Andreev DE, O’Connor PBF, Loughran G, Dmitriev SE, Baranov PV, Shatsky IN. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res. 2017;45(2):513–26. https://doi.org/10.1093/nar/gkw1190.
Article
CAS
PubMed
Google Scholar
Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A. 2012;109(37):E2424–32. https://doi.org/10.1073/pnas.1207846109.
Article
PubMed
PubMed Central
Google Scholar
Fukushima M, Tomita T, Janoshazi A, Putney JW. Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. J Cell Sci. 2012;125(18):4354–61. https://doi.org/10.1242/jcs.104919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bazykin GA, Kochetov AV. Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res. 2011;39(2):567–77. https://doi.org/10.1093/nar/gkq806.
Article
CAS
PubMed
Google Scholar
Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, Snyder MP. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res. 2015;25(11):1610–21. https://doi.org/10.1101/gr.193342.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babendure JR, Babendure JL, Ding J-H, Tsien RY. Control of mammalian translation by mRNA structure near caps. RNA. 2006;12(5):851–61. https://doi.org/10.1261/rna.2309906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Master A, Wójcicka A, Giżewska K, Popławski P, Williams GR, Nauman A. A novel method for gene-specific enhancement of protein translation by targeting 5’UTRs of selected tumor suppressors. PLoS One. 2016;11(5):e0155359. https://doi.org/10.1371/journal.pone.0155359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102(1):11–26. https://doi.org/10.1016/j.ajhg.2017.11.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert WV, Zhou K, Butler TK, Doudna JA. Cap-independent translation is required for starvation-induced differentiation in yeast. Science. 2007;317:1224–7. https://doi.org/10.1126/science.1144467.
Article
CAS
PubMed
Google Scholar
Shirokikh NE, Spirin AS. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci U S A. 2008;105(31):10738–43. https://doi.org/10.1073/pnas.0804940105.
Article
PubMed
PubMed Central
Google Scholar
Yamagishi K, Oshima T, Masuda Y, Ara T, Kanaya S, Mori H. Conservation of translation initiation sites based on dinucleotide frequency and codon usage in Escherichia coli K-12 (W3110): non-random distribution of A/T-rich sequences immediately upstream of the translation initiation codon. DNA Res. 2002;9(1):19–24. https://doi.org/10.1093/dnares/9.1.19.
Article
CAS
PubMed
Google Scholar
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res. 2018. https://doi.org/10.1016/j.brainres.2018.02.006.
Article
CAS
Google Scholar
Rovozzo R, Korza G, Baker MW, Li M, Bhattacharyya A, Barbarese E, Carson JH. CGG repeats in the 5’UTR of FMR1 RNA regulate translation of other RNAs localized in the same RNA granules. PLoS One. 2016;11(12):e0168204. https://doi.org/10.1371/journal.pone.0168204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krauss S, Griesche N, Jastrzebska E, Chen C, Rutschow D, Achmüller C, Dorn S, Boesch SM, Lalowski M, Wanker E, Schneider R, Schweiger S. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat Commun. 2013;4:1511. https://doi.org/10.1038/ncomms2514.
Article
CAS
PubMed
Google Scholar
Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, Erlich Y. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet. 2016;48(1):22–9. https://doi.org/10.1038/ng.3461.
Article
CAS
PubMed
Google Scholar
Yuan Z, Liu S, Zhou T, Tian C, Bao L, Dunham R, Liu Z. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics. 2018;19:141. https://doi.org/10.1186/s12864-018-4516-1.
Article
PubMed
PubMed Central
Google Scholar
Emamalizadeh B, Movafagh A, Darvish H, Kazeminasab S, Andarva M, Namdar-Aligoodarzi P, Ohadi M. The human RIT2 core promoter short tandem repeat predominant allele is species-specific in length: a selective advantage for human evolution? Mol Genet Genomics. 2017;292(3):611–7. https://doi.org/10.1007/s00438-017-1294-4.
Article
CAS
PubMed
Google Scholar
Abe H, Gemmell NJ. Evolutionary footprints of short tandem repeats in avian promoters. Sci Rep. 2016;6:19421. https://doi.org/10.1038/srep19421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushehri A, Barez MR, Mansouri SK, Biglarian A, Ohadi M. Genome-wide identification of human- and primate-specific core promoter short tandem repeats. Gene. 2016;587:83–90. https://doi.org/10.1016/j.gene.2016.04.041.
