Hillert A, Anikster Y, Belanger-Quintana A, Burlina A, Burton BK, Carducci C, Chiesa AE, Christodoulou J, Dordevic M, Desviat LR, et al. The genetic landscape and epidemiology of phenylketonuria. Am J Hum Genet. 2020;107(2):234–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhondt JL. Lessons from 30 years of selective screening for tetrahydrobiopterin deficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S219–23.
Article
PubMed
CAS
Google Scholar
Blau N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin Drug Metab Toxicol. 2013;9(9):1207–18.
Article
CAS
PubMed
Google Scholar
Anikster Y, Haack TB, Vilboux T, Pode-Shakked B, Thony B, Shen N, Guarani V, Meissner T, Mayatepek E, Trefz FK, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet. 2017;100(2):257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Straniero L, Guella I, Cilia R, Parkkinen L, Rimoldi V, Young A, Asselta R, Solda G, Sossi V, Stoessl AJ, et al. DNAJC12 and dopa-responsive nonprogressive parkinsonism. Ann Neurol. 2017;82(4):640–6.
Article
CAS
PubMed
Google Scholar
Co G. Maternal phenylketonuria. Pediatrics. 2008;122(2):445–9.
Article
Google Scholar
Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.
Article
CAS
PubMed
Google Scholar
de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab. 2010;99(Suppl 1):S86–9.
Article
PubMed
CAS
Google Scholar
Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med. 2011;13(8):697–707.
Article
CAS
PubMed
Google Scholar
van Spronsen FJ, van Rijn M, Dorgelo B, Hoeksma M, Bosch AM, Mulder MF, de Klerk JB, de Koning T, Rubio-Gozalbo ME, de Vries M, et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis. 2009;32(1):27–31.
Article
PubMed
CAS
Google Scholar
van Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM. Phenylketonuria. Nat Rev Dis Primers. 2021;7(1):36.
Article
PubMed
PubMed Central
Google Scholar
van Spronsen FJ, van Wegberg AM, Ahring K, Belanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Gizewska M, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5(9):743–56.
Article
PubMed
Google Scholar
Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. Int J Health Sci (Qassim). 2017;11(5):63–70.
Google Scholar
Vardy ER, MacDonald A, Ford S, Hofman DL. Phenylketonuria, co-morbidity, and ageing: A review. J Inherit Metabol Dis. 2020;43(2):167–78.
Article
Google Scholar
Garbade SF, Shen N, Himmelreich N, Haas D, Trefz FK, Hoffmann GF, Burgard P, Blau N. Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria. Genet Med. 2019;21(3):580–90.
Article
CAS
PubMed
Google Scholar
Christ SE. Asbjorn Folling and the discovery of phenylketonuria. J Hist Neurosci. 2003;12(1):44–54.
Article
PubMed
Google Scholar
Alonso-Fernandez JR, Woolf DLI. At the forefront of newborn screening and the diet to treat phenylketonuria-biography to mark his 100th birthday. Int J Neonatal Screen. 2020;6(3):61.
Article
PubMed
PubMed Central
Google Scholar
Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007;28(9):831–45.
Article
CAS
PubMed
Google Scholar
Sutivijit Y, Banpavichit A, Wiwanitkit V. Prevalence of neonatal hypothyroidism and phenylketonuria in Southern Thailand: A 10-year report. Indian J Endocrinol Metab. 2011;15(2):115–7.
Article
PubMed
PubMed Central
Google Scholar
Okano Y, Hase Y, Lee DH, Furuyama J, Shintaku H, Oura T, Isshiki G. Frequency and distribution of phenylketonuric mutations in Orientals. Hum Mutat. 1992;1(3):216–20.
Article
CAS
PubMed
Google Scholar
Silao C. Mutations of the phenylalanine hydroxylase (PAH) gene in Filipino patients with phenylketonuria. Acta Med Philipp. 2009;43:36–9.
Google Scholar
Lim JS, Tan ES, John CM, Poh S, Yeo SJ, Ang JS, Adakalaisamy P, Rozalli RA, Hart C, Tan ET, et al. Inborn error of metabolism (IEM) screening in Singapore by electrospray ionization-tandem mass spectrometry (ESI/MS/MS): An 8 year journey from pilot to current program. Mol Genet Metab. 2014;113(1–2):53–61.
Article
CAS
PubMed
Google Scholar
Xiang L, Tao J, Deng K, Li X, Li Q, Yuan X, Liang J, Yu E, Wang M, Wang H, et al. Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study. BMJ Open. 2019;9(8): e031474.
Article
PubMed
PubMed Central
Google Scholar
ElSisi G, Elmahdawy M, Abaza S, Shalakani A. Cost-effectiveness of sapropterin versus phenylalanine free diet in patients with phenylketonuria in Egypt. Value in Health. 2013;16:A385.
Article
Google Scholar
Setoodeh A, Yarali B, Rabbani A, Khatami S, Shams S. Tetrahydrobiopterin responsiveness in a series of 53 cases of phenylketonuria and hyperphenylalaninemia in Iran. Mol Genet Metab Rep. 2015;2:77–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Metwally A, Yousef Al-Ahaidib L, Ayman Sunqurah A, Al-Surimi K, Househ M, Alshehri A, Da’ar OB, Abdul Razzak H, AlOdaib AN. The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review. Biomed Res Int. 2018;2018:7697210.
Article
PubMed
PubMed Central
Google Scholar
Dobrowolski SF, Heintz C, Miller T, Ellingson C, Ellingson C, Ozer I, Gokcay G, Baykal T, Thony B, Demirkol M, et al. Molecular genetics and impact of residual in vitro phenylalanine hydroxylase activity on tetrahydrobiopterin responsiveness in Turkish PKU population. Mol Genet Metab. 2011;102(2):116–21.
