Huang H, Winter EE, Wang H, Weinstock KG, et al: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 2004, 5: R47-10.1186/gb-2004-5-7-r47.
Article
PubMed Central
PubMed
Google Scholar
Tu Z, Wang L, Xu M, Zhou X, et al: Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics. 2006, 7: 31-10.1186/1471-2164-7-31.
Article
PubMed Central
PubMed
Google Scholar
Blekhman R, Man O, Herrmann L, Boyko AR, et al: Natural selection on genes that underlie human disease susceptibility. Curr Biol. 2008, 18: 883-889. 10.1016/j.cub.2008.04.074.
Article
PubMed Central
CAS
PubMed
Google Scholar
Domazet-Lošo T, Tautz D: An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol. 2008, 25: 2699-2707. 10.1093/molbev/msn214.
Article
PubMed Central
PubMed
Google Scholar
Cai JJ, Borenstein E, Chen R, Petrov DA: Similarly strong purifying selection acts on human disease genes of all evolutionary ages. Genome Biol Evol. 2009, 1: 131-144.
Article
PubMed Central
PubMed
Google Scholar
Kehrer-Sawatzki H, Cooper DN: Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat. 2007, 28: 99-130. 10.1002/humu.20420.
Article
CAS
PubMed
Google Scholar
Yu G: An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence. Comp Funct Genomics. 2009, 406421-
Google Scholar
Schrider DR, Costello JC, Hahn MW: All human-specific gene losses are present in the genome as pseudogenes. J Comput Biol. 2009, 16: 1419-1427. 10.1089/cmb.2009.0085.
Article
CAS
PubMed
Google Scholar
Kim HL, Igawa T, Kawashima A, Satta Y, et al: Divergence, demography and gene loss along the human lineage. Philos Trans R Soc B. 2009, 365: 2451-2457.
Article
Google Scholar
Nahon JL: Birth of "human-specific" genes during primate evolution. Genetica. 2003, 118: 193-208. 10.1023/A:1024157714736.
Article
CAS
PubMed
Google Scholar
Stahl PD, Wainszelbaum MJ: Human-specific genes may offer a unique window into human cell signalling. Sci Signal. 2009, 2: e59-
Article
Google Scholar
Knowles DG, McLysaght A: Recent de novo origin of human protein-coding genes. Genome Res. 2009, 19: 1752-1759. 10.1101/gr.095026.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fortna A, Kim Y, MacLaren E, Marshall K, et al: Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2004, 2: E207-10.1371/journal.pbio.0020207.
Article
PubMed Central
PubMed
Google Scholar
Cheng Z, Ventura M, She X, Khaitovich P, et al: A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature. 2005, 437: 88-93. 10.1038/nature04000.
Article
CAS
PubMed
Google Scholar
Stenson PD, Mort M, Ball EV, Howells K, et al: The Human Gene Mutation Database: 2008 update. Genome Med. 2009, 1: 13-10.1186/gm13.
Article
PubMed Central
PubMed
Google Scholar
Itan Y, Bryson K, Thomas MG: Detecting gene duplications in the human lineage. Ann Hum Genet. 2010, 74: 555-565. 10.1111/j.1469-1809.2010.00609.x.
Article
CAS
PubMed
Google Scholar
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, et al: The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005, 307: 1434-1440. 10.1126/science.1101160.
Article
CAS
PubMed
Google Scholar
Mamtani M, Matsubara T, Shimizu C, Furukawa S, et al: Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki disease, coronary artery lesions, and IVIG responses in Japanese children. PLoS One. 2010, 5: e11458-10.1371/journal.pone.0011458.
Article
PubMed Central
PubMed
Google Scholar
McKinney C, Merriman ME, Chapman PT, Gow PJ, et al: Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis. 2008, 67: 409-413.
Article
CAS
PubMed
Google Scholar
Grünhage F, Nattermann J, Gressner OA, Wasmuth HE, et al: Lower numbers of the chemokine CCL3L1 gene in patients with chronic hepatitis C. J Hepatol. 2010, 52: 153-159. 10.1016/j.jhep.2009.11.001.
