Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–534. Epub 2020 Feb 19. Erratum in: Lancet Infect Dis. 2020 Sep;20(9):e215. https://doi.org/10.1016/S1473-3099(20)30120-1.
Ritchie H, Ortiz-Ospina E, Beltekian D, Mathieu E, Hasell J, Macdonald B, et al. Coronavirus Pandemic (COVID-19). Published online at OurWorldInData.org (2020). Retrieved from: https://ourworldindata.org/coronavirus.
Sanyaolu A, Okorie C, Marinkovic A, Haider N, Abbasi AF, Jaferi U, et al. The emerging SARS-CoV-2 variants of concern. Ther Adv Infect Dis. 2021;18(8):20499361211024372. https://doi.org/10.1177/20499361211024372.
Article
Google Scholar
Novelli G, Colona VL, Pandolfi PP. A focus on the spread of the delta variant of SARS-CoV-2 in India. Indian J Med Res. 2021. Epub ahead of print. https://doi.org/10.4103/ijmr.ijmr_1353_21.
Bolcato M, Rodriguez D, Feola A, Di Mizio G, Bonsignore A, Ciliberti R, Tettamanti C, Trabucco Aurilio M, Aprile A. COVID-19 Pandemic and equal access to vaccines. Vaccines (Basel). 2021;9(6):538. https://doi.org/10.3390/vaccines9060538.
Novelli G, Biancolella M, Mehrian-Shai R, Colona VL, Brito AF, Grubaugh ND, et al. COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genom. 2021;15(1):27. https://doi.org/10.1186/s40246-021-00326-3.
Article
CAS
Google Scholar
Singh J, Samal J, Kumar V, Sharma J, Agrawal U, Ehtesham NZ, et al. Structure-Function analyses of new SARS-CoV-2 variants B.1.1.7, B.1.351 and B.1.1.28.1: clinical, diagnostic, therapeutic and public health implications. Viruses. 2021;13(3):439. https://doi.org/10.3390/v13030439.
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;28(9): e61312. https://doi.org/10.7554/eLife.61312.
Article
Google Scholar
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2108891.
Cyranoski D. Alarming COVID variants show vital role of genomic surveillance. Nature. 2021;589(7842):337–8. https://doi.org/10.1038/d41586-021-00065-4.
Article
CAS
PubMed
Google Scholar
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–98. Epub 2020 Dec 11. https://doi.org/10.1038/s41586-020-03065-y.
Novelli G, Biancolella M, Mehrian-Shai R, Erickson C, Godri Pollitt KJ, Vasiliou V, et al. COVID-19 update: the first 6 months of the pandemic. Hum Genom. 2020;14(1):48. https://doi.org/10.1186/s40246-020-00298-w.
Article
CAS
Google Scholar
Curtis D. Variants in ACE2 and TMPRSS2 genes are not major determinants of COVID-19 severity in UK Biobank Subjects. Hum Hered. 2020;85(2):66–68. Epub 2021 Mar 22. https://doi.org/10.1159/000515200.
Elhabyan A, Elyaacoub S, Sanad E, Abukhadra A, Elhabyan A, Dinu V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Res. 2020;289:198163. Epub 2020 Sep 9. https://doi.org/10.1016/j.virusres.2020.198163.
Oh JH, Tannenbaum A, Deasy JO. Identification of biological correlates associated with respiratory failure in COVID-19. BMC Med Genom. 2020;13(1):186. https://doi.org/10.1186/s12920-020-00839-1.
Article
CAS
Google Scholar
Yuan J, Fan D, Xue Z, Qu J, Su J. Co-expression of mitochondrial genes and ACE2 in cornea involved in COVID-19. Investig Ophthalmol Vis Sci. 2020;61(12):13. https://doi.org/10.1167/iovs.61.12.13.
Article
CAS
Google Scholar
Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Host genetic variants potentially associated with SARS-CoV-2: a multi-population analysis. Front Genet. 2020;2(11): 578523. https://doi.org/10.3389/fgene.2020.578523.
