Syvanen AC: Toward genome-wide SNP genotyping. Nat Genet. 2005, 37: S5-S10. 10.1038/ng1558.
Article
PubMed
Google Scholar
Lockhart DJ, Winzeler EA: Genomics, gene expression and DNA arrays. Nature. 2000, 405: 827-836. 10.1038/35015701.
Article
CAS
PubMed
Google Scholar
International HapMap Consortium: The International HapMap Project. Nature. 2003, 426: 789-796. 10.1038/nature02168.
Article
Google Scholar
Glazier AM, Nadeau JH, Aitman T: Finding genes that underlie complex traits. Science. 2002, 298: 2345-2349. 10.1126/science.1076641.
Article
CAS
PubMed
Google Scholar
Boehnke M: Limits of resolution of genetic linkage studies: Implications for the positional cloning of human disease genes. Am J Hum Genet. 1994, 55: 379-390.
PubMed Central
CAS
PubMed
Google Scholar
Risch NJ: Searching for genetic determinants in the new millennium. Nature. 2000, 405: 847-856. 10.1038/35015718.
Article
CAS
PubMed
Google Scholar
Ophoff RA, Escamilla MA, Service SK, et al: Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am J Hum Genet. 2002, 71: 565-574. 10.1086/342291.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ozaki K, Ohnishi Y, Iida A, et al: Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002, 32: 650-654. 10.1038/ng1047.
Article
CAS
PubMed
Google Scholar
Klein RJ, Zeiss C, Chew EY, et al: Complement factor H polymorphism in age-related macular degeneration. Science. 2005, 308: 385-389. 10.1126/science.1109557.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu N, Wang C, Hu Y, et al: Genome-wide association study in esophageal cancer using GeneChip mapping 10 K array. Cancer Res. 2005, 65: 2542-2546. 10.1158/0008-5472.CAN-04-3247.
Article
CAS
PubMed
Google Scholar
Halder I, Shriver MD: Measuring and using admixture to study the genetics of complex diseases. Hum Genomics. 2003, 1: 52-62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Patterson N, Hattangadi N, Lane B, et al: Methods for highdensity admixture mapping of disease genes. Am J Hum Genet. 2004, 74: 979-1000. 10.1086/420871.
Article
PubMed Central
CAS
PubMed
Google Scholar
Austin MA, Harding S, McElroy C: Genebanks: A comparison of eight proposed international genetic databases. Community Genet. 2003, 6: 37-45. 10.1159/000069544.
Article
PubMed
Google Scholar
Heller MJ: DNA microarray technology: Devices, systems, and applications. Annu Rev Biomed Eng. 2002, 4: 129-153. 10.1146/annurev.bioeng.4.020702.153438.
Article
CAS
PubMed
Google Scholar
Schadt EE, Monks SA, Drake TA, et al: Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003, 422: 297-302. 10.1038/nature01434.
Article
CAS
PubMed
Google Scholar
Freimer N, Sabatti C: The human phenome project. Nat Genet. 2003, 34: 15-21. 10.1038/ng0503-15.
Article
CAS
PubMed
Google Scholar
Weiss KM, Terwilliger JD: How many diseases does it take to map a gene with SNPs?. Nat Genet. 2000, 26: 151-157. 10.1038/79866.
Article
CAS
PubMed
Google Scholar
Neale BM, Sham PC: The future of association studies: Gene-based analysis and replication. Am J Hum Genet. 2004, 75: 353-362. 10.1086/423901.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cardon LR, Palmer LJ: Population stratification and spurious allelic association. Lancet. 2003, 361: 598-604. 10.1016/S0140-6736(03)12520-2.
Article
PubMed
Google Scholar
Wang WY, Barratt BJ, Clayton DG, Todd JA: Genomewide association studies: theoretical and practical concerns. Nat Rev Genet. 2005, 6: 109-118. 10.1038/nrg1522.
Article
CAS
PubMed
Google Scholar
Saito A, Kamatani N: Strategies for genome-wide association studies: Optimization of study designs by the stepwise focusing method. J Hum Genet. 2002, 47: 360-365. 10.1007/s100380200050.