Article
PubMed
Google Scholar
Minoretti P, Arra M, Emanuele U, Olivieri V, et al: A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. 2007, 19: 369-372.
CAS
PubMed
Google Scholar
Alter A, de Léséleuc L, Van Thuc N, Thai VH, et al: Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum Genet. 2010, 127: 337-348. 10.1007/s00439-009-0775-x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jedrzejowska M, Ryniewicz B, Kabzińska D, Drac H, et al: A patient with both Charcot-Marie-Tooth disease (CMT 1A) and mild spinal muscular atrophy (SMA 3). Neuromuscul Disord. 2008, 18: 339-341. 10.1016/j.nmd.2008.02.001.
Article
PubMed
Google Scholar
Prior TW, Krainer AR, Hua Y, Swoboda KJ, et al: A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009, 85: 408-413. 10.1016/j.ajhg.2009.08.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vezain M, Saugier-Veber P, Goina E, Touraine R, et al: A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum Mutat. 2010, 31: E1110-E1125. 10.1002/humu.21173.
Article
PubMed
Google Scholar
Srivastava S, Mukherjee M, Panigrahi I, Shanker Pandey G, et al: SMN2-deletion in childhood-onset spinal muscular atrophy. Am J Med Genet. 2001, 101: 198-202. 10.1002/ajmg.1386.
Article
CAS
PubMed
Google Scholar
Hsiao T-L, Vitkup D: Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet. 2008, 4: e1000014-10.1371/journal.pgen.1000014.
Article
PubMed Central
PubMed
Google Scholar
Ng PC, Levy S, Huang J, Stockwell TB, et al: Genetic variation in an individual human exome. PLoS Genet. 2008, 4: e1000160-10.1371/journal.pgen.1000160.
Article
PubMed Central
PubMed
Google Scholar
Popesco MC, Maclaren EJ, Hopkins J, Dumas L, et al: Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains. Science. 2006, 313: 1304-1307. 10.1126/science.1127980.
Article
CAS
PubMed
Google Scholar
Dumas L, Kim YH, Karimpour-Fard A, Cox M, et al: Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 2007, 17: 1266-1277. 10.1101/gr.6557307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Armengol G, Knuutila S, Lozano JJ, Madrigal I, et al: Identification of human specific gene duplications relative to other primates by array CGH and quantitative PCR. Genomics. 2010, 95: 203-209. 10.1016/j.ygeno.2010.02.003.
Article
CAS
PubMed
Google Scholar
Sudmant PH, Kitzman JO, Antonacci F, Alkan C, et al: Diversity of human copy number variation and multicopy genes. Science. 2010, 330: 641-646. 10.1126/science.1197005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondo H, Shimomura I, Kishida K, Kuriyama H, et al: Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem. 2002, 269: 1814-1826. 10.1046/j.1432-1033.2002.02821.x.
Article
CAS
PubMed
Google Scholar
Rudd MF, Webb EL, Matakidou A, Sellick GS, et al: Variants in the GH-IGF axis confer susceptibility to lung cancer. Genome Res. 2006, 16: 693-701. 10.1101/gr.5120106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raux G, Bonnet-Brilhault F, Louchart S, Houy E, et al: The -2 bp deletion in exon 6 of the "alpha 7-like" nicotinic receptor subunit gene is a risk factor for the P50 sensory gating deficit. Mol Psychiatry. 2002, 7: 1006-1011. 10.1038/sj.mp.4001140.
Article
CAS
PubMed
Google Scholar
Cravchik A, Gejman PV: Functional analysis of the human D5 dopamine receptor missense and nonsense variants: differences in dopamine binding affinities. Pharmacogenetics. 1999, 9: 199-206.
Article
CAS
PubMed
Google Scholar
van de Winkel JG, de Wit TP, Ernst LK, Capel PJ, et al: Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J Immunol. 1995, 154: 2896-2903.
CAS
PubMed
Google Scholar
Tipney HJ, Hinsley TA, Brass A, Metcalfe K, et al: Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams-Beuren syndrome. Eur J Hum Genet. 2004, 12: 551-560. 10.1038/sj.ejhg.5201174.
