Youssoufian H, Kazazian HH, Phillips DG, Aronis S, et al: Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. Nature. 1986, 324: 380-382. 10.1038/324380a0.
Article
CAS
PubMed
Google Scholar
Cooper DN, Youssoufian H: The CpG dinucleotide and human genetic disease. Hum Genet. 1988, 78: 151-155. 10.1007/BF00278187.
Article
CAS
PubMed
Google Scholar
Abadie V, Lyonnet S, Maurin N, Berthelon M, et al: CpG dinucleotides are mutation hot spots in phenylketonuria. Genomics. 1989, 5: 936-939. 10.1016/0888-7543(89)90137-7.
Article
CAS
PubMed
Google Scholar
Koeberl DD, Bottema CD, Ketterling RP, Bridge PJ, et al: Mutations causing hemophilia B: Direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene. Am J Hum Genet. 1990, 47: 202-217.
PubMed Central
CAS
PubMed
Google Scholar
Rideout WM, Coetzee GA, Olumi AF, Jones PA: 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990, 249: 1288-1290. 10.1126/science.1697983.
Article
CAS
PubMed
Google Scholar
Mancini D, Singh S, Ainsworth P, Rodenhiser D: Constitutively methylated CpG dinucleotides as mutation hot spots in the retinoblastoma gene (RB1). Am J Hum Genet. 1997, 61: 80-87. 10.1086/513898.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Neill JP, Finette BA: Transition mutations at CpG dinucleotides are the most frequent in vivo spontaneous single-based substitution mutation in the human HPRT gene. Environ Mol Mutagen. 1998, 32: 188-191. 10.1002/(SICI)1098-2280(1998)32:2<188::AID-EM16>3.0.CO;2-Y.
Article
PubMed
Google Scholar
Buzin CH, Feng J, Yan J, Scaringe W, et al: Mutation rates in the dystrophin gene: A hotspot of mutation at a CpG dinucleotide. Hum Mutat. 2005, 25: 177-188. 10.1002/humu.20132.
Article
CAS
PubMed
Google Scholar
Krawczak M, Ball EV, Cooper DN: Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet. 1998, 63: 474-488. 10.1086/301965.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mort M, Ivanov D, Cooper DN, Chuzhanova NA: A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat. 2008, 29: 1037-1047. 10.1002/humu.20763.
Article
CAS
PubMed
Google Scholar
Shen JC, Rideout WM, Jones PA: The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994, 22: 972-976. 10.1093/nar/22.6.972.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hendrich B, Hardeland U, Ng HH, Jiricny J, et al: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999, 401: 301-304. 10.1038/45843.
Article
CAS
PubMed
Google Scholar
Waters TR, Swann PF: Thymine-DNA glycosylase G to A transition mutations at CpG sites. Mutat Res. 2000, 462: 137-147. 10.1016/S1383-5742(00)00031-4.
Article
CAS
PubMed
Google Scholar
Walsh CP, Xu GL: Cytosine methylation DNA repair. Curr Top Microbiol Immunol. 2006, 301: 283-315. 10.1007/3-540-31390-7_11.
CAS
PubMed
Google Scholar
Cortázar D, Kunz C, Saito Y, Steinacher R, et al: The enigmatic thymine DNA glycosylase. DNA Repair. 2007, 6: 489-504. 10.1016/j.dnarep.2006.10.013.
Article
PubMed
Google Scholar
Boland MJ, Christman JK: Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol. 2008, 379: 492-504. 10.1016/j.jmb.2008.02.049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen JC, Rideout WM, Jones PA: High frequency mutagenesis by a DNA methyltransferase. Cell. 1992, 71: 1073-1080. 10.1016/S0092-8674(05)80057-1.
Article
CAS
PubMed
Google Scholar
Zhang X, Mathews CK: Effect of DNA cytosine methylation upon deamination-induced mutagenesis in a natural target sequence in duplex DNA. J Biol Chem. 1994, 269: 7066-7069.
CAS
PubMed
Google Scholar
Pfeifer GP: Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol. 2006, 301: 259-281. 10.1007/3-540-31390-7_10.