Article
CAS
PubMed
Google Scholar
Sagatopan JM, Verbel DA, Venkatraman ES, et al: Two-stage designs for genetic association studies. Biometrics. 2002, 58: 163-170. 10.1111/j.0006-341X.2002.00163.x.
Article
Google Scholar
Sagatopan JM, Elston RC: Optimal two-stage genotyping in population-based association studies. Genet Epidemiol. 2003, 25: 149-157. 10.1002/gepi.10260.
Article
Google Scholar
Sagatopan JM, Venkatraman ES, Begg CB: Two-stage designs for gene-disease association studies with sample size constraints. Biometrics. 2004, 60: 589-597. 10.1111/j.0006-341X.2004.00207.x.
Article
Google Scholar
Lowe CE, Cooper JD, Chapman JM, et al: Cost-effective analysis of candidate genes using htSNPS: A staged approach. Genes Immun. 2004, 5: 301-305. 10.1038/sj.gene.6364064.
Article
CAS
PubMed
Google Scholar
Konig IR, Ziegler A: Group sequential study designs in genetic-epidemiological case-control studies. Hum Hered. 2003, 56: 63-72. 10.1159/000073734.
Article
PubMed
Google Scholar
Sham P, Bader JS, Craig I, et al: DNA pooling: A tool for large-scale association studies. Nat Rev Genet. 2002, 3: 862-871.
Article
CAS
PubMed
Google Scholar
Marchini J, Donnelly P, Cardon LR: Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet. 2005, 37: 413-417. 10.1038/ng1537.
Article
CAS
PubMed
Google Scholar
Holm S: A simple sequentially rejective multiple test procedure. Scand J Statist. 1979, 6: 65-70.
Google Scholar
Hoh J, Ott J: Mathematical multi-locus approaches to localizing complex human trait genes. Nat Rev Genet. 2003, 4: 701-709.
Article
CAS
PubMed
Google Scholar
Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS: Truncated product method for combining P-values. Genet Epidemiol. 2002, 22: 170-185. 10.1002/gepi.0042.
Article
CAS
PubMed
Google Scholar
Dudbridge F, Koeleman BP: Rank truncated product of P-values, with application to genomewide association scans. Genet Epidemiol. 2003, 25: 360-366. 10.1002/gepi.10264.
Article
PubMed
Google Scholar
Dudbridge F, Koeleman BP: Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. Am J Hum Genet. 2004, 75: 424-435. 10.1086/423738.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zaykin DV: Statistical Analysis of Genetic Associations. 1999, PhD thesis, North Carolina State University Raleigh, NC
Google Scholar
Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test for groups of genes: Testing association with a clinical outcome. Bioinformatics. 2004, 20: 93-99. 10.1093/bioinformatics/btg382.
Article
CAS
PubMed
Google Scholar
Ishwaran H, Rao JS: Detecting differentially expressed genes in microarrays using Bayesian model selection. J Am Stat Assoc. 2003, 98: 438-455. 10.1198/016214503000224.
Article
Google Scholar
Kauermann G, Eilers P: Modeling microarray data using a threshold mixture model. Biometrics. 2004, 60: 376-387. 10.1111/j.0006-341X.2004.00182.x.
Article
PubMed
Google Scholar
Gusnanto A, Ploner A, Pawitan Y: Fold-change estimation of differentially expressed genes using mixture mixed-model. Stat Appl Genet Mol Biol. 2005, 4: 26-
Google Scholar
Allison DB, Gadbury GL, Heo M, et al: A mixture model approach for the analysis of microarray gene expression data. Comp Stat Data Anal. 2003, 39: 1-20.
Article
Google Scholar
Hayes B, Goddard ME: The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001, 33: 209-229. 10.1186/1297-9686-33-3-209.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barton NH, Keightley PD: Understanding quantitative genetic variation. Nat Rev Genet. 2002, 3: 11-21.