Article
CAS
PubMed
Google Scholar
Alfadhel M, Al Othaim A, Al Saif S, Al Mutairi F, Alsayed M, Rahbeeni Z, Alzaidan H, Alowain M, Al-Hassnan Z, Saeedi M, et al. Expanded newborn screening program in Saudi Arabia: Incidence of screened disorders. J Paediatr Child Health. 2017;53(6):585–91.
Article
PubMed
Google Scholar
Alkhazrajy LA, Hassan AA. Evaluation of neonatal screening program applied at primary health care centers in Baghdad/Iraq. Eur J Biol Med Sci Res. 2015;3:29–47.
Google Scholar
Al Hosani H, Salah M, Osman HM, Farag HM, El-Assiouty L, Saade D, Hertecant J. Expanding the comprehensive national neonatal screening programme in the United Arab Emirates from 1995 to 2011. East Mediterr Health J. 2014;20(1):17–23.
Article
CAS
PubMed
Google Scholar
Golbahar J, Al-Jishi EA, Altayab DD, Carreon E, Bakhiet M, Alkhayyat H. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the Kingdom of Bahrain. Mol Genet Metab. 2013;110(1–2):98–101.
Article
CAS
PubMed
Google Scholar
Kidd JR, Pakstis AJ, Zhao H, Lu RB, Okonofua FE, Odunsi A, Grigorenko E, Tamir BB, Friedlaender J, Schulz LO, et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am J Hum Genet. 2000;66(6):1882–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiffri EH, Elhawary NA. The impact of common tumor necrosis factor haplotypes on the development of asthma in children: An Egyptian model. Genet Test Mol Biomarkers. 2011;15(5):293–9.
Article
CAS
PubMed
Google Scholar
Arab AH, Elhawary NA. Association between ANKK1 (rs1800497) and LTA (rs909253) Genetic variants and risk of Schizophrenia. Biomed Res Int. 2015;2015: 821827.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elhawary NA, Nassir A, Saada H, Dannoun A, Qoqandi O, Alsharif A, Tayeb MT. Combined genetic biomarkers confer susceptibility to risk of urothelial bladder carcinoma in a Saudi population. Dis Markers. 2017;2017:1474560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elhawary NA, Jiffri EH, Jambi S, Mufti AH, Dannoun A, Kordi H, Khogeer A, Jiffri OH, Elhawary AN, Tayeb MT. Molecular characterization of exonic rearrangements and frame shifts in the dystrophin gene in Duchenne muscular dystrophy patients in a Saudi community. Hum Genomics. 2018;12(1):18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mufti AH, AlJahdali IA, Elhawary NA, Ekram SN, Abumansour I, Sindi IA, Naffadi H, Elhawary EN, Alyamani NM, Alghamdi G, et al. Variations in TAP1 and PSMB9 genes involved in antigen processing and presentation increase the risk of vitiligo in the Saudi community. Int J Gen Med. 2021;14:10031–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wang Y, Ma D, Zhang Z, Li Y, Yang P, Sun Y, Jiang T. Neonatal screening and genotype-phenotype correlation of hyperphenylalaninemia in the Chinese population. Orphanet J Rare Dis. 2021;16(1):214.
Article
PubMed
PubMed Central
Google Scholar
Aleissa M, Aloraini T, Alsubaie LF, Hassoun M, Abdulrahman G, Swaid A, Eyaid WA, Mutairi FA, Ababneh F, Alfadhel M, et al. Common disease-associated gene variants in a Saudi Arabian population. Ann Saudi Med. 2022;42(1):29–35.
Article
PubMed
PubMed Central
Google Scholar
Borrajo GJ. Newborn screening in latin America at the beginning of the 21st century. J Inherit Metab Dis. 2007;30(4):466–81.
Article
CAS
PubMed
Google Scholar
Thony B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347(Pt 1):1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevenson M, McNaughton N. A comparison of phenylketonuria with attention deficit hyperactivity disorder: do markedly different aetiologies deliver common phenotypes? Brain Res Bull. 2013;99:63–83.
Article
CAS
PubMed
Google Scholar
van Wegberg A, Evers R, Burgerhof J, van Dam E, Heiner-Fokkema MR, Janssen M, de Vries MC, van Spronsen FJ. Effect of BH4 on blood phenylalanine and tyrosine variations in patients with phenylketonuria. Mol Genet Metab. 2021;133(1):49–55.
Article
PubMed
CAS
Google Scholar
Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier T, Scheurich A, Feldmann R, Weglage J, Cumming P, et al. Reduced cerebral fluoro-L-dopamine uptake in adult patients suffering from phenylketonuria. J Cereb Blood Flow Metab. 2008;28(4):824–31.
Article
CAS
PubMed
Google Scholar
Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, Mitchell J, Smith WE, Thompson BH, Berry SA, et al. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet Med. 2014;16(2):188–200.
Article
CAS
PubMed
Google Scholar
Porta F, Ponzone A, Spada M. Phenylalanine and tyrosine metabolism in DNAJC12 deficiency: A comparison between inherited hyperphenylalaninemias and healthy subjects. Eur J Paediatr Neurol. 2020;28:77–80.
Article
PubMed
Google Scholar
Hartwig C, Gal A, Santer R, Ullrich K, Finckh U, Kreienkamp HJ. Elevated phenylalanine levels interfere with neurite outgrowth stimulated by the neuronal cell adhesion molecule L1 in vitro. FEBS Lett. 2006;580(14):3489–92.