Article
CAS
PubMed
Google Scholar
Roy N, Mahadevan MS, McLean M, Shutler G, et al: The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 1995, 80: 167-178. 10.1016/0092-8674(95)90461-1.
Article
CAS
PubMed
Google Scholar
Roos D, de Boer M, Köker MY, Dekker J, et al: Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the pp47phox component of the phagocyte NADPH oxidase. Hum Mutat. 2006, 27: 1218-1229. 10.1002/humu.20413.
Article
CAS
PubMed
Google Scholar
O'Driscoll MC, Daly SB, Urquhart JE, Black GC, et al: Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet. 2010, 87: 354-364. 10.1016/j.ajhg.2010.07.012.
Article
PubMed Central
PubMed
Google Scholar
Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. Genetics. 2009, 154: 459-473.
Google Scholar
Shakhnovich BE, Koonin EV: Origins and impact of constraints in evolution of gene families. Genome Res. 2006, 16: 1529-1536. 10.1101/gr.5346206.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conrad B, Antonarakis SE: Gene duplication: A drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet. 2007, 8: 17-35. 10.1146/annurev.genom.8.021307.110233.
Article
CAS
PubMed
Google Scholar
Han MV, Demuth JP, McGrath CL, Casola C, et al: Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009, 19: 859-867. 10.1101/gr.085951.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chimpanzee Sequencing and Analysis Consortium: Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005, 437: 69-87. 10.1038/nature04072.
Article
Google Scholar
Genovese G, Friedman DJ, Ross MD, Lecordier L, et al: Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010, 329: 841-845. 10.1126/science.1193032.
Article
PubMed Central
CAS
PubMed
Google Scholar
Valentonyte R, Hampe J, Huse K, Rosenstiel P, et al: Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet. 2005, 37: 357-364. 10.1038/ng1519.
Article
CAS
PubMed
Google Scholar
Zhou Q, Rammohan K, Lin S, Robinson N, et al: CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci USA. 2003, 100: 15041-15046. 10.1073/pnas.2533866100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sánchez E, Abelson AK, Sabio JM, González-Gay MA, et al: Association of a CD24 gene polymorphism with susceptibility to systemic lupus erythematosus. Arthritis Rheum. 2007, 56: 3080-3086. 10.1002/art.22871.
Article
PubMed
Google Scholar
Li D, Zheng L, Jin L, Zhou Y, et al: CD24 polymorphisms affect risk and progression of chronic hepatitis B virus infection. Hepatology. 2009, 50: 735-742. 10.1002/hep.23047.
Article
CAS
PubMed
Google Scholar
Fellay J, Shianna KV, Ge D, Colombo S, et al: A whole-genome association study of major determinants for host control of HIV-1. Science. 2007, 317: 944-947. 10.1126/science.1143767.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kirsten H, Petit-Teixeira E, Scholz M, Hasenclever D, et al: Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study. Arthritis Res Ther. 2009, 11: R60-10.1186/ar2683.
Article
PubMed Central
PubMed
Google Scholar
Amroun H, Djoudi H, Busson M, Allat R, et al: Early-onset ankylosing spondylitis is associated with a functional MICA polymorphism. Hum Immunol. 2005, 66: 1057-1061. 10.1016/j.humimm.2005.09.004.
Article
CAS
PubMed
Google Scholar
Castermans D, Wilquet V, Parthoens E, Huysmans C, et al: The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet. 2003, 40: 352-356. 10.1136/jmg.40.5.352.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jönsson UB, Byström J, Stålenheim G, Venge P: Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy. 2002, 32: 1092-1095. 10.1046/j.1365-2222.2002.01410.x.
Article
PubMed
Google Scholar
Eriksson J, Reimert CM, Kabatereine NB, Kazibwe F, et al: The 434(G > C) polymorphism within the coding sequence of eosinophil cationic protein (ECP) correlates with the natural course of Schistosoma mansoni infection. Int J Parasitol. 2007, 37: 1359-1366. 10.1016/j.ijpara.2007.04.001.
Article
CAS
PubMed
Google Scholar
Selman M, Lin HM, Montaño M, Jenkins AL, et al: Surfactant protein A and B genetic variants predispose to idiopathic pulmonary fibrosis. Hum Genet. 2003, 113: 542-550. 10.1007/s00439-003-1015-4.