Article
CAS
PubMed
Google Scholar
Namdar-Aligoodarzi P, Mohammadparast S, Zaker-Kandjani B, Talebi Kakroodi S, Jafari Vesiehsari M, Ohadi M. Exceptionally long 5′ UTR short tandem repeats specifically linked to primates. Gene. 2015;569:88–94. https://doi.org/10.1016/j.gene.2015.05.053.
Article
CAS
PubMed
Google Scholar
Nikkhah M, et al. An exceptionally long CA-repeat in the core promoter of SCGB2B2 links with the evolution of apes and Old World monkeys. Gene. 2016;576(1 Pt 1):109–14. https://doi.org/10.1016/j.gene.2015.09.070.
Article
CAS
PubMed
Google Scholar
Bilgin Sonay T, Carvalho T, Robinson MD, Greminger MP, Krützen M, Comas D, Wagner A. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence. Genome Res. 2015;25(11):1591–9. https://doi.org/10.1101/gr.190868.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rezazadeh M, Gharesouran J, Mirabzadeh A, Khorram Khorshid HR, Biglarian A, Ohadi M. A primate-specific functional GTTT-repeat in the core promoter of CYTH4 is linked to bipolar disorder in human. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;56:161–7. https://doi.org/10.1016/j.pnpbp.2014.09.001.
Article
CAS
Google Scholar
Khademi E, Alehabib E, Shandiz EE, Ahmadifard A, Andarva M, Jamshidi J, Rahimi-Aliabadi S, Pouriran R, Nejad FR, Mansoori N, Shahmohammadibeni N, Taghavi S, Shokraeian P, Akhavan-Niaki H, Paisán-Ruiz C, Darvish H, Ohadi M. Support for “disease-only” genotypes and excess of homozygosity at the CYTH4 primate-specific GTTT-repeat in schizophrenia. Genet Test Mol Biomarkers. 2017;21:485–90. https://doi.org/10.1089/gtmb.2016.0422.
Article
CAS
PubMed
Google Scholar
Mohammadparast S, et al. Exceptional expansion and conservation of a CT-repeat complex in the core promoter of PAXBP1 in primates. Am J Primatol. 2014;76:747–56. https://doi.org/10.1002/ajp.22266.
Article
CAS
PubMed
Google Scholar
Ohadi M, Mohammadparast S, Darvish H. Evolutionary trend of exceptionally long human core promoter short tandem repeats. Gene. 2012;507(1):61–7. https://doi.org/10.1016/j.gene.2012.07.001.
Article
CAS
PubMed
Google Scholar
King DG. Evolution of simple sequence repeats as mutable sites. Adv Exp Med Biol. 2012;769:10–25.
Article
CAS
Google Scholar
Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19:286–98.
Article
CAS
Google Scholar
Bagshaw ATM. Functional mechanisms of microsatellite DNA in eukaryotic genomes. Genome Biol Evol. 2017;9(9):2428–43. https://doi.org/10.1093/gbe/evx164.
Article
PubMed
PubMed Central
Google Scholar
Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C. Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res. 2018;28:1169–78. https://doi.org/10.1101/gr.231753.117.
Article
CAS
PubMed
Google Scholar
Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends Genet. 2014;30(11):504–12. https://doi.org/10.1016/j.tig.2014.07.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohadi M, Valipour E, Ghadimi-Haddadan S, Namdar-Aligoodarzi P, Bagheri A, Kowsari A, Rezazadeh M, Darvish H, Kazeminasab S. Core promoter short tandem repeats as evolutionary switch codes for primate speciation. Am J Primatol. 2015;77(1):34–43. https://doi.org/10.1002/ajp.22308.
Article
CAS
PubMed
Google Scholar
Valipour E, et al. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene. 2013;531(2):175–9. https://doi.org/10.1016/j.gene.2013.09.032.
Article
CAS
PubMed
Google Scholar
Darvish H, Heidari A, Hosseinkhani S, Movafagh A, Khaligh A, Jamshidi J, Noorollahi-Moghaddam H, Heidari-Rostami HR, Karkheiran S, Shahidi GA, Togha M, Paknejad SM, Ashrafian H, Abdi S, Firouzabadi SG, Jamaldini SH, Ohadi M. Biased homozygous haplotypes across the human caveolin 1 upstream purine complex in Parkinson’s disease. J Mol Neurosci. 2013;51(2):389–93. https://doi.org/10.1007/s12031-013-0021-9.
