Article
CAS
PubMed
Google Scholar
Suzuki T, Nishi T, Nagino T, Sasaki K, et al: Functional interaction between the transcription factor Kruppel-like factor 5 and poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J Biol Chem. 2007, 282: 9895-9901. 10.1074/jbc.M608098200.
Article
CAS
PubMed
Google Scholar
Du JX, Bialkowska AB, McConnell BB, Yang VW: SUMOylation regulates nuclear localization of Kruppel-like factor 5. J Biol Chem. 2008, 283: 31991-32002. 10.1074/jbc.M803612200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Du JX, Yun CC, Bialkowska A, Yang VW: Protein inhibitor of activated STAT1 interacts with and up-regulates activities of the pro-proliferative transcription factor Kruppel-like factor 5. J Biol Chem. 2007, 282: 4782-4793.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li D, Yea S, Li S, Chen Z, et al: Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem. 2005, 280: 26941-26952. 10.1074/jbc.M500463200.
Article
CAS
PubMed
Google Scholar
Smaldone S, Laub F, Else C, Dragomir C, et al: Identification of MoKA, a novel F-box protein that modulates Kruppel-like transcription factor 7 activity. Mol Cell Biol. 2004, 24: 1058-1069. 10.1128/MCB.24.3.1058-1069.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smaldone S, Ramirez F: Multiple pathways regulate intra-cellular shuttling of MoKA, a co-activator of transcription factor KLF7. Nucleic Acids Res. 2006, 34: 5060-5068. 10.1093/nar/gkl659.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laub F, Lei L, Sumiyoshi H, Kajimura D, et al: Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol. 2005, 25: 5699-5711. 10.1128/MCB.25.13.5699-5711.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lei L, Laub F, Lush M, Romera M, et al: The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes Dev. 2005, 19: 1354-1364. 10.1101/gad.1227705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lei L, Zhou J, Lin L, Parada LF: Brn3a and Klf7 cooperate to control TrkA expression in sensory neurons. Dev Biol. 2006, 300: 758-769. 10.1016/j.ydbio.2006.08.062.
Article
CAS
PubMed
Google Scholar
van Vliet J, Turner J, Crossley M: Human Kruppel-like factor 8: A CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res. 2000, 28: 1955-1962. 10.1093/nar/28.9.1955.
Article
CAS
PubMed
Google Scholar
Wang X, Zhao J: KLF8 transcription factor participates in oncogenic transformation. Oncogene. 2007, 26: 456-461. 10.1038/sj.onc.1209796.
Article
PubMed
Google Scholar
Wang X, Zheng M, Liu G, Xia W, et al: Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res. 2007, 67: 7184-7193. 10.1158/0008-5472.CAN-06-4729.
Article
CAS
PubMed
Google Scholar
Zhao J, Bian ZC, Yee K, Chen BP, et al: Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell. 2003, 11: 1503-1515. 10.1016/S1097-2765(03)00179-5.
Article
CAS
PubMed
Google Scholar
Simmen FA, Su Y, Xiao R, Zeng Z, et al: The Kruppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol. 2008, 6: 41-10.1186/1477-7827-6-41.
Article
PubMed Central
PubMed
Google Scholar
Simmen FA, Xiao R, Velarde MC, Nicholson RD, et al: Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol. 2007, 292: G1757-G1769. 10.1152/ajpgi.00013.2007.
Article
CAS
PubMed
Google Scholar
Cayrou C, Denver RJ, Puymirat J: Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone-induced neurite branching. Endocrinology. 2002, 143: 2242-2249. 10.1210/en.143.6.2242.
Article
CAS
PubMed
Google Scholar
Cook T, Urrutia R: TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. Am J Physiol Gastrointest Liver Physiol. 2000, 278: G513-G521.
CAS
PubMed
Google Scholar
Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, et al: An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J. 2003, 22: 4748-4758. 10.1093/emboj/cdg470.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernandez-Zapico ME, van Velkinburgh JC, Gutierrez-Aguilar R, Neve B, et al: MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem. 2009, 284: 36482-36490. 10.1074/jbc.M109.028852.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schuierer M, Hilger-Eversheim K, Dobner T, Bosserhoff AK, et al: Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional corepressor CtBP1. J Biol Chem. 2001, 276: 27944-27949. 10.1074/jbc.M100070200.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Migita T, Hosoda F, Okada N, et al: Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer. 2009, 125: 1859-1867. 10.1002/ijc.24538.
Article
CAS
PubMed
Google Scholar
Kaczynski J, Zhang JS, Ellenrieder V, Conley A, et al: The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem. 2001, 276: 36749-36756. 10.1074/jbc.M105831200.
Article
CAS
PubMed
Google Scholar
Kaczynski JA, Conley AA, Fernandez Zapico M, Delgado SM, et al: Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem J. 2002, 366: 873-882.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chasman DI, Pare G, Mora S, Hopewell JC, et al: Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet. 2009, 5: e1000730-10.1371/journal.pgen.1000730.
Article
PubMed Central
PubMed
Google Scholar
Stacey SN, Sulem P, Masson G, Gudjonsson SA, et al: New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009, 41: 909-914. 10.1038/ng.412.
Article
PubMed Central
CAS
PubMed
Google Scholar
Truty MJ, Lomberk G, Fernandez-Zapico ME, Urrutia R: Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. J Biol Chem. 2009, 284: 6291-6300.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gray S, Wang B, Orihuela Y, Hong EG, et al: Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007, 5: 305-312. 10.1016/j.cmet.2007.03.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto J, Ikeda , Iguchi H, Fujino T, et al: A Kruppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem. 2004, 279: 16954-16962. 10.1074/jbc.M312079200.
