Vijg J, Calder RB: Transcripts of aging. Trends Genet. 2004, 20: 221-224.
Article
CAS
PubMed
Google Scholar
Weindruch R, Kayo T, Lee CK, Prolla TA: Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr. 2001, 131: 918S-923S.
CAS
PubMed
Google Scholar
Prolla TA: Multiple roads to the aging phenotype: insights from the molecular dissection of progerias through DNA microarray analysis. Mech Ageing Dev. 2005, 126: 461-465. 10.1016/j.mad.2004.10.003.
Article
CAS
PubMed
Google Scholar
Melov S, Hubbard A: Microarrays as a tool to investigate the biology of aging: A retrospective and a look to the future. Sci Aging Knowledge Environ. 2004, [http://sageke.sciencemag.org/cgi/content/full/2004/42/re7]
Google Scholar
Kaeberlein M: Application of high-throughput technologies to aging-related research. in Conn, PM, (Ed), Handbook of models for human aging, Elsevier Academic Press, Boston, MA. 2006
Google Scholar
Hudson FN, Kaeberlein M, Linford N, et al: Microarray analysis of gene expression changes in aging. in: Austad, SN, (Ed), Handbook of the biology of aging, Academic Press, Boston, MA. 2005
Google Scholar
Schoneich C: Mass spectrometry in aging research. Mass Spectrom Rev. 2005, 24: 701-718. 10.1002/mas.20035.
Article
CAS
PubMed
Google Scholar
Schoneich C: Proteomics in gerontological research. Exp Gerontol. 2003, 38: 473-481. 10.1016/S0531-5565(03)00035-4.
Article
CAS
PubMed
Google Scholar
Dhahbi JM, Kim HJ, Mote PL, et al: Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA. 2004, 101: 5524-5529. 10.1073/pnas.0305300101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaeberlein M: Aging-related research in the "-omics" age. Sci Aging Knowledge Environ. 2004, [http://sageke.sciencemag.org/cgi/content/full/2004/42/pe39]
Google Scholar
Butler RN, Sprott R, Warner H, et al: Biomarkers of aging: From primitive organisms to humans. J Gerontol A Biol Sci Med Sci. 2004, 59: B560-567. 10.1093/gerona/59.6.B560.
Article
PubMed
Google Scholar
Park SK, Prolla TA: Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev. 2005, 4: 55-65. 10.1016/j.arr.2004.09.003.
Article
CAS
PubMed
Google Scholar
Warner HR: Current status of efforts to measure and modulate the biological rate of aging. J Gerontol A Biol Sci Med Sci. 2004, 59: 692-696. 10.1093/gerona/59.7.B692.
Article
PubMed
Google Scholar
Franceschi C, Bonafe M: Centenarians as a model for healthy aging. Biochem Soc Trans. 2003, 31: 457-461. 10.1042/BST0310457.
Article
CAS
PubMed
Google Scholar
Perls T, Kunkel L, Puca A: The genetics of aging. Curr Opin Genet Dev. 2002, 12: 362-369. 10.1016/S0959-437X(02)00310-6.
Article
CAS
PubMed
Google Scholar
Perls TT, Bochen K, Freeman M, et al: Validity of reported age and centenarian prevalence in New England. Age Ageing. 1999, 28: 193-197. 10.1093/ageing/28.2.193.
Article
CAS
PubMed
Google Scholar
Hitt R, Young-Xu Y, Silver M, Perls T: Centenarians: The older you get, the healthier you have been. Lancet. 1999, 354: 652-10.1016/S0140-6736(99)01987-X.
Article
CAS
PubMed
Google Scholar
Andersen SL, Terry DF, Wilcox MA, et al: Cancer in the oldest old. Mech Ageing Dev. 2005, 126: 263-267. 10.1016/j.mad.2004.08.019.
Article
PubMed
Google Scholar
Puca AA, Daly MJ, Brewster SJ, et al: A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA. 2001, 98: 10505-10508. 10.1073/pnas.181337598.