Article
CAS
PubMed
Google Scholar
Horster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, Kolker S, Kins S. Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res. 2006;59(4 Pt 1):544–8.
Article
PubMed
CAS
Google Scholar
Schlegel G, Scholz R, Ullrich K, Santer R, Rune GM. Phenylketonuria: Direct and indirect effects of phenylalanine. Exp Neurol. 2016;281:28–36.
Article
CAS
PubMed
Google Scholar
Christ SE, Price MH, Bodner KE, Saville C, Moffitt AJ, Peck D. Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Mol Genet Metab. 2016;118(1):3–8.
Article
CAS
PubMed
Google Scholar
Pilotto A, Blau N, Leks E, Schulte C, Deuschl C, Zipser C, Piel D, Freisinger P, Gramer G, Kolker S, et al. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J Inherit Metab Dis. 2019;42(3):398–406.
Article
CAS
PubMed
Google Scholar
Schoemans R, Aigrot MS, Wu C, Maree R, Hong P, Belachew S, Josse C, Lubetzki C, Bours V. Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites. J Inherit Metab Dis. 2010;33(2):113–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, Yudkoff M, Dyer CA. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res. 2000;61(5):549–63.
Article
CAS
PubMed
Google Scholar
de Groot MJ, Hoeksma M, Reijngoud DJ, de Valk HW, Paans AM, Sauer PJ, van Spronsen FJ. Phenylketonuria: Reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis. 2013;8:133.
Article
PubMed
PubMed Central
Google Scholar
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, et al. Phenylketonuria scientific review conference: State of the science and future research needs. Mol Genet Metab. 2014;112(2):87–122.
Article
CAS
PubMed
Google Scholar
van Vliet D, Bruinenberg VM, Mazzola PN, van Faassen MH, de Blaauw P, Pascucci T, Puglisi-Allegra S, Kema IP, Heiner-Fokkema MR, van der Zee EA, et al. Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. Am J Clin Nutr. 2016;104(5):1292–300.
Article
PubMed
CAS
Google Scholar
Hawkins RA, O’Kane RL, Simpson IA, Vina JR. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr. 2006;136(1 Suppl):218S-S226.
Article
CAS
PubMed
Google Scholar
Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, Rae C, Green K, Wilcken B, Christodoulou J. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab. 2007;91(1):48–54.
Article
CAS
PubMed
Google Scholar
Antshel KM. ADHD, learning, and academic performance in phenylketonuria. Mol Genet Metab. 2010;99(Suppl 1):S52–8.
Article
CAS
PubMed
Google Scholar
Williams RA, Mamotte CD, Burnett JR. Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev. 2008;29(1):31–41.
PubMed
PubMed Central
Google Scholar
Abgottspon S, Muri R, Christ SE, Hochuli M, Radojewski P, Trepp R, Everts R. Neural correlates of working memory and its association with metabolic parameters in early-treated adults with phenylketonuria. NeuroImage: Clinic 2022;34:102974.
Sadek AA, Hassan MH, Mohammed NA. Clinical and neuropsychological outcomes for children with phenylketonuria in Upper Egypt; a single-center study over 5 years. Neuropsychiatr Dis Treat. 2018;14:2551–61.
Article
PubMed
PubMed Central
Google Scholar
Costa RD, Galera BB, Rezende BC, Venancio AC, Galera MF. Identification of mutations in the PAH Gene in PKU patients in the state of Mato Grosso. Rev Paul Pediatr. 2020;38: e2018351.
Article
PubMed
PubMed Central
Google Scholar
Blau N, Shen N, Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev Mol Diagn. 2014;14(6):655–71.
Article
CAS
PubMed
Google Scholar
Li N, He C, Li J, Tao J, Liu Z, Zhang C, Yuan Y, Jiang H, Zhu J, Deng Y, et al. Analysis of the genotype-phenotype correlation in patients with phenylketonuria in mainland China. Sci Rep. 2018;8(1):11251.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blau N, Bonafe L, Thony B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: Diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab. 2001;74(1–2):172–85.
Article
CAS
PubMed
Google Scholar
Han B, Zou H, Han B, Zhu W, Cao Z, Liu Y. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province. China Brain Dev. 2015;37(6):592–8.
Article
PubMed
Google Scholar
Liu N, Zhao DH, Li XL, Cui LX, Wu QH, Jiang M, Kong XD. PTPS gene analysis and prenatal diagnosis in patients with 6-pyruvoyl-tetra hydropterin synthase deficiency. Zhonghua Fu Chan Ke Za Zhi. 2016;51(12):890–4.
CAS
PubMed
Google Scholar
Almannai M, Felemban R, Saleh MA, Faqeih EA, Alasmari A, AlHashem A, Mohamed S, Sunbul R, Al-Murshedi F, AlThihli K, et al. 6-Pyruvoyltetrahydropterin synthase deficiency: Review and report of 28 Arab subjects. Pediatr Neurol. 2019;96:40–7.
Article
PubMed
Google Scholar
Gundorova P, Stepanova AA, Kuznetsova IA, Kutsev SI, Polyakov AV. Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia. PLoS ONE. 2019;14(1): e0211048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coughlin CR 2nd, Hyland K, Randall R, Ficicioglu C. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: a case report. JIMD Rep. 2013;10:53–6.
Article
PubMed
Google Scholar
Himmelreich N, Blau N, Thony B. Molecular and metabolic bases of tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab. 2021;133(2):123–36.
Article
CAS
PubMed
Google Scholar
Sullivan SE, Moore SD, Connor JM, King M, Cockburn F, Steinmann B, Gitzelmann R, Daiger SP, Woo SL. Haplotype distribution of the human phenylalanine hydroxylase locus in Scotland and Switzerland. Am J Hum Genet. 1989;44(5):652–9.
