Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370(20):1920–9.
Article
CAS
PubMed
Google Scholar
Bravo-Jaimes K, Prakash SK. Genetics in bicuspid aortic valve disease: Where are we? Prog Cardiovasc Dis. 2020;63(4):398–406.
Article
PubMed
PubMed Central
Google Scholar
Fishbein GA, Fishbein MC. Pathology of the aortic valve: aortic valve stenosis/aortic regurgitation. Curr Cardiol Rep. 2019;21(8):81.
Article
PubMed
Google Scholar
Cotier P, Bruneval P, Amemiya K. Vascular malformation in a bicuspid aortic valve. Cardiovasc Pathol. 2019;38:39–41.
Article
PubMed
Google Scholar
Yoon SH, Maeno Y, Kawamori H, Miyasaka M, Nomura T, Ochiai T, Nemanpour S, Raschpichler M, Sharma R, Chakravarty T, Makkar R. Diagnosis and outcomes of transcatheter aortic valve implantation in bicuspid aortic valve stenosis. Interv Cardiol. 2018;13(2):62–5.
PubMed
PubMed Central
Google Scholar
Sakellaropoulos S, Mohammed M, Svab S, Lekaditi D, Sakellaropoulos P, Mitsis A. Causes, diagnosis, risk stratification and treatment of bicuspid aortic valve disease: an updated review. Cardiol Res. 2020;11(4):205–12.
Article
PubMed
PubMed Central
Google Scholar
Dahal S, Huang P, Murray BT, Mahler GJ. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells. J Biomed Mater Res A. 2017;105(10):2729–41.
Article
CAS
PubMed
Google Scholar
Tao G, Kotick JD, Lincoln J. Heart valve development, maintenance, and disease: the role of endothelial cells. Curr Top Dev Biol. 2012;100:203–32.
Article
CAS
PubMed
Google Scholar
Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–14.
Article
PubMed
PubMed Central
Google Scholar
Galian-Gay L, CarroHevia A, Teixido-Turà G, et al. BICUSPID investigators. Familial clustering of bicuspid aortic valve and its relationship with aortic dilation in first-degree relatives. Heart. 2019;105(8):603–8.
PubMed
Google Scholar
Foffa I, Ait Alì L, Panesi P, et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet. 2013;14:44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu B, Li J, Wang Y, et al. Recurrent germline mutations as genetic markers for aortic root dilatation in bicuspid aortic valve patients. Heart Vessels. 2021;36(4):530–40.
Article
PubMed
Google Scholar
Andelfinger G, Tapper AR, Welch RC, et al. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71(3):663–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan HX, Yan K, Hou DY, et al. Whole exome sequencing identifies a KCNJ12 mutation as a cause of familial dilated cardiomyopathy. Medicine. 2017;96(33):e7727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenglet S, Thomas A, Soehnlein O, et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol. 2013;33(2):215–23.
Article
CAS
PubMed
Google Scholar
Shafiei A, Pilehvar-Soltanahmadi Y, Ziaee S, et al. Association between Serum Kalirin Levels and the KALRN gene rs9289231 polymorphism in early-onset coronary artery disease. J Tehran Heart Cent. 2018;13(2):58–64.
PubMed
PubMed Central
Google Scholar
Kengia JT, Ko KC, Ikeda S, et al. A gene variant in the Atp10d gene associates with atherosclerotic indices in Japanese elderly population. Atherosclerosis. 2013;231(1):158–62.
Article
CAS
PubMed
Google Scholar
Park HS, Kim IJ, Kim EG, et al. A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci Rep. 2020;10(1):16294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Ding S, Zhou M, et al. Association of rs662799 in APOA5 with CAD in Chinese Han population. BMC Cardiovasc Disord. 2018;18(1):2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boucher P, Herz J. Signaling through LRP1: protection from atherosclerosis and beyond. Biochem Pharmacol. 2011;81(1):1–5.
Article
CAS
PubMed
Google Scholar
Magni P. Bicuspid aortic valve, atherosclerosis and changes of lipid metabolism: Are there pathological molecular links? J Mol Cell Cardiol. 2019;129:231–5.
Article
CAS
PubMed
Google Scholar
Grotenhuis HB, Ottenkamp J, Westenberg JJM, et al. Reduced aortic elasticity and dilatation are associated with aortic regurgitation and left ventricular hypertrophy in nonstenotic bicuspid aortic valve patients. J Am Coll Cardiol. 2007;49(15):1660–5.
Article
PubMed
Google Scholar
Zhang S, Lu Y, Jiang C. Inhibition of histone demethylase JMJD1C attenuates cardiac hypertrophy and fibrosis induced by angiotensin II. J Recept Signal Transduct Res. 2020;40(4):339–47.
Article
CAS
PubMed
Google Scholar
Voelkl J, Alesutan I, Pakladok T, et al. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling. Biochem Biophys Res Commun. 2014;445(1):244–9.
Article
CAS
PubMed
Google Scholar
Chen L, Huang J, Ji YX, et al. Tripartite motif 8 contributes to pathological cardiac hypertrophy through enhancing transforming growth factor β-activated kinase 1-dependent signaling pathways. Hypertension. 2017;69(2):249–58.
Article
CAS
PubMed
Google Scholar
Liu ZF, Zhang X, Qiao YX, et al. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015;8(4):5351–60.