Article
PubMed Central
CAS
PubMed
Google Scholar
Geesaman BJ, Benson E, Brewster SJ, et al: Haplotype-based identification of a microsomal transfer protein marker associated with the human lifespan. Proc Natl Acad Sci USA. 2003, 100: 14115-14120. 10.1073/pnas.1936249100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gregg RE, Wetterau JR: The molecular basis of abetalipoproteinemia. Curr Opin Lipidol. 1994, 5: 81-86. 10.1097/00041433-199404000-00003.
Article
CAS
PubMed
Google Scholar
Di Leo E, Lancellotti S, Penacchioni JY, et al: Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia. Atherosclerosis. 2005, 180: 311-318. 10.1016/j.atherosclerosis.2004.12.004.
Article
CAS
PubMed
Google Scholar
Kammerer S, Burns-Hamuro LL, Ma Y, et al: Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2: A disease susceptibility polymorphism. Proc Natl Acad Sci USA. 2003, 100: 4066-4071. 10.1073/pnas.2628028100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin SJ, Defossez PA, Guarente L: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000, 289: 2126-2128. 10.1126/science.289.5487.2126.
Article
CAS
PubMed
Google Scholar
Fabrizio P, Pozza F, Pletcher SD, et al: Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001, 292: 288-290. 10.1126/science.1059497.
Article
CAS
PubMed
Google Scholar
Kaeberlein M, Powers RW, Steffen KK, et al: TOR and Sch9 determine yeast replicative life span in response to nutrients. Science. 2005, 310: 1193-1196. 10.1126/science.1115535.
Article
CAS
PubMed
Google Scholar
Nolan MA, Sikorski MA, McKnight GS: The role of uncoupling protein 1 in the metabolism and adiposity of RII beta-protein kinase A-deficient mice. Mol Endocrinol. 2004, 18: 2302-2311. 10.1210/me.2004-0194.
Article
CAS
PubMed
Google Scholar
Cummings DE, Brandon EP, Planas JV, et al: Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature. 1996, 382: 622-626. 10.1038/382622a0.
Article
CAS
PubMed
Google Scholar
Newhall KJ, Cummings DE, Nolan MA, McKnight GS: Deletion of the RIIbeta-subunit of protein kinase A decreases body weight and increases energy expenditure in the obese, leptindeficient ob/ob mouse. Mol Endocrinol. 2005, 19: 982-991. 10.1210/me.2004-0343.
Article
CAS
PubMed
Google Scholar
Garasto S, Berardelli M, DeRango F, et al: A study of the average effect of the 3'APOB-VNTR polymorphism on lipidemic parameters could explain why the short alleles (< 35 repeats) are rare in centenarians. BMC Med Genet. 2004, 5: 3-
Article
PubMed Central
PubMed
Google Scholar
Gondo Y, Hirose N, Arai Y, et al: Contribution of an affect-associated gene to human longevity: Prevalence of the long-allele genotype of the serotonin transporter-linked gene in Japanese centenarians. Mech Ageing Dev. 2005, 126: 1178-1184. 10.1016/j.mad.2005.06.006.
Article
CAS
PubMed
Google Scholar
Schachter F, Faure-Delanef L, Guenot F, et al: Genetic associations with human longevity at the APOE and ACE loci. Nat Genet. 1994, 6: 29-32. 10.1038/ng0194-29.
Article
CAS
PubMed
Google Scholar
Barzilai N, Atzmon G, Schechter C, et al: Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA. 2003, 290: 2030-2040. 10.1001/jama.290.15.2030.
Article
CAS
PubMed
Google Scholar
Atzmon G, Rincon M, Rabizadeh P, Barzilai N: Biological evidence for inheritance of exceptional longevity. Mech Ageing Dev. 2005, 126: 341-345. 10.1016/j.mad.2004.08.026.
Article
CAS
PubMed
Google Scholar
van Heemst D, Beekman M, Mooijaart SP, et al: Reduced insulin/IGF-1 signalling and human longevity. Aging Cell. 2005, 4: 79-85. 10.1111/j.1474-9728.2005.00148.x.
Article
CAS
PubMed
Google Scholar
Bonafe M, Barbieri M, Marchegiani F, et al: Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: Cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab. 2003, 88: 3299-3304. 10.1210/jc.2002-021810.