CAS
PubMed
PubMed Central
Google Scholar
Avigad S, Cohen BE, Bauer S, Schwartz G, Frydman M, Woo SL, Niny Y, Shiloh Y. A single origin of phenylketonuria in Yemenite Jews. Nature. 1990;344(6262):168–70.
Article
CAS
PubMed
Google Scholar
Okano Y, Hase Y, Shintaku H, Araki K, Furuyama J, Oura T, Isshiki G. Molecular characterization of phenylketonuric mutations in Japanese by analysis of phenylalanine hydroxylase mRNA from lymphoblasts. Hum Mol Genet. 1994;3(4):659.
Article
CAS
PubMed
Google Scholar
Bosco P, Ceratto N, Cali F, Goltsov AA, Eisensmith RC, Novelli G, Dalla Piccola B, Romano V. RFLP discordance in a PKU family due to a deletion in the PAH gene. Turk J Pediatr. 1996;38(4):497–504.
CAS
PubMed
Google Scholar
Guldberg P, Henriksen KF, Mammen KC, Levy HL, Guttler F. Large deletions in the phenylalanine hydroxylase gene as a cause of phenylketonuria in India. J Inherit Metab Dis. 1997;20(6):845–6.
Article
CAS
PubMed
Google Scholar
Zschocke J, Quak E, Knauer A, Fritz B, Aslan M, Hoffmann GF. Large heterozygous deletion masquerading as homozygous missense mutation: A pitfall in diagnostic mutation analysis. J Inherit Metab Dis. 1999;22(6):687–92.
Article
CAS
PubMed
Google Scholar
Gable M, Williams M, Stephenson A, Okano Y, Ring S, Hurtubise M, Tyfield L. Comparative multiplex dosage analysis detects whole exon deletions at the phenylalanine hydroxylase locus. Hum Mutat. 2003;21:379–86.
Article
CAS
PubMed
Google Scholar
Lee YW, Lee DH, Kim ND, Lee ST, Ahn JY, Choi TY, Lee YK, Kim SH, Kim JW, Ki CS. Mutation analysis of PAH gene and characterization of a recurrent deletion mutation in Korean patients with phenylketonuria. Exp Mol Med. 2008;40(5):533–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gemperle-Britschgi C, Iorgulescu D, Mager MA, Anton-Paduraru D, Vulturar R, Thony B. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population. Gene. 2016;576(1 Pt 1):182–8.
Article
CAS
PubMed
Google Scholar
Yan Y, Zhang C, Jin X, Zhang Q, Zheng L, Feng X, Hao S, Gao H, Ma X. Mutation spectrum of PAH gene in phenylketonuria patients in Northwest China: Identification of twenty novel variants. Metab Brain Dis. 2019;34(3):733–45.
Article
CAS
PubMed
Google Scholar
Collins RL, Brand H, Redin CE, Hanscom C, Antolik C, Stone MR, Glessner JT, Mason T, Pregno G, Dorrani N, et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol. 2017;18(1):36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanchis-Juan A, Stephens J, French CE, Gleadall N, Megy K, Penkett C, Shamardina O, Stirrups K, Delon I, Dewhurst E, et al. Complex structural variants in mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018;10(1):95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoi K, Nakajima Y, Ohye T, Inagaki H, Wada Y, Fukuda T, Sugie H, Yuasa I, Ito T, Kurahashi H. Disruption of the responsible gene in a phosphoglucomutase 1 deficiency patient by homozygous chromosomal inversion. JIMD Rep. 2019;43:85–90.
Article
PubMed
Google Scholar
Lillevali H, Pajusalu S, Wojcik MH, Goodrich J, Collins RL, Murumets U, Tammur P, Blau N, Lillevali K, Ounap K. Genome sequencing identifies a homozygous inversion disrupting QDPR as a cause for dihydropteridine reductase deficiency. Mol Genet Genomic Med. 2020;8(4): e1154.
Article
PubMed
PubMed Central
Google Scholar
Kozak L, Hrabincova E, Kintr J, Horky O, Zapletalova P, Blahakova I, Mejstrik P, Prochazkova D. Identification and characterization of large deletions in the phenylalanine hydroxylase (PAH) gene by MLPA: evidence for both homologous and non-homologous mechanisms of rearrangement. Mol Genet Metab. 2006;89(4):300–9.
Article
CAS
PubMed
Google Scholar
Chiu YH, Chang YC, Chang YH, Niu DM, Yang YL, Ye J, Jiang J, Okano Y, Lee DH, Pangkanon S, et al. Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations. J Hum Genet. 2012;57(2):145–52.
Article
CAS
PubMed
Google Scholar
Liang Y, Huang MZ, Cheng CY, Chao HK, Fwu VT, Chiang SH, Hsiao KJ, Niu DM, Su TS. The mutation spectrum of the phenylalanine hydroxylase (PAH) gene and associated haplotypes reveal ethnic heterogeneity in the Taiwanese population. J Hum Genet. 2014;59(3):145–52.
Article
CAS
PubMed
Google Scholar
Oddason KE, Eiriksdottir L, Franzson L, Dagbjartsson A. Phenylketonuria (PKU) in Iceland. Laeknabladid. 2011;97(6):349–52.
PubMed
Google Scholar
Guldberg P, Henriksen KF, Sipila I, Guttler F, de la Chapelle A. Phenylketonuria in a low incidence population: Molecular characterisation of mutations in Finland. J Med Genet. 1995;32(12):976–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nesse RM. Ten questions for evolutionary studies of disease vulnerability. Evol Appl. 2011;4(2):264–77.
