Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases. Heart Rhythm. 2022;19(7):e1–e60.
Gonzalez JH, Shirali GS, Atz AM, Taylor SN, Forbus GA, Zyblewski SC, et al. Universal screening for extracardiac abnormalities in neonates with congenital heart disease. Pediatr Cardiol. 2009;30(3):269–73.
Article
PubMed
Google Scholar
Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet. 2009;84(2):148–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med Off J Am Coll Med Genet. 2011;13(7):680–5.
Google Scholar
Thienpont B, Mertens L, de Ravel T, Eyskens B, Boshoff D, Maas N, et al. Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J. 2007;28(22):2778–84.
Article
CAS
PubMed
Google Scholar
Syrmou A, Tzetis M, Fryssira H, Kosma K, Oikonomakis V, Giannikou K, et al. Array comparative genomic hybridization as a clinical diagnostic tool in syndromic and nonsyndromic congenital heart disease. Pediatr Res. 2013;73(6):772–6.
Article
CAS
PubMed
Google Scholar
Breckpot J, Thienpont B, Peeters H, de Ravel T, Singer A, Rayyan M, et al. Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr. 2010;156(5):810–7.
Article
CAS
PubMed
Google Scholar
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 2014;15(1):1127.
Article
PubMed
PubMed Central
Google Scholar
Nagy O, Szakszon K, Biró BO, Mogyorósy G, Nagy D, Nagy B, et al. Copy number variants detection by microarray and multiplex ligation-dependent probe amplification in congenital heart diseases. J Biotechnol. 2019;299:86–95.
Article
CAS
PubMed
Google Scholar
Richards AA, Santos LJ, Nichols HA, Crider BP, Elder FF, Hauser NS, et al. Cryptic chromosomal abnormalities identified in children with congenital heart disease. Pediatr Res. 2008;64(4):358–63.
Article
PubMed
Google Scholar
Molck MC, Simioni M, Paiva Vieira T, Sgardioli IC, Paoli Monteiro F, Souza J, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr. 2017;93(5):497–507.
Article
Google Scholar
Hussein IR, Bader RS, Chaudhary AG, Bassiouni R, Alquaiti M, Ashgan F, et al. Identification of de novo and rare inherited copy number variants in children with syndromic congenital heart defects. Pediatr Cardiol. 2018;39(5):924–40.
Article
PubMed
Google Scholar
Monteiro RAC, de Freitas ML, Vianna GS, de Oliveira VT, Pietra RX, Ferreira LCA, et al. Major contribution of genomic copy number variation in syndromic congenital heart disease: the use of MLPA as the first genetic test. Mol Syndromol. 2017;8(5):227–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS, et al. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis. 2011;6(6):592–602.
Article
PubMed
PubMed Central
Google Scholar
Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K, et al. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet EJHG. 2013;21(2):173–81.
Article
CAS
PubMed
Google Scholar
Mak ASL, Chiu ATG, Leung GKC, Mak CCY, Chu YWY, Mok GTK, et al. Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorder-implications of a copy number variation involving DPP10. Mol Autism. 2017;8:31.
Article
PubMed
PubMed Central
Google Scholar
Singh V, Bala R, Chakraborty A, Rajender S, Trivedi S, Singh K. Duplications in 19p13.3 are associated with male infertility. J Assist Reprod Genet. 2019;36(10):2171–9.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Shi J, Ouyang J, Zhang R, Tao Y, Yuan D, et al. X-CNV: genome-wide prediction of the pathogenicity of copy number variations. Genome Med. 2021;13(1):132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009;84(4):524–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amberger JS, Hamosh A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinform. 2017;58:1–2.
Article
Google Scholar
Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American college of medical genetics and genomics (ACMG) and the Clinical genome resource (ClinGen). Genet Med Off J Am Coll Med Genet. 2020;22(2):245–57.
Google Scholar
Godoy V, Bellucco FT, Colovati M, Oliveira-Junior HR, Moysés-Oliveira M, Melaragno MI. Copy number variation (CNV) identification, interpretation, and database from Brazilian patients. Genet Mol Biol. 2020;43(4):e20190218.
Article
PubMed
PubMed Central
Google Scholar
Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards Suite. BMC Genomics. 2016;17(Suppl 2):444.
Article
PubMed
PubMed Central
Google Scholar
Antanaviciute A, Watson CM, Harrison SM, Lascelles C, Crinnion L, Markham AF, et al. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization. Bioinformatics (Oxford, England). 2015;31(23):3822–9.
CAS
Google Scholar
Birgmeier J, Haeussler M, Deisseroth CA, Steinberg EH, Jagadeesh KA, Ratner AJ, et al. AMELIE speeds mendelian diagnosis by matching patient phenotype and genotype to primary literature. Sci Transl Med. 2020;12(544):eaau9113.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics (Oxford, England). 2010;26(1):145–6.
Article
CAS
Google Scholar
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55.
PubMed
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199-w205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Lv Z, He L, Huang X, Zhang S, Zhao H, et al. Genetic tracing identifies early segregation of the cardiomyocyte and nonmyocyte lineages. Circ Res. 2019;125(3):343–55.
Article
CAS
PubMed
Google Scholar
Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD, et al. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147–57.
Article
PubMed
Google Scholar
Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet. 2015;8:189–200.
CAS
PubMed
PubMed Central
Google Scholar
McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071.