Article
CAS
PubMed
Google Scholar
Lio D, Candore G, Crivello A, et al: Opposite effects of interleukin 10 common gene polymorphisms in cardiovascular diseases and in successful ageing: Genetic background of male centenarians is protective against coronary heart disease. J Med Genet. 2004, 41: 790-794. 10.1136/jmg.2004.019885.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kurosu H, Yamamoto M, Clark JD, et al: Suppression of aging in mice by the hormone Klotho. Science. 2005, 309: 1829-1833. 10.1126/science.1112766.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arking DE, Atzmon G, Arking A, et al: Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res. 2005, 96: 412-418. 10.1161/01.RES.0000157171.04054.30.
Article
CAS
PubMed
Google Scholar
Arking DE, Krebsova A, Macek M, et al: Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA. 2002, 99: 856-861. 10.1073/pnas.022484299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanaka M, Gong JS, Zhang J, et al: Mitochondrial genotype associated with longevity. Lancet. 1998, 351: 185-186. 10.1016/S0140-6736(05)78211-8.
Article
CAS
PubMed
Google Scholar
van Rossum EF, Feelders RA, van den Beld AW, et al: Association of the ER22/23EK polymorphism in the glucocorticoid receptor gene with survival and C-reactive protein levels in elderly men. Am J Med. 2004, 117: 158-162. 10.1016/j.amjmed.2004.01.027.
Article
CAS
PubMed
Google Scholar
Barbieri M, Bonafe M, Rizzo MR, et al: Gender specific association of genetic variation in peroxisome proliferator-activated receptor (PPAR)gamma-2 with longevity. Exp Gerontol. 2004, 39: 1095-1100. 10.1016/j.exger.2004.03.034.
Article
CAS
PubMed
Google Scholar
Mooijaart SP, van Heemst D, Schreuder J, et al: Variation in the SHC1 gene and longevity in humans. Exp Gerontol. 2004, 39: 263-268. 10.1016/j.exger.2003.10.001.
Article
CAS
PubMed
Google Scholar
Rose G, Dato S, Altomare K, et al: Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003, 38: 1065-1070. 10.1016/S0531-5565(03)00209-2.
Article
CAS
PubMed
Google Scholar
De Benedictis G, Carotenuto L, Carrieri G, et al: Gene/longevity association studies at four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Genet. 1998, 6: 534-541.
Article
CAS
PubMed
Google Scholar
Balistreri CR, Candore G, Colonna-Romano G, et al: Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA. 2004, 292: 2339-2340. 10.1001/jama.292.19.2339.
CAS
PubMed
Google Scholar
Gaspari L, Pedotti P, Bonafe M, et al: Metabolic gene polymorphisms and p53 mutations in healthy centenarians and younger controls. Biomarkers. 2003, 8: 522-528. 10.1080/13547500310001627519.
Article
CAS
PubMed
Google Scholar
van Heemst D, Mooijaart SP, Beekman M, et al: Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol. 2005, 40: 11-15. 10.1016/j.exger.2004.10.001.
Article
CAS
PubMed
Google Scholar
Nebel A, Schreiber S: Allelic variation and human longevity. Sci Aging Knowledge Environ. 2005, [http://sageke.sciencemag.org/cgi/content/full/2005/29/pe23]
Google Scholar
Nebel A, Croucher PJ, Stiegeler R, et al: No association between microsomal triglyceride transfer protein (MTP) haplotype and longevity in humans. Proc Natl Acad Sci USA. 2005, 102: 7906-7909. 10.1073/pnas.0408670102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith ED, Kudlow BA, Frock RL, Kennedy BK: A-type nuclear lamins, progerias and other degenerative disorders. Mech Ageing Dev. 2005, 126: 447-460. 10.1016/j.mad.2004.10.006.
Article
CAS
PubMed
Google Scholar
Buck S, Vettraino J, Force AG, Arking R: Extended longevity in Drosophila is consistently associated with a decrease in developmental viability. J Gerontol A Biol Sci Med Sci. 2000, 55: B292-B301. 10.1093/gerona/55.6.B292.
Article
CAS
PubMed
Google Scholar
Jenkins NL, McColl G, Lithgow GJ: Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci. 2004, 271: 2523-2526. 10.1098/rspb.2004.2897.