Article
CAS
Google Scholar
Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10(1):3328. https://doi.org/10.1038/s41467-019-11112-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Bastard P, Bolze A, Jouanguy E, Zhang SY, Cobat A, et al. Life-threatening COVID-19: defective interferons unleash excessive inflammation. Med (N Y). 2020;1(1):14–20. https://doi.org/10.1016/j.medj.2020.12.001.
Article
Google Scholar
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. Epub 2020 Sep 24. https://doi.org/10.1126/science.abd4570.
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. Epub 2020 Sep 24. https://doi.org/10.1126/science.abd4585.
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671–1692. Epub 2021 Feb 16. https://doi.org/10.1016/j.cell.2021.02.029.
Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–1534. Epub 2020 Jun 17. https://doi.org/10.1056/NEJMoa2020283.
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468. Epub 2020 Apr 30. https://doi.org/10.1038/s41586-020-2286-9.
Koning R, Bastard P, Casanova JL, Brouwer MC, van de Beek D; with the Amsterdam U.M.C. COVID-19 Biobank Investigators. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021;47(6):704–706. Epub 2021 Apr 9. https://doi.org/10.1007/s00134-021-06392-4.
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–844. Epub 2020 May 12. https://doi.org/10.1038/s41591-020-0901-9.
Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–398. Epub 2020 May 26. https://doi.org/10.1038/s41577-020-0346-x.
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. Epub 2020 May 15. https://doi.org/10.1016/j.cell.2020.04.026.
Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16(7): e1008737. https://doi.org/10.1371/journal.ppat.1008737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature. 2003;424(6948):516–23. https://doi.org/10.1038/nature01850.
Article
CAS
PubMed
Google Scholar
Pérez-Alba E, Nuzzolo-Shihadeh L, Aguirre-García GM, Espinosa-Mora J, Lecona-Garcia JD, Flores-Pérez RO, et al. Baricitinib plus dexamethasone compared to dexamethasone for the treatment of severe COVID-19 pneumonia: a retrospective analysis. J Microbiol Immunol Infect. 2021:S1684–1182(21)00133-X. Epub ahead of print. https://doi.org/10.1016/j.jmii.2021.05.009.
Abizanda P, Calbo Mayo JM, Mas Romero M, Cortés Zamora EB, Tabernero Sahuquillo MT, Romero Rizos L, et al. Baricitinib reduces 30-day mortality in older adults with moderate-to-severe COVID-19 pneumonia. J Am Geriatr Soc. 2021. Epub ahead of print. https://doi.org/10.1111/jgs.17357.
Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus Remdesivir for hospitalized adults with Covid-19. N Engl J Med. 2021;384(9):795–807. Epub 2020 Dec 11. https://doi.org/10.1056/NEJMoa2031994.
Rizk JG, Forthal DN, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, et al. Expanded access programs, compassionate drug use, and emergency use authorizations during the COVID-19 pandemic. Drug Discov Today. 2021;26(2):593–603. Epub 2020 Nov 27. https://doi.org/10.1016/j.drudis.2020.11.025.
Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genom Med. 2020;18(5):35. https://doi.org/10.1038/s41525-020-00143-y.
Article
CAS
Google Scholar
Gilzad-Kohan H, Jamali F. Anti-inflammatory properties of drugs used to control COVID-19 and their effects on the renin-angiotensin system and angiotensin-converting enzyme-2. J Pharm Pharm Sci. 2020;23:259–277. https://doi.org/10.18433/jpps31346.
Zhang H, Maqsudi S, Rainczuk A, Duffield N, Lawrence J, Keane FM, et al. Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS J. 2015;282(19):3737–57. Epub 2015 Aug 3. https://doi.org/10.1111/febs.13371.
Geiss-Friedlander R, Parmentier N, Möller U, Urlaub H, Van den Eynde BJ, Melchior F. The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides. J Biol Chem. 2009;284(40):27211–9. Epub 2009 Aug 10. https://doi.org/10.1074/jbc.M109.041871.
Griswold AR, Ball DP, Bhattacharjee A, Chui AJ, Rao SD, Taabazuing CY, Bachovchin DA. DPP9's Enzymatic activity and not its binding to CARD8 inhibits inflammasome activation. ACS Chem Biol. 2019;14(11):2424–2429. Epub 2019 Sep 20. https://doi.org/10.1021/acschembio.9b00462.
Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK, Steele MP, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet. 2013;45(6):613–20. Epub 2013 Apr 14. Erratum in: Nat Genet. 2013 Nov;45(11):1409. https://doi.org/10.1038/ng.2609.
Moon CY, Schilder BM, Raj T, Huang KL. Phenome-wide and expression quantitative trait locus associations of coronavirus disease 2019 genetic risk loci. iScience. 2021;24(6):102550. Epub 2021 May 18. https://doi.org/10.1016/j.isci.2021.102550.
van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–73. https://doi.org/10.1001/jama.2020.13719.
Article
CAS
PubMed
Google Scholar
Solanich X, Vargas-Parra G, Caspar I, van del Made, Simons A, Schuurs-Hoeijmakers J, et al. Genetic screening for TLR7 variants in young and previously healthy men with severe COVID-19. Front Immunol. 2021;12:2965. https://doi.org/10.3389/fimmu.2021.719115.
Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife. 2021;2(10): e67569. https://doi.org/10.7554/eLife.67569.
Article
Google Scholar
Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol. 2011;29:447–91. https://doi.org/10.1146/annurev-immunol-030409-101335.
Article
CAS
PubMed
Google Scholar
Plenge RM. Molecular underpinnings of severe coronavirus disease 2019. JAMA. 2020;324(7):638–9. https://doi.org/10.1001/jama.2020.14015.
Article
CAS
PubMed
Google Scholar
Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci USA. 2010;107(36):15838–43. Epub 2010 Aug 23. https://doi.org/10.1073/pnas.1001337107.
Barquera R, Collen E, Di D, Buhler S, Teixeira J, Llamas B, et al. Binding affinities of 438 HLA proteins to complete proteomes of seven pandemic viruses and distributions of strongest and weakest HLA peptide binders in populations worldwide. HLA. 2020;96(3):277–298. Epub 2020 Jun 11. https://doi.org/10.1111/tan.13956.
Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510-e520. https://doi.org/10.1128/JVI.00510-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Mazas A. HLA studies in the context of coronavirus outbreaks. Swiss Med Wkly. 2020;16(150): w20248. https://doi.org/10.4414/smw.2020.20248.
Article
CAS
Google Scholar
Novelli A, Andreani M, Biancolella M, Liberatoscioli L, Passarelli C, Colona VL, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610–614. Epub 2020 Sep 3. https://doi.org/10.1111/tan.14047.
Alghamdi J, Alaamery M, Barhoumi T, Rashid M, Alajmi H, Aljasser N, et al. Interferon-induced transmembrane protein-3 genetic variant rs12252 is associated with COVID-19 mortality. Genomics. 2021;113(4):1733–1741. Epub 2021 Apr 7. https://doi.org/10.1016/j.ygeno.2021.04.002.
Kim YC, Jeong BH. Strong correlation between the case fatality rate of COVID-19 and the rs6598045 single nucleotide polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population-level. Genes (Basel). 2020;12(1):42. https://doi.org/10.3390/genes12010042.
Article
CAS
Google Scholar
Fricke-Galindo I, Falfán-Valencia R. Genetics insight for COVID-19 susceptibility and severity: a review. Front Immunol. 2021;1(12): 622176. https://doi.org/10.3389/fimmu.2021.622176.
Article
CAS
Google Scholar
Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;12(4):9. https://doi.org/10.1186/1471-2350-4-9.
Article
CAS
Google Scholar
Khor SS, Omae Y, Nishida N, Sugiyama M, Kinoshita N, Suzuki T, et al. HLA-A*11:01:01:01, HLA-C*12:02:02:01-HLA-B*52:01:02:02, age and sex are associated with severity of Japanese COVID-19 with respiratory failure. Front Immunol. 2021;22(12): 658570. https://doi.org/10.3389/fimmu.2021.658570.
Article
CAS
Google Scholar
Bonaccorsi I, Carrega P, Venanzi Rullo E, Ducatelli R, Falco M, Freni J, et al. HLA-C*17 in COVID-19 patients: Hints for associations with severe clinical outcome and cardiovascular risk. Immunol Lett. 2021;234:44–46. Epub 2021 Apr 24. https://doi.org/10.1016/j.imlet.2021.04.007.