CAS
PubMed
Google Scholar
Nachman MW, Crowell SL: Estimate of the mutation rate per nucleotide in humans. Genetics. 2000, 156: 297-304.
PubMed Central
CAS
PubMed
Google Scholar
Kondrashov AS: Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat. 2003, 21: 12-27. 10.1002/humu.10147.
Article
CAS
PubMed
Google Scholar
Tomso DJ, Bell DA: Sequence context at human single nucleotide polymorphisms: Overrepresentation of CpG dinucleotide at polymorphic sites and suppression of variation in CpG islands. J Mol Biol. 2003, 327: 303-308. 10.1016/S0022-2836(03)00120-7.
Article
CAS
PubMed
Google Scholar
Jiang C, Zhao Z: Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome. BMC Genomics. 2006, 7: 316-10.1186/1471-2164-7-316.
Article
PubMed Central
PubMed
Google Scholar
Elango N, Kim SH, Vigoda E, Yi SV: Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation. PLoS Comput Biol. 2008, 4: e1000015-10.1371/journal.pcbi.1000015.
Article
PubMed Central
PubMed
Google Scholar
Misawa K, Kikuno RF: Evaluation of the effect of CpG hypermutability on human codon substitution. Gene. 2009, 431: 18-22. 10.1016/j.gene.2008.11.006.
Article
CAS
PubMed
Google Scholar
Li JB, Gao Y, Aach J, Zhang K, et al: Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res. 2009, 19: 1606-1615. 10.1101/gr.092213.109.
Article
PubMed Central
PubMed
Google Scholar
Woodcock DM, Crowther PJ, Diver WP: The majority of methylated deoxycytidines in human DNA are not in the CpG dinu-cleotide. Biochem Biophys Res Commun. 1987, 145: 888-894. 10.1016/0006-291X(87)91048-5.
Article
CAS
PubMed
Google Scholar
Clark SJ, Harrison J, Frommer M: CpNpG methylation in mammalian cells. Nat Genet. 1995, 10: 20-27. 10.1038/ng0595-20.
Article
CAS
PubMed
Google Scholar
Lister R, Pelizzda M, Dowen RH, Hawkins RD, et al: Human DNA methylomes at base resolution show widespread epige-nomic differences. Nature. 2009, 462: 315-322. 10.1038/nature08514.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee J, Jang SJ, Benoit N, Hoque MO, et al: Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics. 2010, 96: 67-72. 10.1016/j.ygeno.2010.03.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laurent L, Wong E, Li G, Huynh T, et al: Dynamic changes in the human methylome during differentiation. Genome Res. 2010, 20: 320-331. 10.1101/gr.101907.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodenhiser DI, Andrews JD, Mancini DN, Jung JH, et al: Homonucleotide tracts, short repeats CpG/CpNpG motifs are frequent sites for heterogeneous mutations in the neurofibromatosis type 1 (NF1) tumour-suppressor gene. Mutat Res. 1997, 373: 185-195. 10.1016/S0027-5107(96)00171-6.
Article
CAS
PubMed
Google Scholar
Cheung LW, Lee YF, Ng TW, Ching WK, et al: CpG/CpNpG motifs in the coding region are preferred sites for mutagenesis in the breast cancer susceptibility genes. FEBS Lett. 2007, 581: 4668-4674. 10.1016/j.febslet.2007.08.061.
Article
CAS
PubMed
Google Scholar
Stenson PD, Mort M, Ball EV, Howells K, et al: The Human Gene Mutation Database: 2008 update. Genome Med. 2009, 1: 13-10.1186/gm13.
Article
PubMed Central
PubMed
Google Scholar
Illingworth RS, Bird AP: CpG islands -- "A rough guide". FEBS Lett. 2009, 583: 1713-1720. 10.1016/j.febslet.2009.04.012.
Article
CAS
PubMed
Google Scholar
Clark SJ, Harrison J, Molloy PL: Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene. 1997, 195: 67-71. 10.1016/S0378-1119(97)00164-9.
Article
CAS
PubMed
Google Scholar
Inoue S, Oishi M: Effects of methylation of non-CpG sequence in the promoter region on the expression of human synapto-tagmin XI (syt11). Gene. 2005, 348: 123-134.
Article
CAS
PubMed
Google Scholar