Article
PubMed Central
PubMed
Google Scholar
Tissenbaum HA, Ruvkun G: An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998, 148: 703-717.
PubMed Central
CAS
PubMed
Google Scholar
Finch CE, Ruvkun G: The genetics of aging. Annu Rev Genomics Hum Genet. 2001, 2: 435-462. 10.1146/annurev.genom.2.1.435.
Article
CAS
PubMed
Google Scholar
Kaeberlein M, Jegalian B, McVey M: AGEID: A database of aging genes and interventions. Mech Ageing Dev. 2002, 123: 1115-1119. 10.1016/S0047-6374(02)00011-8.
Article
CAS
PubMed
Google Scholar
Guarente L, Kenyon C: Genetic pathways that regulate ageing in model organisms. Nature. 2000, 408: 255-262. 10.1038/35041700.
Article
CAS
PubMed
Google Scholar
Kenyon C: The plasticity of aging: Insights from long-lived mutants. Cell. 2005, 120: 449-460. 10.1016/j.cell.2005.02.002.
Article
CAS
PubMed
Google Scholar
Miller RA: Genetic approaches to the study of aging. J Am Geriatr Soc. 2005, 53: S284-S286. 10.1111/j.1532-5415.2005.53490.x.
Article
PubMed
Google Scholar
Kaeberlein M, McVey M, Guarente L: Using yeast to discover the fountain of youth. Sci Aging Knowledge Environ. 2001, [http://sageke.sciencemag.org/cgi/conent/full/2001/1/pe1]
Google Scholar
Fabrizio P, Liou LL, Moy VN, et al: SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics. 2003, 163: 35-46.
PubMed Central
CAS
PubMed
Google Scholar
Schriner SE, Linford NJ, Martin GM, et al: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.
Article
CAS
PubMed
Google Scholar
Kenyon C, Chang J, Gensch E, et al: A C. elegans mutant that lives twice as long as wild type. Nature. 1993, 366: 461-464. 10.1038/366461a0.
Article
CAS
PubMed
Google Scholar
Kimura KD, Tissenbaum HA, Liu Y, Ruvku G: daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997, 277: 942-946. 10.1126/science.277.5328.942.
Article
CAS
PubMed
Google Scholar
Tatar M, Kopelman A, Epstein D, et al: A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001, 292: 107-110. 10.1126/science.1057987.
Article
CAS
PubMed
Google Scholar
Holzenberger M, Dupont J, Ducos B, et al: IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003, 421: 182-187. 10.1038/nature01298.
Article
CAS
PubMed
Google Scholar
Bluher M, Patti ME, Gesta S, et al: Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J Biol Chem. 2004, 279: 31891-31901. 10.1074/jbc.M404569200.
Article
PubMed
Google Scholar
Chang KT, Min KT: Regulation of lifespan by histone deacetylase. Ageing Res Rev. 2002, 1: 313-326. 10.1016/S1568-1637(02)00003-X.
Article
CAS
PubMed
Google Scholar
Rogina B, Helfand SL, Frankel S: Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science. 2002, 298: 1745-10.1126/science.1078986.
Article
CAS
PubMed
Google Scholar
Kaeberlein M, Kennedy BK: Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev. 2005, 126: 17-21. 10.1016/j.mad.2004.09.013.
Article
CAS
PubMed
Google Scholar
Hertweck M, Gobel C, Baumeister R: C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell. 2004, 6: 577-588. 10.1016/S1534-5807(04)00095-4.
Article
CAS
PubMed
Google Scholar
Hamilton B, Dong Y, Shindo M, et al: A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 2005, 19: 1544-1555. 10.1101/gad.1308205.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oh SW, Mukhopadhyay A, Svrzikapa N, et al: JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA. 2005, 102: 4494-4499. 10.1073/pnas.0500749102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaeberlein M, McVey M, Guarente L: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13: 2570-2580. 10.1101/gad.13.19.2570.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tissenbaum HA, Guarente L: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001, 410: 227-230. 10.1038/35065638.
Article
CAS
PubMed
Google Scholar
Rogina B, Helfand SL: Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA. 2004, 101: 15998-16003. 10.1073/pnas.0404184101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bellizzi D, Rose G, Cavalcante P, et al: A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005, 85: 258-263. 10.1016/j.ygeno.2004.11.003.
