Ananiadou S, Kell D, Tsujii J: Text mining and its potential applications in systems biology. Trends Biotechnol. 2006, 24: 571-579. 10.1016/j.tibtech.2006.10.002.
Article
CAS
PubMed
Google Scholar
Baumgartner WA, Cohen KB, Fox LM, Acquaah-Mensah G, et al: Manual curation is not sufficient for annotation of genomic databases. Bioinformatics. 2007, 23: i41-i48. 10.1093/bioinformatics/btm229.
Article
PubMed Central
CAS
PubMed
Google Scholar
Winnenburg R, Wächter T, Plake C, Doms A, et al: Facts from text: Can text mining help to scale-up high-quality manual curation of gene products with ontologies?. Brief Bioinform. 2008, 9: 466-478. 10.1093/bib/bbn043.
Article
CAS
PubMed
Google Scholar
Ng S, Wong M: Toward routine automatic pathway discovery from on-line scientific text abstracts. Genome Inform. 1999, 10: 104-112.
CAS
Google Scholar
Agarwal P, Searls DB: Literature mining in support of drug discovery. Brief Bioinform. 2008, 9: 479-492. 10.1093/bib/bbn035.
Article
CAS
PubMed
Google Scholar
Rzhetsky A, Seringhaus M, Gerstein M: Seeking a new biology through text mining. Cell. 2008, 134: 9-13. 10.1016/j.cell.2008.06.029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hearst M: Untangling text data mining. Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics. 1999, 3-10.
Chapter
Google Scholar
Deshpande N, Fink J, Bourne P, Cohen K: Intrinsic evaluation of text mining tools may not predict performance on realistic tasks. Pacific Symposium on Biocomputing. 2008, 640-651.
Google Scholar
Blaschke C: Can bibliographic pointers for known biological data be found automatically? Protein interactions as a case study. Comp Funct Genomics. 2001, 2: 196-206. 10.1002/cfg.91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knight J: Negative results: Null and void. Nature. 2003, 422: 554-555. 10.1038/422554a.
Article
CAS
PubMed
Google Scholar
Pfeiffer T, Hoffmann R: Temporal patterns of genes in scientific publications. Proc Natl Acad Sci USA. 2003, 104: 12052-12056.
Article
Google Scholar
Lehne B, Schlitt T: Protein-protein interaction databases: Keeping up with growing interactomes. Hum Genomics. 2009, 3: 291-297.
PubMed Central
CAS
PubMed
Google Scholar
Dickerson J, Pinney J, Robertson D: The biological context of HIV-1 host interactions reveals subtle insights into a system hijack. BMC Syst Biol. 2010, 4: 80-10.1186/1752-0509-4-80.
Article
PubMed Central
PubMed
Google Scholar
Jenssen T, Lægreid A, Komorowski J, Hovig E: A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 2001, 28: 21-28.
CAS
PubMed
Google Scholar
Chen L, Liu H, Friedman C: Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics. 2005, 21: 248-256. 10.1093/bioinformatics/bth496.
Article
PubMed
Google Scholar
Mons B: Which gene did you mean?. BMC Bioinform. 2005, 6: 142-10.1186/1471-2105-6-142.
Article
Google Scholar
Hatzivassiloglou V, Duboue PA, Rzhetsky A: Disambiguating proteins, genes, and RNA in text: a machine learning approach. Bioinformatics. 2001, 17: 97-106. 10.1093/bioinformatics/17.suppl_1.S97.
Article
Google Scholar
Barnes J: Conceptual biology: A semantic issue and more. Nature. 2002, 417: 587-588.
Article
CAS
PubMed
Google Scholar
Kim J, Ohta T, Tsuruoka Y, Tateisi YN, et al: Introduction to the bio-entity recognition task at JNLPBA. Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications. 2004, 70-75.
Google Scholar
Smith L, Tanabe LK, Johnson R, Kuo CJ, et al: Overview of BioCreative II gene mention recognition. Genome Biol. 2008, 9: S2-
Article
PubMed Central
PubMed
Google Scholar
Liu H, Hu ZZ, Torii M, Wu C, et al: Quantitative assessment of dictionary-based protein named entity tagging. J Am Med Inform Assoc. 2006, 13: 497-507. 10.1197/jamia.M2085.
