Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8:880–93.
Article
CAS
PubMed
Google Scholar
Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genom Hum Genet. 2006;7:125–48.
Article
CAS
Google Scholar
McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: a review. Am J Kidney Dis. 2021;77:410–9.
Article
CAS
PubMed
Google Scholar
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol. 2022;19:211–27.
Article
PubMed
Google Scholar
Hamada H, Meno C, Watanabe D, Saijoh Y. Establishment of vertebrate left-right asymmetry. Nat Rev Genet. 2002;3:103–13.
Article
CAS
PubMed
Google Scholar
Sutherland MJ, Ware SM. Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet. 2009;151C:307–17.
Article
CAS
PubMed
Google Scholar
Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci. 2002;99:10282–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11:473–87.
Article
PubMed
PubMed Central
Google Scholar
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci. 2020;77:2029–48.
Article
CAS
PubMed
Google Scholar
Lin AE, Ticho BS, Houde K, Westgate MN, Holmes LB. Heterotaxy: associated conditions and hospital-based prevalence in newborns. Genet Med. 2000;2:157.
Article
CAS
PubMed
Google Scholar
Klena NT, Gibbs BC, Lo CW. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb Perspect Biol. 2017;9: a028266.
Article
PubMed
PubMed Central
Google Scholar
Taketazu M, Lougheed J, Yoo SJ, Lim JS, Hornberger LK. Spectrum of cardiovascular disease, accuracy of diagnosis, and outcome in fetal heterotaxy syndrome. Am J Cardiol. 2006;97:720–4.
Article
PubMed
Google Scholar
Peeters H, Devriendt K. Human laterality disorders. Eur J Med Genet. 2006;49:349–62.
Article
PubMed
Google Scholar
Wolf MT. Nephronophthisis and related syndromes. Curr Opin Pediatr. 2015;27:201–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34:413–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel–Gruber -like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82:959–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bataille S, Demoulin N, Devuyst O, Audrézet MP, Dahan K, Godin M, et al. Association of PKD2 (polycystin 2) mutations with left-right laterality defects. Am J Kidney Dis. 2011;58:456–60.
Article
CAS
PubMed
Google Scholar
Chu AS, Russo PA, Wells RG. Cholangiocyte cilia are abnormal in syndromic and non-syndromic biliary atresia. Mod Pathol. 2012;25:751–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaheen R, Alsahli S, Ewida N, Alzahrani F, Shamseldin HE, Patel N, et al. Biallelic mutations in tetratricopeptide repeat Domain 26 (Intraflagellar Transport 56) cause severe biliary ciliopathy in humans. Hepatology. 2020;71:2067–79.
Article
CAS
PubMed
Google Scholar
Delaval B, Bright A, Lawson ND, Doxsey S. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol. 2011;13:461–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature. 2003;425:628–33.
Article
CAS
PubMed
Google Scholar
Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left–right Body asymmetry randomization. Am J Hum Genet. 2016;99:460–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Getwan M, Hoppmann A, Schlosser P, Grand K, Song W, Diehl R, et al. Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci. 2021;118: e2106770118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, et al. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS ONE. 2014;9: e86476.
Article
PubMed
PubMed Central
Google Scholar
Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, et al. TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am J Hum Genet. 2020;106:153–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet. 2011;43:189–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Zhang Y, Yang S, Shi Z, Zeng W, Lu Z, et al. Bi-allelic mutations in NUP205 and NUP210 are associated with abnormal cardiac left-right patterning. Circ Genom Precis Med. 2019;12: e002492.
Article
CAS
PubMed
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol. 2014;25:2435–43.
Article
PubMed
Google Scholar
Bullich G, Vargas I, Trujillano D, Mendizábal S, Piñero-Fernández JA, Fraga G, et al. Contribution of the TTC21B gene to glomerular and cystic kidney diseases. Nephrol Dial Transpl. 2017;32:151–6.
CAS
Google Scholar
El Fotoh WM, Al-Fiky AF. A compound heterozygous mutation in the ciliary gene TTC21B causes nephronophthisis type 12. J Pediatr Genet. 2020;9:198–202.
Article
Google Scholar
Liu L, Li F, Zou H, He W, Zhang B, Zhang J. A case of proliferative glomerulosclerosis with compound heterozygous TTC21B mutations. Clin Chim Acta. 2022;529:17–20.
Article
CAS
PubMed
Google Scholar
Davey MG, McTeir L, Barrie AM, Freem LJ, Stephen LA. Loss of cilia causes embryonic lung hypoplasia, liver fibrosis, and cholestasis in the talpid3 ciliopathy mutant. Organogenesis. 2014;10:177–85.
Article
PubMed
PubMed Central
Google Scholar
Mandato C, Siano MA, Nazzaro L, Gelzo M, Francalanci P, Rizzo F, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and cilia dysfunction: case report with a novel pathogenic variant. Orphanet J Rare Dis. 2021;16:179.
Article
PubMed
PubMed Central
Google Scholar
Gambino G, Catalano C, Marangoni M, Geers C, Moine AL, Boon N, et al. Case report: homozygous pathogenic variant P209L in the TTC21B gene: a rare cause of end stage renal disease and biliary cirrhosis requiring combined liver-kidney transplantation a case report and literature review. Front Med (Lausanne). 2021;8:795216.
Article
Google Scholar
Wang W, Pottorf TS, Wang HH, Dong R, Kavanaugh MA, Cornelius JT, et al. IFT-A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. J Pathol. 2021;254:289–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfadhel M, Umair M, Almuzzaini B, Asiri A, Al Tuwaijri A, Alhamoudi K, et al. Identification of the TTC26 splice variant in a novel complex ciliopathy syndrome with biliary, renal, neurological, and skeletal manifestations. Mol Syndromol. 2021;12:133–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019;51:117–27.
Article
CAS
PubMed
Google Scholar
El Khattabi LA, Heide S, Caberg JH, Andrieux J, Doco Fenzy M, et al. 16p1311 microduplication in 45 new patients: refined clinical significance and genotype–phenotype correlations. J Med Genet. 2020;57:301–7.
Article
Google Scholar
Pizzo L, Jensen M, Polyak A, Rosenfeld JA, Mannik K, Krishnan A, et al. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet Med. 2019;21:816–25.
Article
CAS
PubMed
Google Scholar
Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y. Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry. 2005;10:622–30.
Article
CAS
PubMed
Google Scholar
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci. 2005;102:10604–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robson A, Makova SZ, Barish S, Zaidi S, Mehta S, Drozd J, et al. Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility. Proc Natl Acad Sci. 2019;116:14049–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Liu Z, Lin H, Ma D, Tao Q, Liu F. Epigenetic regulation of left–right asymmetry by DNA methylation. EMBO J. 2017;36:2987–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stottmann RW, Tran PV, Turbe-Doan A, Beier DR. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol. 2009;335:166–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis. 2020;11:1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Zhang Y, Shen L, Zhu J, Cai K, Lu Z, et al. Biallelic DNAH9 mutations are identified in Chinese patients with defective left-right patterning and cilia-related complex congenital heart disease. Hum Genet. 2022;141:1339–53.
Article
CAS
PubMed
Google Scholar