Article
CAS
PubMed
Google Scholar
Fisch S, Gray S, Heymans S, Halder SM, et al: Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci USA. 2007, 104: 7074-7079. 10.1073/pnas.0701981104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sakaguchi M, Sonegawa H, Nukui T, Sakaguchi Y, et al: Bifurcated converging pathways for high Ca2+- and TGFbeta-induced inhibition of growth of normal human keratinocytes. Proc Natl Acad Sci USA. 2005, 102: 13921-13926. 10.1073/pnas.0500630102.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Vliet J, Crofts LA, Quinlan KG, Czolij R, et al: Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics. 2006, 87: 474-482. 10.1016/j.ygeno.2005.12.011.
Article
CAS
PubMed
Google Scholar
Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, et al: KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol. 2009, 11: 1297-1304. 10.1038/ncb1974.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nuez B, Michalovich D, Bygrave A, Ploemacher R, et al: Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995, 375: 316-318. 10.1038/375316a0.
Article
CAS
PubMed
Google Scholar
Drissen R, von Lindern M, Kolbus A, Driegen S, et al: The erythroid phenotype of EKLF-null mice: Defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005, 25: 5205-5214. 10.1128/MCB.25.12.5205-5214.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shindo T, Manabe I, Fukushima Y, Tobe K, et al: Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med. 2002, 8: 856-863.
CAS
PubMed
Google Scholar
Brey CW, Nelder MP, Hailemariam T, Gaugler R, et al: Kruppel-like family of transcription factors: An emerging new frontier in fat biology. Int J Biol Sci. 2009, 5: 622-636.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eaton SA, Funnell AP, Sue N, Nicholas H, et al: A network of Kruppel-like Factors (Klfs) (2008), 'Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem. 2008, 283: 26937-26947. 10.1074/jbc.M804831200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Birsoy K, Chen Z, Friedman J: Transcriptional regulation of adipogenesis by KLF4. Cell Metab. 2008, 7: 339-347. 10.1016/j.cmet.2008.02.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oishi Y, Manabe I, Tobe K, Tsushima K, et al: Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005, 1: 27-39. 10.1016/j.cmet.2004.11.005.
Article
CAS
PubMed
Google Scholar
Mori T, Sakaue H, Iguchi H, Gomi H, et al: Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem. 2005, 280: 12867-12875.
Article
CAS
PubMed
Google Scholar
Ema M, Mori D, Niwa H, Hasegawa Y, et al: Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell. 2008, 3: 555-567. 10.1016/j.stem.2008.09.003.
Article
CAS
PubMed
Google Scholar
Jiang J, Chan YS, Loh YH, Cai J, et al: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008, 10: 353-360. 10.1038/ncb1698.
Article
PubMed
Google Scholar
Park IH, Zhao R, West JA, Yabuuchi A, et al: Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008, 451: 141-146. 10.1038/nature06534.
Article
CAS
PubMed
Google Scholar
Parisi S, Passaro F, Aloia L, Manabe I, et al: Klf5 is involved in self-renewal of mouse embryonic stem cells. J Cell Sci. 2008, 121: 2629-2634. 10.1242/jcs.027599.
Article
CAS
PubMed
Google Scholar
Patel S, Xi ZF, Seo EY, McGaughey D, et al: Klf4 and corticosteroids activate an overlapping set of transcriptional targets to accelerate in utero epidermal barrier acquisition. Proc Natl Acad Sci USA. 2006, 103: 18668-18673. 10.1073/pnas.0608658103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaubert J, Cheng J, Segre JA: Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development. 2003, 130: 2767-2777. 10.1242/dev.00477.
Article
CAS
PubMed
Google Scholar
Segre JA, Bauer C, Fuchs E: Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999, 22: 356-360. 10.1038/11926.
Article
CAS
PubMed
Google Scholar
McConnell BB, Ghaleb AM, Nandan MO, Yang VW: The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays. 2007, 29: 549-557. 10.1002/bies.20581.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dong JT, Chen C: Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci. 2009, 66: 2691-2706. 10.1007/s00018-009-0045-z.
Article
CAS
PubMed
Google Scholar
Evans PM, Liu C: Roles of Kruppel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai). 2008, 40: 554-564. 10.1111/j.1745-7270.2008.00439.x.
Article
CAS
Google Scholar
Rowland BD, Peeper DS: KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006, 6: 11-23. 10.1038/nrc1780.
Article
CAS
PubMed
Google Scholar
De Val S, Black BL: Transcriptional control of endothelial cell development. Dev Cell. 2009, 16: 180-195. 10.1016/j.devcel.2009.01.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boon RA, Horrevoets AJ: Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie. 2009, 29: 39-43.
CAS
PubMed
Google Scholar
Haldar SM, Ibrahim OA, Jain MK: Kruppel-like factors (KLFs) in muscle biology. J Mol Cell Cardiol. 2007, 43: 1-10. 10.1016/j.yjmcc.2007.04.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katz JP, Perreault N, Goldstein BG, Lee CS, et al: The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002, 129: 2619-2628.
PubMed Central
CAS
PubMed
Google Scholar
Moore DL, Blackmore MG, Hu Y, Kaestner KH, et al: KLF family members regulate intrinsic axon regeneration ability. Science. 2009, 326: 298-301. 10.1126/science.1175737.
Article
PubMed Central
CAS
PubMed
Google Scholar