Article
PubMed
PubMed Central
Google Scholar
Carter AJ, Nguyen AQ. Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles. BMC Med Genet. 2011;12:160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scriver CR, Byck S, Prevost L, Hoang L. The phenylalanine hydroxylase locus: A marker for the history of phenylketonuria and human genetic diversity PAH mutation analysis consortium. Ciba Found Symp. 1996;197:73–90.
CAS
PubMed
Google Scholar
Wu DD, Li GM, Jin W, Li Y, Zhang YP. Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 gene in East Asians. PLoS ONE. 2012;7(8): e42553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voskarides K. Combination of 247 genome-wide association studies reveals high cancer risk as a result of evolutionary adaptation. Mol Biol Evol. 2018;35(2):473–85.
Article
CAS
PubMed
Google Scholar
Austad SN, Hoffman JM. Is antagonistic pleiotropy ubiquitous in aging biology? Evol Med Public Health. 2018;2018(1):287–94.
Article
PubMed
PubMed Central
Google Scholar
Byars SG, Voskarides K. Antagonistic pleiotropy in human disease. J Mol Evol. 2020;88(1):12–25.
Article
CAS
PubMed
Google Scholar
Woolf LI. The heterozygote advantage in phenylketonuria. Am J Hum Genet. 1986;38(5):773–5.
CAS
PubMed
PubMed Central
Google Scholar
Liemburg GB, Huijbregts SCJ, Rutsch F, Feldmann R, Jahja R, Weglage J, Och U, Burgerhof JGM, van Spronsen FJ. Metabolic control during the neonatal period in phenylketonuria: associations with childhood IQ. Pediatr Res. 2022;91(4):874–8.
Article
CAS
PubMed
Google Scholar
Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 1999;15(7):267–72.
Article
CAS
PubMed
Google Scholar
Djordjevic M, Klaassen K, Sarajlija A, Tosic N, Zukic B, Kecman B, Ugrin M, Spasovski V, Pavlovic S, Stojiljkovic M. Molecular genetics and genotype-based estimation of BH4-responsiveness in Serbian PKU patients: Spotlight on Phenotypic Implications of p.L48S. JIMD Rep. 2013;9:49–58.
Dipple KM, McCabe ER. Modifier genes convert “simple” mendelian disorders to complex traits. Mol Genet Metab. 2000;71(1–2):43–50.
Article
CAS
PubMed
Google Scholar
van Vliet D, van Wegberg AMJ, Ahring K, Bik-Multanowski M, Blau N, Bulut FD, Casas K, Didycz B, Djordjevic M, Federico A, et al. Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet J Rare Dis. 2018;13(1):149.
Article
PubMed
PubMed Central
Google Scholar
Dipple KM, McCabe ER. Phenotypes of patients with “simple” mendelian disorders are complex traits: Thresholds, modifiers, and systems dynamics. Am J Hum Genet. 2000;66(6):1729–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klaassen K, Djordjevic M, Skakic A, Kecman B, Drmanac R, Pavlovic S, Stojiljkovic M. Untreated PKU patients without intellectual disability: SHANK gene family as a candidate modifier. Mol Genet Metab Rep. 2021;29: 100822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bik-Multanowski M, Bik-Multanowska K, Betka I, Madetko-Talowska A. The rs113883650 variant of SLC7A5 (LAT1) gene may alter brain phenylalanine content in PKU. Mol Genet Metab Rep. 2021;27: 100751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet. 2015;52(3):175–85.
Article
CAS
PubMed
Google Scholar
Sarkissian CN, Gamez A, Scott P, Dauvillier J, Dorenbaum A, Scriver CR, Stevens RC. Chaperone-like therapy with tetrahydrobiopterin in clinical trials for phenylketonuria: is genotype a predictor of response? JIMD Rep. 2012;5:59–70.
Article
PubMed
Google Scholar
Guldberg P, Rey F, Zschocke J, Romano V, Francois B, Michiels L, Ullrich K, Hoffmann GF, Burgard P, Schmidt H, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet. 1998;63(1):71–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ZW, Jiang SW, Zhou BC. PAH mutation spectrum and correlation with PKU manifestation in north Jiangsu province population. Kaohsiung J Med Sci. 2018;34(2):89–94.
Article
CAS
PubMed
Google Scholar
Himmelreich N, Shen N, Okun JG, Thiel C, Hoffmann GF, Blau N. Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria. Mol Genet Metab. 2018;125(1–2):86–95.
Article
CAS
PubMed
Google Scholar
Enacán RE, Miñana MN, Fernandez L, Valle MG, Salerno M, Fraga CI, Santos-Simarro F, Prieto L, Lapunzina P, Specola N, et al. Phenylalanine hydroxylase (PAH) genotyping in PKU Argentine Patients. J Inborn Errors Metabol Screen. 2019. https://doi.org/10.1590/2326-4594-jiems-2019-0012.
Article
Google Scholar
Shen N, Heintz C, Thiel C, Okun JG, Hoffmann GF, Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol Genet Metab. 2016;117(3):328–35.
Article
CAS
PubMed
Google Scholar
Anjema K, Hofstede FC, Bosch AM, Rubio-Gozalbo ME, de Vries MC, Boelen CC, van Rijn M, van Spronsen FJ. The neonatal tetrahydrobiopterin loading test in phenylketonuria: What is the predictive value? Orphanet J Rare Dis. 2016;11:10.