Article
PubMed Central
PubMed
Google Scholar
Tsuruoka Y, McNaught J, Tsujii J, Ananiadou S: Learning string similarity measures for gene/protein name dictionary look-up using logistic regression. Bioinformatics. 2007, 23: 2768-2774. 10.1093/bioinformatics/btm393.
Article
CAS
PubMed
Google Scholar
Schuemie M, Mons B, Weeber M, Kors J: Evaluation of techniques for increasing recall in a dictionary approach to gene and protein name identification. J Biomed Inform. 2007, 40: 316-324. 10.1016/j.jbi.2006.09.002.
Article
PubMed
Google Scholar
Tsuruoka Y: Probabilistic term variant generator for biomedical terms. Proceedings of the 26th Annual International ACM SIGR Conference on Research and Development in Information Retrieval. 2003, 167-173.
Google Scholar
Fundel K, Güttler D, Zimmer R, Apostolakis J: A simple approach for protein name identification: Prospects and limits. BMC Bioinform. 2005, 6 (Suppl 1): S15-10.1186/1471-2105-6-S1-S15.
Article
Google Scholar
Gaizauskas R, Demetriou G, Artymiuk PJ, Willett P: Protein structures and information extraction from biological texts: The PASTA system. Bioinformatics. 2003, 19: 135-143. 10.1093/bioinformatics/19.1.135.
Article
CAS
PubMed
Google Scholar
Hakenberg J, Bickel S, Plake C, Brefeld U, et al: Systematic feature evaluation for gene name recognition. BMC Bioinform. 2005, 6: S9-
Article
Google Scholar
Tanabe L, Wilbur W: Tagging gene and protein names in biomedical text. Bioinformatics. 2002, 18: 1124-1132. 10.1093/bioinformatics/18.8.1124.
Article
CAS
PubMed
Google Scholar
Settles B: ABNER: An open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics. 2005, 21: 3191-3192. 10.1093/bioinformatics/bti475.
Article
CAS
PubMed
Google Scholar
Sætre R, Sagae K, Tsujii J: Syntactic features for protein-protein interaction extraction. Proceedings of the 2nd International Symposium on Languages in Biology and Medicine. 2007, 6.1-6.14.
Google Scholar
Leaman R, Gonzalez G: BANNER: An executable survey of advances in biomedical named entity recognition. Pacific Symposium on Biocomputing. 2008, 652-663.
Google Scholar
Tsuruoka Y, Tateishi Y, Kim J, Ohta T, et al: Developing a robust part-of-speech tagger for biomedical text. Proceedings of Panhellenic Conference on Informatics. 2005, 3746: 382-392.
Google Scholar
Airola A, Pyysalo S, Björne J, Pahikkala T, et al: All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC Bioinform. 2008, 9: S2-
Article
Google Scholar
Gerner M, Nenadic G, Bergman CM: LINNAEUS: A species name identification system for biomedical literature. BMC Bioinform. 2010, 11: 85-10.1186/1471-2105-11-85.
Article
Google Scholar
Hahn U, Buyko E, Landefeld R: An overview of JCoRe, the JULIE lab UIMA component repository. Proceedings of the LREC'08 Workshop Towards Enhanced Interoperability for Large HLT Systems: UIMA for NLP. 2008, 1-7.
Google Scholar
Smith L, Rindflesch T, Wilbur W: MedPost: A part-of-speech tagger for bioMedical text. Bioinformatics. 2004, 20: 2320-2321. 10.1093/bioinformatics/bth227.
Article
CAS
PubMed
Google Scholar
Mika S, Rost B: NLProt: Extracting protein names and sequences from papers. Nucleic Acids Res. 2004, 32: W634-W637. 10.1093/nar/gkh427.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hunter L, Lu Z, Firby J, Baumgartner WA, et al: OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression. BMC Bioinform. 2008, 9: 78-10.1186/1471-2105-9-78.