Article
PubMed
PubMed Central
Google Scholar
Chen CP, Chang TY, Guo WY, Wu PC, Wang LK, Chern SR, et al. Chromosome 17p13.3 deletion syndrome: aCGH characterization, prenatal findings and diagnosis, and literature review. Gene. 2013;532(1):152–9.
Article
CAS
PubMed
Google Scholar
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental genetic diseases associated with microdeletions and microduplications of chromosome 17p13.3. Front Genet. 2018;9:80.
Article
PubMed
PubMed Central
Google Scholar
Rodríguez-Caballero A, Torres-Lagares D, Rodríguez-Pérez A, Serrera-Figallo MA, Hernández-Guisado JM, Machuca-Portillo G. Cri du chat syndrome: a critical review. Medicina oral, patologia oral y cirugia bucal. 2010;15(3):e473–8.
Article
PubMed
Google Scholar
Poisson A, Nicolas A, Bousquet I, Raverot V, Gronfier C, Demily C. Smith-magenis syndrome: molecular basis of a genetic-driven melatonin circadian secretion disorder. Int J Mol Sci. 2019;20(14):3533.
Article
CAS
PubMed Central
Google Scholar
Ganel L, Abel HJ, Hall IM. SVScore: an impact prediction tool for structural variation. Bioinformatics (Oxford, England). 2017;33(7):1083–5.
CAS
Google Scholar
Rice AM, McLysaght A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun. 2017;8:14366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics (Oxford, England). 2018;34(20):3572–4.
Article
CAS
Google Scholar
Gurbich TA, Ilinsky VV. ClassifyCNV: a tool for clinical annotation of copy-number variants. Sci Rep. 2020;10(1):20375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang YT, Wang CH, Chou IC, Lin WD, Chee SY, Kuo HT, et al. Case report of Chromosome 3q25 deletion syndrome or Mucopolysaccharidosis IIIB. Biomedicine. 2014;4(1):7.
Article
PubMed
PubMed Central
Google Scholar
He X, Shen H, Fu H, Feng C, Liu Z, Jin Y, et al. Reduced anogenital distance, hematuria and left renal hypoplasia in a patient with 13q33.1-34 deletion: case report and literature review. BMC Pediatr. 2020;20(1):327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA, Chechetkina NN, et al. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol Cytogenet. 2014;7(1):97.
Article
PubMed
PubMed Central
Google Scholar
Shoukier M, Fuchs S, Schwaibold E, Lingen M, Gärtner J, Brockmann K, et al. Microduplication of 3p26.3 in nonsyndromic intellectual disability indicates an important role of CHL1 for normal cognitive function. Neuropediatrics. 2013;44(5):268–71.
Article
PubMed
Google Scholar
Qiao Y, Harvard C, Tyson C, Liu X, Fawcett C, Pavlidis P, et al. Outcome of array CGH analysis for 255 subjects with intellectual disability and search for candidate genes using bioinformatics. Hum Genet. 2010;128(2):179–94.
Article
CAS
PubMed
Google Scholar
Jayaraman A, Jamil K, Khan HA. Identifying new targets in leukemogenesis using computational approaches. Saudi J Biol Sci. 2015;22(5):610–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freytag S, Burgess R, Oliver KL, Bahlo M. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets. Genome Med. 2017;9(1):55.
Article
PubMed
PubMed Central
Google Scholar
Zhan Y, Zhang R, Lv H, Song X, Xu X, Chai L, et al. Prioritization of candidate genes for periodontitis using multiple computational tools. J Periodontol. 2014;85(8):1059–69.
Article
CAS
PubMed
Google Scholar
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, et al. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics. 2019;12(Suppl 2):47.
Article
PubMed
PubMed Central
Google Scholar
Pavan M, Ruiz VF, Silva FA, Sobreira TJ, Cravo RM, Vasconcelos M, et al. ALDH1A2 (RALDH2) genetic variation in human congenital heart disease. BMC Med Genet. 2009;10:113.
Article
PubMed
PubMed Central
Google Scholar
Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, et al. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet. 2020;16(5):e1008782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, et al. De novo and rare variants at multiple loci support the oligogenic origins of atrioventricular septal heart defects. PLoS Genet. 2016;12(4):e1005963.
Article
PubMed
PubMed Central
Google Scholar
Gifford CA, Ranade SS, Samarakoon R, Salunga HT, de Soysa TY, Huang Y, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science (New York, NY). 2019;364(6443):865–70.
Article
CAS
Google Scholar
Morrow BE, McDonald-McGinn DM, Emanuel BS, Vermeesch JR, Scambler PJ. Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet Part A. 2018;176(10):2070–81.
Article
CAS
PubMed
Google Scholar
Mullen M, Zhang A, Lui GK, Romfh AW, Rhee JW, Wu JC. Race and genetics in congenital heart disease: application of iPSCs, omics, and machine learning technologies. Front Cardiovasc Med. 2021;8:635280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Y, Yu X, Niu F, Lu N. Genetic polymorphism of methylenetetrahydrofolate reductase as a potential risk factor for congenital heart disease: a meta-analysis in Chinese pediatric population. Medicine. 2017;96(23):e7057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahm H, Jia M, Dreßen M, Wirth F, Puluca N, Gilsbach R, et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Investig. 2021. https://doi.org/10.1172/JCI141837.
Article
PubMed
PubMed Central
Google Scholar