Article
PubMed
PubMed Central
Google Scholar
Guldberg P, Henriksen KF, Guttler F. Molecular analysis of phenylketonuria in Denmark: 99% of the mutations detected by denaturing gradient gel electrophoresis. Genomics. 1993;17(1):141–6.
Article
CAS
PubMed
Google Scholar
Cao YY, Qu YJ, Song F, Zhang T, Bai JL, Jin YW, Wang H. Fast clinical molecular diagnosis of hyperphenylalaninemia using next-generation sequencing-based on a custom AmpliSeqTM panel and Ion Torrent PGM sequencing. Mol Genet Metab. 2014;113:261–6.
Article
CAS
PubMed
Google Scholar
Trujillano D, Perez B, Gonzalez J, Tornador C, Navarrete R, Escaramis G, Ossowski S, Armengol L, Cornejo V, Desviat LR, et al. Accurate molecular diagnosis of phenylketonuria and tetrahydrobiopterin-deficient hyperphenylalaninemias using high-throughput targeted sequencing. Eur J Hum Genet. 2014;22(4):528–34.
Article
CAS
PubMed
Google Scholar
Ozturk FN, Akin DT. An update of the mutation spectrum of phenylalanine hydroxylase (PAH) gene in the population of Turkey. J Pediatr Endocrinol Metab. 2022;35(5):663–8.
Article
CAS
PubMed
Google Scholar
Shao B, Liu A, Zhang J, Wang Y, Qiao F, Zhang C, Zhu Y, Lin Y, Hu P, Tao T, et al. A capillary electrophoresis-based variant hotspot genotyping method for rapid and reliable analysis of the phenylalanine hydroxylase gene in the Chinese Han population. Clin Chim Acta. 2021;523:267–72.
Article
CAS
PubMed
Google Scholar
Smon A, Repic Lampret B, Groselj U, Zerjav Tansek M, Kovac J, Perko D, Bertok S, Battelino T, Trebusak PK. Next generation sequencing as a follow-up test in an expanded newborn screening programme. Clin Biochem. 2018;52:48–55.
Article
PubMed
Google Scholar
Lampret BR, Remec ZI, Torkar AD, Tansek MZ, Smon A, Koracin V, Cuk V, Perko D, Ulaga B, Jelovsek AM, et al. Expanded newborn screening program in slovenia using tandem mass spectrometry and confirmatory next generation sequencing genetic testing. Zdr Varst. 2020;59(4):256–63.
PubMed
PubMed Central
Google Scholar
Remec ZI, Trebusak Podkrajsek K, Repic Lampret B, Kovac J, Groselj U, Tesovnik T, Battelino T, Debeljak M. Next-generation sequencing in newborn screening: A review of current state. Front Genet. 2021;12:662254. https://doi.org/10.3389/fgene.2021.662254.
Article
CAS
PubMed
PubMed Central
Google Scholar
White-Corey S, Peck JL, Perez RI. Ethical implications of next-generation sequencing and the future of newborn screening. J Am Assoc Nurse Pract. 2021;33(7):492–5.
Article
PubMed
Google Scholar
Zhang R, Qiang R, Song C, Ma X, Zhang Y, Li F, Wang R, Yu W, Feng M, Yang L, et al. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in a northwestern Chinese population. Sci Rep. 2021;11(1):2699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manek R, Zhang YV, Berthelette P, Hossain M, Cornell CS, Gans J, Anarat-Cappillino G, Geller S, Jackson R, Yu D, et al. Blood phenylalanine reduction reverses gene expression changes observed in a mouse model of phenylketonuria. Sci Rep. 2021;11(1):22886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trefz F, Maillot F, Motzfeldt K, Schwarz M. Adult phenylketonuria outcome and management. Mol Genet Metab. 2011;104(Suppl):S26-30.
Article
CAS
PubMed
Google Scholar
Narayanan D, Barski R, Henderson MJ, Luvai A, Chandrajay D, Stainforth C, Bradley J, Rogozinski H, Sharma R. Delayed diagnosis of phenylketonuria - a case report of two siblings. Ann Clin Biochem. 2014;51(Pt 3):406–8.
Article
PubMed
Google Scholar
Rubin S, Piffer AL, Rougier MB, Delyfer MN, Korobelnik JF, Redonnet-Vernhet I, Marchal C, Goizet C, Mesli S, Gonzalez C, et al. Sight-threatening phenylketonuric encephalopathy in a young adult, reversed by diet. JIMD Rep. 2013;10:83–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaulent P, Charriere S, Feillet F, Douillard C, Fouilhoux A, Thobois S. Neurological manifestations in adults with phenylketonuria: New cases and review of the literature. J Neurol. 2020;267(2):531–42.
Article
PubMed
Google Scholar
Kasim S, Moo LR, Zschocke J, Jinnah HA. Phenylketonuria presenting in adulthood as progressive spastic paraparesis with dementia. J Neurol Neurosurg Psychiatry. 2001;71(6):795–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosini F, Rufa A, Monti L, Tirelli L, Federico A. Adult-onset phenylketonuria revealed by acute reversible dementia, prosopagnosia and parkinsonism. J Neurol. 2014;261(12):2446–8.
Article
PubMed
Google Scholar
Lindner M, Haas D, Mayatepek E, Zschocke J, Burgard P. Tetrahydrobiopterin responsiveness in phenylketonuria differs between patients with the same genotype. Mol Genet Metab. 2001;73(1):104–6.
Article
CAS
PubMed
Google Scholar
Muntau AC, Roschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, Roscher AA. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med. 2002;347(26):2122–32.
Article
CAS
PubMed
Google Scholar
Cerone R, Schiaffino MC, Fantasia AR, Perfumo M, Birk Moller L, Blau N. Long-term follow-up of a patient with mild tetrahydrobiopterin-responsive phenylketonuria. Mol Genet Metab. 2004;81(2):137–9.