Article
Google Scholar
Corbett P, Murray-Rust P: High-throughput identification of chemistry in life science texts. Proceedings of the 2nd International Symposium on Computational Life Science. 2006, 107-118.
Google Scholar
Song Y, Kim E, Lee GG, Yi BK: POSBIOTM-NER: A trainable biomedical named-entity recognition system. Bioinformatics. 2005, 21: 2794-2796. 10.1093/bioinformatics/bti414.
Article
CAS
PubMed
Google Scholar
Rebholz-Schuhmann D, Arregui M, Gaudan S, Kirsch H, et al: Text processing through Web services: calling Whatizit. Bioinformatics. 2008, 24: 296-298. 10.1093/bioinformatics/btm557.
Article
CAS
PubMed
Google Scholar
Liu H, Aronson AR, Friedman C: A study of abbreviations in MEDLINE abstracts. Proceedings/AMIA Annual Symposium AMIA Symposium. 2002, 464-468.
Google Scholar
Okazaki N, Ananiadou S: Building an abbreviation dictionary using a term recognition approach. Bioinformatics. 2006, 22: 3089-3095. 10.1093/bioinformatics/btl534.
Article
CAS
PubMed
Google Scholar
Tsuruoka Y, Ananiadou S: A machine learning approach to acronym generation. Proceedings of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics. 2005, 25-31.
Chapter
Google Scholar
Bracewell D, Russell S, Wu A: Identification, expansion, and disambiguation of acronyms in biomedical texts. Lect Notes Comput Sci. 2005, 3759: 186-195. 10.1007/11576259_21.
Article
Google Scholar
Koning D, Sarkar I, Moritz T: TaxonGrab: Extracting taxonomic names from text. Biodiversity Inform. 2005, 2: 79-82.
Article
Google Scholar
Sarntivijai S, Ade AS, Athey BD, States DJ: A bioinformatics analysis of the cell line nomenclature. Bioinformatics. 2008, 24: 2760-2766. 10.1093/bioinformatics/btn502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pyysalo S, Ginter F, Heimonen J, Björne J, et al: BioInfer: A corpus for information extraction in the biomedical domain. BMC Bioinform. 2007, 8: 50-10.1186/1471-2105-8-50.
Article
Google Scholar
Wang X, Tsujii J, Ananiadou S: Disambiguating the species of biomedical named entities using natural language parsers. Bioinformatics. 2010, 26: 661-667. 10.1093/bioinformatics/btq002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alex B, Grover C, Haddow B, Kabadjov M, et al: Assisted curation: Does text mining really help?. Pac Symp Biocomput. 2008, 556-567.
Google Scholar
Craven M, Kumlien J: Constructing biological knowledge bases by extracting information from text sources. Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology. 1999, 77-86.
Google Scholar
Santos C, Eggle D, States D: Wnt pathway curation using automated natural language processing: Combining statistical methods with partial and full parse for knowledge extraction. Bioinformatics. 2005, 21: 1653-1658. 10.1093/bioinformatics/bti165.
Article
CAS
PubMed
Google Scholar
Waagmeester A, Pezik P, Coort S, Tourniaire F, et al: Pathway enrichment based on text mining and its validation on carotenoid and vitamin A metabolism. OMICS. 2009, 13: 367-379. 10.1089/omi.2009.0029.
Article
CAS
PubMed
Google Scholar
Lau WW, Johnson CA, Becker KG: Rule-based human gene normalization in biomedical text with confidence estimation. Comput Syst Bioinformatics Conf. 2007, 6: 371-379.
Article
PubMed
Google Scholar
Wang X, Matthews M: Comparing usability of matching techniques for normalising biomedical named entities. Pac Symp Biocomput. 2008, 13: 628-639.
Google Scholar
Grover C, Haddow B, Klein E, Matthews M: Adapting a relation extraction pipeline for the BioCreAtIvE II task. Proceedings of the BioCreAtIvE II Workshop. 2007
Google Scholar
Wang X: Rule-based protein term identification with help from automatic species tagging. Proceedings of CICLING. 2007, 288-298.