Article
CAS
PubMed
Google Scholar
Malik S, Greenwood CM, Eguale T, Kifle A, et al: Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Hum Genet. 2006, 118: 752-759. 10.1007/s00439-005-0092-y.
Article
CAS
PubMed
Google Scholar
Albà MA, Castresana J: Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol. 2004, 22: 598-606. 10.1093/molbev/msi045.
Article
PubMed
Google Scholar
Wolf YI, Novichkov PS, Karev GP, Koonin EV, et al: The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc Natl Acad Sci USA. 2009, 106: 7273-7280. 10.1073/pnas.0901808106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cai JJ, Petrov DA: Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol. 2010, 2: 393-409. 10.1093/gbe/evq019.
Article
PubMed Central
PubMed
Google Scholar
De S, Lopez-Bigas N, Teichmann SA: Patterns of evolutionary constraints on genes in humans. BMC Evol Biol. 2008, 8: 275-10.1186/1471-2148-8-275.
Article
PubMed Central
PubMed
Google Scholar
Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, et al: Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res. 2008, 18: 1711-1723. 10.1101/gr.077289.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kelley JL, Swanson WJ: Positive selection in the human genome: From genome scans to biological significance. Annu Rev Genomics Hum Genet. 2008, 9: 143-160. 10.1146/annurev.genom.9.081307.164411.
Article
CAS
PubMed
Google Scholar
Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science. 2000, 290: 1151-1155. 10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Chung WY, Albert R, Albert I, Nekrutenko A, et al: Rapid and asymmetric divergence of duplicate genes in the human gene coex-pression network. BMC Bioinformatics. 2006, 7: 46-10.1186/1471-2105-7-46.
Article
PubMed Central
PubMed
Google Scholar
Nielsen R, Hubisz MJ, Hellmann I, Torgerson D, et al: Darwinian and demographic forces affecting human protein coding genes. Genome Res. 2009, 19: 838-849. 10.1101/gr.088336.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beekman M, Nederstigt C, Suchiman HED, Kremer D, et al: Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci USA. 2010, 107: 18046-18049. 10.1073/pnas.1003540107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vamathevan JJ, Hasan S, Emes RD, Amrine-Madsen H, et al: The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol Biol. 2008, 8: 273-10.1186/1471-2148-8-273.
Article
PubMed Central
PubMed
Google Scholar
Lappalainen T, Salmela E, Andersen PM, Dahlman-Wright K, et al: Genomic landscape of positive natural selection in northern European populations. Eur J Hum Genet. 2010, 18: 471-478. 10.1038/ejhg.2009.184.
Article
PubMed Central
PubMed
Google Scholar
Winter EE, Goodstadt L, Ponting CP: Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 2004, 14: 54-61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang L, Li W-H: Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol. 2004, 21: 236-239.
Article
PubMed
Google Scholar
Liao BY, Zhang J: Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution. Mol Biol Evol. 2006, 23: 1119-1128. 10.1093/molbev/msj119.
Article
CAS
PubMed
Google Scholar
Hao L, Ge X, Wan H, Hu S, et al: Human functional genetic studies are biased against the medically most relevant primate-specific genes. BMC Evol Biol. 2010, 10: 316-10.1186/1471-2148-10-316.
Article
PubMed Central
PubMed
Google Scholar
Park SG, Choi SS: Expression breadth and expression abundance behave differently in correlations with evolutionary rates. BMC Evol Biol. 2010, 10: 241-10.1186/1471-2148-10-241.
Article
PubMed Central
PubMed
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R, et al: More than just orphans: are taxonomically-restricted genes important in evolution?. Trends Genet. 2009, 25: 404-413. 10.1016/j.tig.2009.07.006.
Article
CAS
PubMed
Google Scholar
Blekhman R, Oshlack A, Chabot AE, Smyth GK, et al: Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet. 2008, 4: e1000271-10.1371/journal.pgen.1000271.
Article
PubMed Central
PubMed
Google Scholar
Di Rienzo A, Hudson RR: An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 2005, 21: 596-601. 10.1016/j.tig.2005.08.007.
Article
CAS
PubMed
Google Scholar