Article
CAS
PubMed
Google Scholar
Pesarin F: Multivariate Permutation Tests With Applications in Biostatistics. 2001, Wiley, Chichester, UK
Google Scholar
Coles S: An Introduction to Statistical Modelling of Extreme Values. 2001, Springer, London, UK
Book
Google Scholar
Lin DY: An efficient Monte Carlo approach to assesssing statistical significance in genomic studies. Bioinformatics. 2005, 21: 781-787. 10.1093/bioinformatics/bti053.
Article
CAS
PubMed
Google Scholar
Seaman SR, Müller-Myhsok B: Rapid simulation of P values for product methods and multiple-testing adjustment in association studies. Am J Hum Genet. 2004, 76: 399-408.
Article
Google Scholar
Seaman SR, Müller-Myhsok B: Reply to Lin. Am J Hum Genet. 2005, 77: 514-515. 10.1086/432818.
Article
PubMed Central
CAS
Google Scholar
Bailey TL, Grundy WN: Classifying proteins by family using the product of correlated p-values. Proc RECOMB99. 1999, 10-14.
Google Scholar
Camp NJ, Farnham JM: Correcting for multiple analyses in genomewide linkage studies. Ann Hum Genet. 2001, 65: 577-582. 10.1046/j.1469-1809.2001.6560577.x.
Article
CAS
PubMed
Google Scholar
Cheverud JM: A simple correction for multiple comparisons in interval mapping genome scans. Heredity. 2001, 87: 52-58. 10.1046/j.1365-2540.2001.00901.x.
Article
CAS
PubMed
Google Scholar
Nyholt DR: A simple correction for multiple testing for singlenucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004, 74: 765-769. 10.1086/383251.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salyakina D, Seaman SR, Browning BL, et al: Evaluation of Nyholt's procedure for multiple testing correction. Hum Hered. 2005, 60: 19-25. 10.1159/000087540.
Article
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate -- A practical and powerful approach to multiple testing. JR Stat Soc B. 1995, 57: 289-300.
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003, 100: 9440-9445. 10.1073/pnas.1530509100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manly KF, Nettleton D, Hwang JT: Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res. 2004, 14: 997-1001. 10.1101/gr.2156804.
Article
CAS
PubMed
Google Scholar
Wacholder S, Chanock S, Garcia-Closas M, et al: Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Nat Cancer Inst. 2004, 96: 434-442. 10.1093/jnci/djh075.
Article
PubMed
Google Scholar
Storey JD: A direct approach to false discovery rates. JR Stat Soc B. 2002, 64: 479-498. 10.1111/1467-9868.00346.
Article
Google Scholar
Korn EL, Troendle JF, McShane LM, Simon R: Controlling the number of false discoveries: Application to high-dimensional genomic data. J Stat Plan Inference. 2004, 124: 379-398. 10.1016/S0378-3758(03)00211-8.
Article
Google Scholar
Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc. 2001, 96: 1151-1160. 10.1198/016214501753382129.
Article
Google Scholar
Efron B, Tibshirani R: Empirical Bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002, 23: 70-86. 10.1002/gepi.1124.
Article
PubMed
Google Scholar
Pounds S, Morris SW: Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of P-values. Bioinformatics. 2003, 19: 1236-1242. 10.1093/bioinformatics/btg148.
Article
CAS
PubMed
Google Scholar
Liao JG, Lin Y, Selvanayagam ZE, Shih WJ: A mixture model for estimating the local false discovery rate in DNA microarray analysis. Bioinformatics. 2004, 20: 2694-2701. 10.1093/bioinformatics/bth310.
Article
CAS
PubMed
Google Scholar
Thomas DC, Clayton DG: Betting odds and genetic associations. J Nat Cancer Inst. 2004, 96: 421-423. 10.1093/jnci/djh094.
Article
PubMed
Google Scholar
Manly KF, Nettleton D, Hwang JT: Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res. 2004, 14: 997-1001. 10.1101/gr.2156804.
Article
CAS
PubMed
Google Scholar
Ioannidis JP: Why most published research findings are false. PloS Med. 2005, 2: 696-701.
Google Scholar