Google Scholar
Crim J, McDonald R, Pereira F: Automatically annotating documents with normalized gene lists. BMC Bioinform. 2005, 6: S13-
Article
Google Scholar
Farkas R: The strength of co-authorship in gene name disambiguation. BMC Bioinform. 2008, 9: 69-10.1186/1471-2105-9-69.
Article
Google Scholar
Morgan AA, Lu Z, Wang X, Cohen AM, et al: Overview of BioCreative II gene normalization. Genome Biol. 2008, 9: S3-
Article
PubMed Central
PubMed
Google Scholar
Kappeler T, Kaljurand K, Rinaldi F: TX task: Automatic detection of focus organisms in biomedical publications. Proceedings of the Workshop on BioNLP. 2009, 80-88.
Chapter
Google Scholar
Fundel K, Kuffner R, Zimmer R: RelEx-Relation extraction using dependency parse trees. Bioinformatics. 2007, 23: 365-371. 10.1093/bioinformatics/btl616.
Article
CAS
PubMed
Google Scholar
Hu ZZ, Narayanaswamy M, Ravikumar KE, Vijay-Shanker K, et al: Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics. 2005, 21: 2759-2765. 10.1093/bioinformatics/bti390.
Article
CAS
PubMed
Google Scholar
Niu Y, Otasek D, Jurisica I: Evaluation of linguistic features useful in extraction of interactions from PubMed: Application to annotating known, high-throughput and predicted interactions in I2D. Bioinformatics. 2009, 26: 111-119.
Article
PubMed Central
PubMed
Google Scholar
Fayruzov T, Cock MD, Cornelis C, Hoste V: Linguistic feature analysis for protein interaction extraction. BMC Bioinform. 2009, 10: 374-10.1186/1471-2105-10-374.
Article
Google Scholar
Hatzivassiloglou V, Weng W: Learning anchor verbs for biological interaction patterns from published text articles. Int J Med Inform. 2002, 67: 19-32. 10.1016/S1386-5056(02)00054-0.
Article
PubMed
Google Scholar
Kilicoglu H, Bergler S: Recognizing speculative language in biomedical research articles: A linguistically motivated perspective. BMC Bioinform. 2008, 9: S10-
Article
Google Scholar
Sanchez-Graillet O, Poesio M: Negation of protein-protein interactions: Analysis and extraction. Bioinformatics. 2007, 23: i424-i432. 10.1093/bioinformatics/btm184.
Article
CAS
PubMed
Google Scholar
Davies R: The creation of new knowledge by information retrieval and classification. J Doc. 1989, 4: 273-301.
Article
Google Scholar
Swanson D: Fish oil, Raynaud's syndrome, and undiscovered public knowledge. Perspect Biol Med. 1986, 30: 7-18.
Article
CAS
PubMed
Google Scholar
DiGiacomo R, Kremer J, Shah D: Fish-oil dietary supplementation in patients with Raynaud's phenomenon: A double-blind, controlled, prospective study. Am J Med. 1989, 86: 158-164. 10.1016/0002-9343(89)90261-1.
Article
CAS
PubMed
Google Scholar
Murray-Rust P: Data Driven Science-A Scientist's View. NSF/JISC 2007 Digital Repositories Workshop. 2007, [http://www.sis.pitt.edu/~repwkshop/papers/murray.html]
Google Scholar
Hettne K, de Mos M, de Bruijn A, Weeber M: Applied information retrieval and multidisciplinary research: New mechanistic hypotheses in complex regional pain syndrome. J Biomed Discov Collab. 2007, 2: 2-10.1186/1747-5333-2-2.
Article
PubMed Central
PubMed
Google Scholar
van Haagen H, 't Hoen P, Bovo AB, de Morrée A, et al: Novel protein-protein interactions inferred from literature context. PLoS ONE. 2009, 4: e7894-10.1371/journal.pone.0007894.
Article
PubMed Central
PubMed
Google Scholar
Natarajan J, Berrar D, Dubitzky W, Hack C, et al: Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line. BMC Bioinform. 2006, 7: 373-10.1186/1471-2105-7-373.