Article
CAS
PubMed
Google Scholar
Phillips JP, Parkes TL, Hilliker AJ: Targeted neuronal gene expression and longevity in Drosophila. Exp Gerontol. 2000, 35: 1157-1164. 10.1016/S0531-5565(00)00117-0.
Article
CAS
PubMed
Google Scholar
Powers RW, Kaeberlein M, Caldwell SD, et al: Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006, 20: 174-184. 10.1101/gad.1381406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jia K, Chen D, Riddle DL: The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004, 131: 3897-3906. 10.1242/dev.01255.
Article
CAS
PubMed
Google Scholar
Vellai T, Takacs-Vellai K, Zhang Y, et al: Genetics: Influence of TOR kinase on lifespan in C. elegans. Nature. 2003, 426: 620-
Article
CAS
PubMed
Google Scholar
Kapahi P, Zid BM, Harper T, et al: Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004, 14: 885-890. 10.1016/j.cub.2004.03.059.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin GM: Constitutional genetic markers of aging. Exp Gerontol. 1988, 23: 257-270. 10.1016/0531-5565(88)90028-9.
Article
CAS
PubMed
Google Scholar
Morris JZ, Tissenbaum HA, Ruvkun G: A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996, 382: 536-539. 10.1038/382536a0.
Article
CAS
PubMed
Google Scholar
Friedman DB, Johnson TE: A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988, 118: 75-86.
PubMed Central
CAS
PubMed
Google Scholar
Lin K, Dorman JB, Rodan A, Kenyon C: daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997, 278: 1319-1322. 10.1126/science.278.5341.1319.
Article
CAS
PubMed
Google Scholar
Ogg S, Paradis S, Gottlieb S, et al: The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997, 389: 994-999. 10.1038/40194.
Article
CAS
PubMed
Google Scholar
McElwee J, Bubb K, Thomas JH: Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003, 2: 111-121. 10.1046/j.1474-9728.2003.00043.x.
Article
CAS
PubMed
Google Scholar
Murphy CT, McCarroll SA, Bargmann CI, et al: Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003, 424: 277-283. 10.1038/nature01789.
Article
CAS
PubMed
Google Scholar
Kamath RS, Ahringer J: Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003, 30: 313-321. 10.1016/S1046-2023(03)00050-1.
Article
CAS
PubMed
Google Scholar
Kamath RS, Fraser AG, Dong Y, et al: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003, 421: 231-237. 10.1038/nature01278.
Article
CAS
PubMed
Google Scholar
Hansen M, Hsu AL, Dillin A, Kenyon C: New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 2005, 1: 119-128.
Article
CAS
PubMed
Google Scholar
Dillin A, Hsu AL, Arantes-Oliveira N, et al: Rates of behavior and aging specified by mitochondrial function during development. Science. 2002, 298: 2398-2401. 10.1126/science.1077780.
Article
CAS
PubMed
Google Scholar
Lee SS, Lee RY, Fraser AG, et al: A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003, 33: 40-48. 10.1038/ng1056.
Article
CAS
PubMed
Google Scholar
Consortium for the determination of public pathways regulating longevity, University of Washington, Seattle, WA. Available at http://www.pathology.washington.edu/research/bioage/ellison. [cited May 11, 2006]
Kaeberlein M, McDonagh T, Heltweg B, et al: Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005, 280: 17038-17045. 10.1074/jbc.M500655200.
Article
CAS
PubMed
Google Scholar
Mortimer RK, Johnston JR: Life span of individual yeast cells. Nature. 1959, 183: 1751-1752. 10.1038/1831751a0.
Article
CAS
PubMed
Google Scholar
Fabrizio P, Longo VD: The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2003, 2: 73-81. 10.1046/j.1474-9728.2003.00033.x.
Article
CAS
PubMed
Google Scholar
Kaeberlein M: Longevity and aging in the budding yeast. in Conn, PM, (Ed), Handbook of models for human aging, Elsevier Academic Press, Boston, MA. 2006
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, et al: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901.
Article
CAS
PubMed
Google Scholar