Article
CAS
PubMed
Google Scholar
Fiege B, Bonafe L, Ballhausen D, Baumgartner M, Thony B, Meili D, Fiori L, Giovannini M, Blau N. Extended tetrahydrobiopterin loading test in the diagnosis of cofactor-responsive phenylketonuria: a pilot study. Mol Genet Metab. 2005;86(Suppl 1):S91–5.
Article
CAS
PubMed
Google Scholar
Mitchell JJ, Wilcken B, Alexander I, Ellaway C, O’Grady H, Wiley V, Earl J, Christodoulou J. Tetrahydrobiopterin-responsive phenylketonuria: the New South Wales experience. Mol Genet Metab. 2005;86(Suppl 1):S81–5.
Article
CAS
PubMed
Google Scholar
Weglage J, Oberwittler C, Marquardt T, Schellscheidt J, von Teeffelen-Heithoff A, Koch G, Gerding H. Neurological deterioration in adult phenylketonuria. J Inherit Metab Dis. 2000;23(1):83–4.
Article
CAS
PubMed
Google Scholar
van Wegberg AMJ, MacDonald A, Ahring K, Belanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Gizewska M, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017;12(1):162.
Article
PubMed
PubMed Central
Google Scholar
Modan-Moses D, Vered I, Schwartz G, Anikster Y, Abraham S, Segev R, Efrati O. Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis. 2007;30(2):202–8.
Article
CAS
PubMed
Google Scholar
Koura HM, Abdallah Ismail N, Kamel AF, Ahmed AM, Saad-Hussein A, Effat LK. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch Med Sci. 2011;7(3):493–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacDonald A, van Wegberg AMJ, Ahring K, Beblo S, Belanger-Quintana A, Burlina A, Campistol J, Coskun T, Feillet F, Gizewska M, et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis. 2020;15(1):171.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Calcar SC, Ney DM. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino acid-based medical foods for nutrition management of phenylketonuria. J Acad Nutr Diet. 2012;112(8):1201–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sawin EA, De Wolfe TJ, Aktas B, Stroup BM, Murali SG, Steele JL, Ney DM. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver Physiol. 2015;309(7):G590-601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ney DM, Stroup BM, Clayton MK, Murali SG, Rice GM, Rohr F, Levy HL. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am J Clin Nutr. 2016;104(2):334–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto A, Almeida MF, Ramos PC, Rocha S, Guimas A, Ribeiro R, Martins E, Bandeira A, MacDonald A, Rocha JC. Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source. Eur J Clin Nutr. 2017;71(10):1230–4.
Article
CAS
PubMed
Google Scholar
Gropper SS, Gropper DM, Acosta PB. Plasma amino acid response to ingestion of L-amino acids and whole protein. J Pediatr Gastroenterol Nutr. 1993;16(2):143–50.
Article
CAS
PubMed
Google Scholar
Levy HL, Ghavami M. Maternal phenylketonuria: a metabolic teratogen. Teratology. 1996;53(3):176–84.
Article
CAS
PubMed
Google Scholar
Rouse B, Matalon R, Koch R, Azen C, Levy H, Hanley W, Trefz F, De La Cruz F. Maternal phenylketonuria syndrome: congenital heart defects, microcephaly, and developmental outcomes. J Pediatr. 2000;136(1):57–61.
Article
CAS
PubMed
Google Scholar
Waisbren S, Rohr F, Anastasoaie V, Brown M, Harris D, Ozonoff A, Petrides S, Wessel A, Levy H. Maternal phenylketonuria: Long-term outcomes in offspring and post-pregnancy maternal characteristics. JIMD Reports. 2014;21:23–33.
Article
Google Scholar
Levy HL, Guldberg P, Guttler F, Hanley WB, Matalon R, Rouse BM, Trefz F, Azen C, Allred EN, de la Cruz F, et al. Congenital heart disease in maternal phenylketonuria: Report from the maternal PKU collaborative study. Pediatr Res. 2001;49(5):636–42.
Article
CAS
PubMed
Google Scholar
Feillet F, Muntau AC, Debray FG, Lotz-Havla AS, Puchwein-Schwepcke A, Fofou-Caillierez MB, van Spronsen F, Trefz FF. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis. 2014;37(5):753–62.
Article
CAS
PubMed
Google Scholar
Grange DK, Hillman RE, Burton BK, Yano S, Vockley J, Fong CT, Hunt J, Mahoney JJ, Cohen-Pfeffer JL, Phenylketonuria Demographics O, et al. Sapropterin dihydrochloride use in pregnant women with phenylketonuria: An interim report of the PKU MOMS sub-registry. Mol Genet Metab. 2014;112(1):9–16.
Article
CAS
PubMed
Google Scholar
Teissier R, Nowak E, Assoun M, Mention K, Cano A, Fouilhoux A, Feillet F, Ogier H, Oger E, de Parscau L, et al. Maternal phenylketonuria: Low phenylalaninemia might increase the risk of intra uterine growth retardation. J Inherit Metab Dis. 2012;35(6):993–9.
Article
CAS
PubMed
Google Scholar
van Spronsen FJ, de Groot MJ, Hoeksma M, Reijngoud DJ, van Rijn M. Large neutral amino acids in the treatment of PKU: From theory to practice. J Inherit Metab Dis. 2010;33(6):671–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yano S, Moseley K, Azen C. Large neutral amino acid supplementation increases melatonin synthesis in phenylketonuria: A new biomarker. J Pediatr. 2013;162(5):999–1003.