Article
Google Scholar
Cory K: Discovering hidden analogies in an online humanities database. Comput Hum. 1997, 31: 1-12. 10.1023/A:1000422220677.
Article
Google Scholar
Gordon M, Lindsay R, Fan W: Literature-based discovery on the World Wide Web. ACM Trans Inter Tech. 2002, 2: 261-275. 10.1145/604596.604597.
Article
Google Scholar
Hristovski D, Peterlin B, Mitchell J, Humphrey S: Using literature-based discovery to identify disease candidate genes. Int J Med Inform. 2005, 74: 289-298. 10.1016/j.ijmedinf.2004.04.024.
Article
PubMed
Google Scholar
Kostoff R, Briggs M, Lyons T: Literature-related discovery (LRD): Potential treatments for multiple sclerosis. Technol Forecast Soc Change. 2007, 75: 239-255.
Article
Google Scholar
Kostoff R: Literature-related discovery (LRD): Potential treatments for cataracts. Technol Forecast Soc Change. 2007, 75: 215-225.
Article
Google Scholar
Srinivasan P, Libbus B: Mining MEDLINE for implicit links between dietary substances and diseases. Bioinformatics. 2004, 20: i290-i296. 10.1093/bioinformatics/bth914.
Article
CAS
PubMed
Google Scholar
Srinivasan P, Libbus B, Sehgal A: Mining medline: Postulating a beneficial role for curcumin longa in retinal diseases. HLT Biolink. 2004, 33-40.
Google Scholar
Swanson D, Smalheiser N, Bookstein A: Information discovery from complementary literatures: Categorizing viruses as potential weapons. J Am Soc Inf Sci Technol. 2001, 52: 797-812. 10.1002/asi.1135.
Article
Google Scholar
Weeber M, Vos R, Klein H, de Jong-van den Berg LT, et al: Generating hypotheses by discovering implicit associations in the literature: A case report of a search for new potential therapeutic uses for thalidomide. J Am Med Inform Assoc. 2003, 10: 252-259. 10.1197/jamia.M1158.
Article
PubMed Central
PubMed
Google Scholar
Wren JD, Bekeredjian R, Stewart JA, Shohet RV, et al: Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics. 2004, 20: 389-398. 10.1093/bioinformatics/btg421.
Article
CAS
PubMed
Google Scholar
Wren J: Data-mining analysis suggests an epigenetic pathogenesis for type 2 diabetes. J Biomed Biotechnol. 2005, 2: 104-112.
Article
Google Scholar
Zhou X, Liu B, Wu Z, Feng Y: Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks. Artif Intell Med. 2007, 41: 87-104. 10.1016/j.artmed.2007.07.007.
Article
PubMed
Google Scholar
Hoffmann R, Valencia A: Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics. 2005, 21: ii252-ii258. 10.1093/bioinformatics/bti1142.
CAS
PubMed
Google Scholar
Eales J, Pinney J, Stevens R, Robertson D: Methodology capture: Discriminating between the "best" and the rest of community practice. BMC Bioinform. 2008, 9: 359-10.1186/1471-2105-9-359.
Article
Google Scholar
Steele E, Tucker A, 't Hoen P, Schuemie M: Literature-based priors for gene regulatory networks. Bioinformatics. 2009, 25: 1768-1774. 10.1093/bioinformatics/btp277.
Article
CAS
PubMed
Google Scholar
MacCallum R, Kelley L, Sternberg M: SAWTED: Structure assignment with text description-enhanced detection of remote homologues with automated SWISS-PROT annotation comparisons. Bioinformatics. 2000, 16: 125-129. 10.1093/bioinformatics/16.2.125.
Article
CAS
PubMed
Google Scholar
Raychaudhuri S, Plenge RM, Rossin EJ, Ng ACY, et al: Identifying relationships among disease regions: Predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009, 5: e1000534-10.1371/journal.pgen.1000534.
Article
PubMed Central
PubMed
Google Scholar
von Mering C, Jensen L, Snel B, Hooper S: STRING: Known and prediction protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33: D433-D437.
Article
PubMed Central
CAS
PubMed
Google Scholar