Vietzen H, Zoufaly A, Traugott M, Aberle J, Aberle SW, Puchhammer-Stöckl E. Deletion of the NKG2C receptor encoding KLRC2 gene and HLA-E variants are risk factors for severe COVID-19. Genet Med. 2021;23(5):963–967. Epub 2021 Jan 26. https://doi.org/10.1038/s41436-020-01077-7.
Shkurnikov M, Nersisyan S, Jankevic T, Galatenko A, Gordeev I, Vechorko V, et al. Association of HLA class I genotypes with severity of coronavirus disease-19. Front Immunol. 2021;23(12): 641900. https://doi.org/10.3389/fimmu.2021.641900.
Article
CAS
Google Scholar
Hu J, Li C, Wang S, Li T, Zhang H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum Genom. 2021;15(1):10. https://doi.org/10.1186/s40246-021-00306-7.
Article
CAS
Google Scholar
Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Marra R, Frisso G, et al. The TNFRSF13C H159Y variant is associated with severe COVID-19: a retrospective study of 500 patients from Southern Italy. Genes (Basel). 2021;12(6):881. https://doi.org/10.3390/genes12060881.
Article
CAS
Google Scholar
SeyedAlinaghi S, Mehrtak M, MohseniPour M, Mirzapour P, Barzegary A, Habibi P, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021 May 20;26(1):46. https://doi.org/10.1186/s40001-021-00516-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dite GS, Murphy NM, Allman R. Development and validation of a clinical and genetic model for predicting risk of severe COVID-19. Epidemiol Infect. 2021;2(149): e162. https://doi.org/10.1017/S095026882100145X.
Article
Google Scholar
Zanella I, Zacchi E, Piva S, Filosto M, Beligni G, Alaverdian D, et al. C9orf72 intermediate repeats confer genetic risk for severe COVID-19 pneumonia independently of age. Int J Mol Sci. 2021;22(13):6991. https://doi.org/10.3390/ijms22136991.
Article
PubMed
PubMed Central
Google Scholar
Kuo CL, Pilling LC, Atkins JL, Masoli JAH, Delgado J, Kuchel GA, et al. APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231–2. https://doi.org/10.1093/gerona/glaa131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pathak GA, Singh K, Miller-Fleming TW, Wendt FR, Ehsan N, Hou K, et al. Integrative genomic analyses identify susceptibility genes underlying COVID-19 hospitalization. Nat Commun. 2021;12(1):4569. https://doi.org/10.1038/s41467-021-24824-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021. Epub ahead of print. https://doi.org/10.1038/s41586-021-03767-x.
Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Negretti NM, et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Investig. 2021;131(1): e140766. https://doi.org/10.1172/JCI140766.
Article
CAS
PubMed Central
Google Scholar
Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123–1138. Epub 2020 Dec 8. https://doi.org/10.1007/s10654-020-00698-1.
Verma S, Abbas M, Verma S, Khan FH, Raza ST, Siddiqi Z, et al. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients. Infect Genet Evol. 2021;91:104801. Epub 2021 Mar 4. https://doi.org/10.1016/j.meegid.2021.104801.
Blume C, Jackson CL, Spalluto CM, Legebeke J, Nazlamova L, Conforti F, et al. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet. 2021;53(2):205–214. Epub 2021 Jan 11. https://doi.org/10.1038/s41588-020-00759-x.
Latini A, Agolini E, Novelli A, Borgiani P, Giannini R, Gravina P, et al. COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes (Basel). 2020;11(9):1010. https://doi.org/10.3390/genes11091010.
Article
CAS
Google Scholar
Andolfo I, Russo R, Lasorsa VA, Cantalupo S, Rosato BE, Bonfiglio F, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience. 2021;24(4):102322. Epub 2021 Mar 17. https://doi.org/10.1016/j.isci.2021.102322.
Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. https://doi.org/10.1186/s12916-020-01673-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Huang S, Gao R, Zhou Y, Lai C, Li Z, et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov. 2020;6(1):83. https://doi.org/10.1038/s41421-020-00231-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novelli A, Biancolella M, Borgiani P, Cocciadiferro D, Colona VL, D’Apice MR, et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum Genom. 2020;14(1):29. https://doi.org/10.1186/s40246-020-00279-z.
Article
CAS
Google Scholar
Cuesta-Llavona E, Gómez J, Albaiceta GM, Amado-Rodríguez L, García-Clemente M, Gutiérrez-Rodríguez J, et al. Variant-genetic and transcript-expression analysis showed a role for the chemokine-receptor CCR5 in COVID-19 severity. Int Immunopharmacol. 2021;98:107825. Epub ahead of print. https://doi.org/10.1016/j.intimp.2021.107825.
Starčević Čizmarević N, Tota M, Ristić S. Does the CCR5-Δ32 mutation explain the variable coronavirus-2019 pandemic statistics in Europe? Croat Med J. 2020;61(6):525–6. https://doi.org/10.3325/cmj.2020.61.525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernas SN, Baldauf H, Wendler S, Heidenreich F, Lange V, Hofmann JA, et al. CCR5Δ32 mutations do not determine COVID-19 disease course. Int J Infect Dis. 2021;105:653–655. Epub 2021 Mar 2. https://doi.org/10.1016/j.ijid.2021.02.108.
Hubacek JA, Dusek L, Majek O, Adamek V, Cervinkova T, Dlouha D, et al. CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiol Res. 2021;70(1):111–115. https://doi.org/10.33549/physiolres.934647.
Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther. 2020;18(12):1201–1211. Epub 2020 Aug 4. https://doi.org/10.1080/14787210.2020.1797487.
Russick J, Foy PE, Josseaume N, Meylan M, Hamouda NB, Kirilovsky A, et al. Immune signature linked to COVID-19 severity: a SARS-score for personalized medicine. Front Immunol. 2021;12(12): 701273. https://doi.org/10.3389/fimmu.2021.701273.
Article
PubMed
PubMed Central
Google Scholar
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med. 2021;384(3):238–251. Epub 2020 Dec 17. https://doi.org/10.1056/NEJMoa2035002.
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, et al. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis. 2021;12(4):310. https://doi.org/10.1038/s41419-021-03513-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. https://doi.org/10.1208/s12248-020-00532-2.
Article
CAS
PubMed
Google Scholar
Salian VS, Wright JA, Vedell PT, Nair S, Li C, Kandimalla M, et al. COVID-19 Transmission, current treatment, and future therapeutic strategies. Mol Pharm. 2021;18(3):754–771. Epub 2021 Jan 19. https://doi.org/10.1021/acs.molpharmaceut.0c00608.
Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162(1):30–43. Epub 2020 Oct 27. https://doi.org/10.1111/imm.13262.
Miersch S, Li Z, Saberianfar R, Ustav M, Brett Case L, Blazer L, et al. Tetravalent SARS-CoV-2 neutralizing antibodies show enhanced potency and resistance to escape mutation. J Mol Biol. 2021;27: 167177. https://doi.org/10.1016/j.jmb.2021.167177.
Article
CAS
Google Scholar
Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39(6):717–26. https://doi.org/10.1038/s41587-021-00822-w.
Article
CAS
PubMed
Google Scholar
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020;30(3):189–190. https://doi.org/10.1038/s41422-020-0290-0.
Mehrian-Shai R, Novelli G, Vasiliou V, Watt J, Reichardt JKV. Genomics of COVID-19: molecular mechanisms going from susceptibility to severity of the disease. Hum Genom. 2020;14(1):22. https://doi.org/10.1186/s40246-020-00273-5.
Article
CAS
Google Scholar
Godri Pollitt KJ, Peccia J, Ko AI, Kaminski N, Dela Cruz CS, Nebert DW, et al. COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Hum Genom. 2020;14(1):17. https://doi.org/10.1186/s40246-020-00267-3.
Article
CAS
Google Scholar
Sawyer A, Free T, Martin J. Metagenomics: preventing future pandemics. Biotechniques. 2021;70(1):1–4. https://doi.org/10.2144/btn-2020-0166.
Article
CAS
PubMed
Google Scholar