Article
CAS
PubMed
Google Scholar
Vogel KR, Arning E, Wasek BL, Bottiglieri T, Gibson KM. Non-physiological amino acid (NPAA) therapy targeting brain phenylalanine reduction: pilot studies in PAHENU2 mice. J Inherit Metab Dis. 2013;36(3):513–23.
Article
CAS
PubMed
Google Scholar
Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, Bremer HJ. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, Splett PL, Moseley K, Huntington K, Acosta PB, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med. 2014;16(2):121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton BK, Kar S, Kirkpatrick P. Sapropterin. Nat Rev Drug Discov. 2008;7(3):199–200.
Article
CAS
Google Scholar
Muntau AC, Burlina A, Eyskens F, Freisinger P, De Laet C, Leuzzi V, Rutsch F, Sivri HS, Vijay S, Bal MO, et al. Efficacy, safety and population pharmacokinetics of sapropterin in PKU patients <4 years: Results from the SPARK open-label, multicentre, randomized phase IIIb trial. Orphanet J Rare Dis. 2017;12(1):47.
Article
PubMed
PubMed Central
Google Scholar
Harding CO. New era in treatment for phenylketonuria: Pharmacologic therapy with sapropterin dihydrochloride. Biologics. 2010;4:231–6.
CAS
PubMed
PubMed Central
Google Scholar
Dubois EA, Cohen AF. Sapropterin. Br J Clin Pharmacol. 2010;69(6):576–7.
Article
PubMed
PubMed Central
Google Scholar
Bernegger C, Blau N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias: A study of 1919 patients observed from 1988 to 2002. Mol Genet Metabol. 2002;77(4):304–13.
Article
CAS
Google Scholar
Karacic I, Meili D, Sarnavka V, Heintz C, Thony B, Ramadza DP, Fumic K, Mardesic D, Baric I, Blau N. Genotype-predicted tetrahydrobiopterin (BH4)-responsiveness and molecular genetics in croatian patients with phenylalanine hydroxylase (PAH) deficiency. Mol Genet Metab. 2009;97(3):165–71.
Article
CAS
PubMed
Google Scholar
Klaassen K, Djordjevic M, Skakic A, Desviat LR, Pavlovic S, Perez B, Stojiljkovic M. Functional characterization of novel phenylalanine hydroxylase p.Gln226Lys mutation revealed Its non-responsiveness to tetrahydrobiopterin treatment in hepatoma cellular model. Biochem Genet. 2018;56(5):533–41.
Article
CAS
PubMed
Google Scholar
Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, Harding CO, Bilder DA, Weng HH, Olbertz J, et al. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab. 2018;124(1):27–38.
Article
CAS
PubMed
Google Scholar
Zori R, Thomas JA, Shur N, Rizzo WB, Decker C, Rosen O, Li M, Schweighardt B, Larimore K, Longo N. Induction, titration, and maintenance dosing regimen in a phase 2 study of pegvaliase for control of blood phenylalanine in adults with phenylketonuria. Mol Genet Metab. 2018;125(3):217–27.
Article
CAS
PubMed
Google Scholar
Longo N, Dimmock D, Levy H, Viau K, Bausell H, Bilder DA, Burton B, Gross C, Northrup H, Rohr F, et al. Evidence- and consensus-based recommendations for the use of pegvaliase in adults with phenylketonuria. Genet Med. 2019;21(8):1851–67.
Article
CAS
PubMed
Google Scholar
Gupta S, Lau K, Harding CO, Shepherd G, Boyer R, Atkinson JP, Knight V, Olbertz J, Larimore K, Gu Z, et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine. 2018;37:366–73.
Article
PubMed
PubMed Central
Google Scholar
Kaji EH, Leiden JM. Gene and stem cell therapies. JAMA. 2001;285(5):545–50.
Article
CAS
PubMed
Google Scholar
Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL, et al. Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323(9):570–8.
Article
CAS
PubMed
Google Scholar
Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet. 2018;34(8):600–11.
Article
CAS
PubMed
Google Scholar
Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Haberle J, Matos J, Robinson MD, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med. 2018;24(10):1519–25.
Article
CAS
PubMed
Google Scholar
Singh K, Cornell CS, Jackson R, Kabiri M, Phipps M, Desai M, Fogle R, Ying X, Anarat-Cappillino G, Geller S, et al. CRISPR/Cas9 generated knockout mice lacking phenylalanine hydroxylase protein as a novel preclinical model for human phenylketonuria. Sci Rep. 2021;11(1):7254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Y, Shen N, Jung-Klawitter S, Betzen C, Hoffmann GF, Hoheisel JD, Blau N. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Sci Rep. 2016;6:35794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shedlovsky A, McDonald JD, Symula D, Dove WF. Mouse models of human phenylketonuria. Genetics. 1993;134(4):1205–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gersting SW, Lagler FB, Eichinger A, Kemter KF, Danecka MK, Messing DD, Staudigl M, Domdey KA, Zsifkovits C, Fingerhut R, et al. Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Hum Mol Genet. 2010;19(10):2039–49.
Article
CAS
PubMed
Google Scholar
Levy HL, Milanowski A, Chakrapani A, Cleary M, Lee P, Trefz FK, Whitley CB, Feillet F, Feigenbaum AS, Bebchuk JD, et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: A phase III randomised placebo-controlled study. Lancet. 2007;370(9586):504–10.
Article
CAS
PubMed
Google Scholar
McDonald JD, Bode VC, Dove WF, Shedlovsky A. Pahhph-5: A mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A. 1990;87(5):1965–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–64.
Article
CAS
PubMed
Google Scholar