CAS
PubMed
PubMed Central
Google Scholar
Johnson KR, Nicodemus-Johnson J, Spindler MJ, et al. Genome-wide gene expression analysis shows AKAP13-mediated PKD1 signaling regulates the transcriptional response to cardiac hypertrophy. PLoS ONE. 2015;10(7):e0132474.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lluri G, Renella P, Finn JP, et al. Prognostic Significance of left ventricular fibrosis in patients with congenital bicuspid aortic valve. Am J Cardiol. 2017;120(7):1176–9.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Zhang C, Wu D, et al. Cholecystokinin octapeptide reduces myocardial fibrosis and improves cardiac remodeling in post myocardial infarction rats. Int J Biochem Cell Biol. 2020;125:105793.
Article
CAS
PubMed
Google Scholar
Gong L, Wang S, Shen L, et al. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight. 2020;5(12):e136852.
Article
PubMed Central
Google Scholar
Corden B, Adami E, Sweeney M, et al. IL-11 in cardiac and renal fibrosis: late to the party but a central player. Br J Pharmacol. 2020;177(8):1695–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci Rep. 2016;19(6):39383.
Article
CAS
Google Scholar
Park JW, Yoon HJ, Kang WY, et al. G protein-coupled receptor 84 controls osteoclastogenesis through inhibition of NF-κB and MAPK signaling pathways. J Cell Physiol. 2018;233(2):1481–9.
Article
CAS
PubMed
Google Scholar
Park S, Daily JW, Song MY, et al. Gene-gene and gene-lifestyle interactions of AKAP11, KCNMA1, PUM1, SPTBN1, and EPDR1 on osteoporosis risk in middle-aged adults. Nutrition. 2020;79–80:110859.
Article
CAS
PubMed
Google Scholar
Boehme SA, Franz-Bacon K, DiTirro DN, et al. MAP3K19 Is a novel regulator of TGF-β signaling that impacts bleomycin-induced lung injury and pulmonary fibrosis. PLoS ONE. 2016;11(5):e0154874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie M, Wu X, Zhang J, et al. The prognostic significance of Notch1 and fatty acid binding protein 7 (FABP7) expression in resected tracheobronchial adenoid cystic carcinoma: a multicenter retrospective study. Cancer Res Treat. 2018;50(4):1064–73.
Article
CAS
PubMed
Google Scholar
Williams L, Howell N, Pagano D, et al. Titin isoform expression in aortic stenosis. Clin Sci (Lond). 2009;117(6):237–42.
Article
CAS
Google Scholar
Gotzmann M, Grabbe S, Schöne D, et al. Alterations in titin properties and myocardial fibrosis correlate with clinical Phenotypes in hemodynamic subgroups of severe aortic stenosis. JACC Basic Transl Sci. 2018;3(3):335–46.
Article
PubMed
PubMed Central
Google Scholar
Marquez J, Bhattacharya D, Lusk CP, et al. Nucleoporin NUP205 plays a critical role in cilia and congenital disease. Dev Biol. 2021;469:46–53.
Article
CAS
PubMed
Google Scholar
Toomer KA, Fulmer D, Guo L, et al. A role for primary cilia in aortic valve development and disease. Dev Dyn. 2017;246(8):625–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dang Y, Su Y, Fogelgren B, et al. Defects in the exocyst-cilia machinery cause bicuspid aortic valve disease and aortic stenosis. Circulation. 2019;140(16):1331–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Liu H, Liu Z, et al. Functional variants in notch pathway genes NCOR2, NCSTN, and MAML2 predict survival of patients with cutaneous melanoma. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1101–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohde D, Busch M, Volkert A, et al. Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1’s triple action in cardiovascular pathophysiology. Future Cardiol. 2015;11(3):309–21.
Article
CAS
PubMed
Google Scholar
Yu J, Lu Y, Li Y, et al. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway. J Pharm Pharmacol. 2015;67(9):1240–50.
Article
CAS
PubMed
Google Scholar
Zeng Q, Song R, Ao L, et al. Augmented osteogenic responses in human aortic valve cells exposed to oxLDL and TLR4 agonist: a mechanistic role of Notch1 and NF-κB interaction. PLoS ONE. 2014;9(5): e95400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T, Qiao X, Cheng L, et al. LGR4 silence aggravates ischemic injury by modulating mitochondrial function and oxidative stress via ERK signaling pathway in H9c2 cells. J Mol Histol. 2021;52(2):363–71.
Article
CAS
PubMed
Google Scholar
Jang Y, Sohn HM, Ko YJ, et al. Inhibition of RANKL-induced osteoclastogenesis by Novel Mutant RANKL. Int J Mol Sci. 2021;22(1):434.
Article
CAS
PubMed Central
Google Scholar
Rowe GC, Asimaki A, Graham EL, et al. Development of dilated cardiomyopathy and impaired calcium homeostasis with cardiac-specific deletion of ESRRβ. Am J Physiol Heart Circ Physiol. 2017;312(4):662–71.
Article
Google Scholar
Iatan I, Choi HY, Ruel I, et al. The WWOX gene modulates high-density lipoprotein and lipid metabolism. Circ Cardiovasc Genet. 2014;7(4):491–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polfus LM, Smith JA, Shimmin LC, et al. Genome-wide association study of gene by smoking interactions in coronary artery calcification. PLoS ONE. 2013;8(10): e74642.
Article
CAS
PubMed
PubMed Central
Google Scholar