Article
CAS
PubMed
Google Scholar
Heidari A, Nariman Saleh Fam Z, Esmaeilzadeh-Gharehdaghi E, Banan M, Hosseinkhani S, Mohammadparast S, Oladnabi M, Ebrahimpour MR, Soosanabadi M, Farokhashtiani T, Darvish H, Firouzabadi SG, Farashi S, Najmabadi H, Ohadi M. Core promoter STRs: novel mechanism for inter-individual variation in gene expression in humans. Gene. 2012;492:195–8. https://doi.org/10.1016/j.gene.2011.10.028.
Article
CAS
PubMed
Google Scholar
Nazaripanah N, Adelirad F, Delbari A, Sahaf R, Abbasi-Asl T, Ohadi M. Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats. Hum Genomics. 2018;12:17 https://doi.org/10.1186/s40246-018-0149-3.
Article
CAS
Google Scholar
Alizadeh F, Bozorgmehr A, Tavakkoly-Bazzaz J, Ohadi M. Skewing of the genetic architecture at the ZMYM3 human-specific 5′ UTR short tandem repeat in schizophrenia. Mol Gen Genomics. 2018;293:747–52. https://doi.org/10.1007/s00438-018-1415-8.
Article
CAS
Google Scholar
Li C, Lenhard B, Luscombe NM. Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome. Genome Res. 2018. https://doi.org/10.1101/gr.231449.117.
Article
CAS
Google Scholar
Kramer M, Sponholz C, Slaba M, Wissuwa B, Claus RA, Menzel U, Bauer M. Alternative 5’ untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS One. 2013;8(10):e77224. https://doi.org/10.1371/journal.pone.0077224.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson, W. R. (2013). An introduction to sequence similarity (“homology”) searching. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis. [et al.]. doi: https://doi.org/10.1002/0471250953.bi0301s42
Chapter
Google Scholar
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci. 2013;14(11):21705–26. https://doi.org/10.3390/ijms141121705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochetov AV, Allmer J, Klimenko AI, Zuraev BS, Matushkin YG, Lashin SA. AltORFev facilitates the prediction of alternative open reading frames in eukaryotic mRNAs. Bioinformatics. 2017;33:923–5. https://doi.org/10.1093/bioinformatics/btw736.
Article
CAS
PubMed
Google Scholar
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res. 2008;18(7):1011–9. https://doi.org/10.1101/gr.070409.107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3(4):218–21. https://doi.org/10.1038/nchembio864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Lin H, Zhao H, Hao Y, Mort M, Cooper DN, Liu Y. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Hum Mol Genet. 2014;23(11):3024–34. https://doi.org/10.1093/hmg/ddu019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shibuya Y, Niu Z, Bryleva EY, Harris BT, Murphy SR, Kheirollah A, Bowen ZD, Chang CCY, Chang TY. Acyl-coenzyme A: cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer’s disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiol Aging. 2015;36(7):2248–59. https://doi.org/10.1016/j.neurobiolaging.2015.04.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodgkinson CA, Enoch MA, Srivastava V, Cummins-Oman JS, Ferrier C, Iarikova P, Sankararaman S, Yamini G, Yuan Q, Zhou Z, Albaugh B, White KV, Shen PH, Goldman D. Genome-wide association identifies candidate genes that influence the human electroencephalogram. Proc Natl Acad Sci U S A. 2010;107(19):8695–700. https://doi.org/10.1073/pnas.0908134107.
Article
PubMed
PubMed Central
Google Scholar
Butcher NJ, Horne MK, Mellick GD, Fowler CJ, Masters CL, AIBL research group, Minchin RF. Sulfotransferase 1A3/4 copy number variation is associated with neurodegenerative disease. Pharmacogenomics J. 2017. https://doi.org/10.1038/tpj.2017.4.
Article
Google Scholar
Muenchhoff J, Song F, Poljak A, Crawford JD, Mather KA, Kochan NA, Yang Z, Trollor JN, Reppermund S, Maston K, Theobald A, Kirchner-Adelhardt S, Kwok JB, Richmond RL, McEvoy M, Attia J, Schofield PW, Brodaty H, Sachdev PS. Plasma apolipoproteins and physical and cognitive health in very old individuals. Neurobiol Aging. 2017;55:49–60. https://doi.org/10.1016/j.neurobiolaging.2017.02.017.
Article
CAS
PubMed
Google Scholar
Becker M, Devanna P, Fisher SE, Vernes SC. Mapping of human FOXP2 enhancers reveals complex regulation. Front Mol Neurosci. 2018;11:47. https://doi.org/10.3389/fnmol.2018.00047.
Article
PubMed
PubMed Central
Google Scholar
Lucas B, Hardin J. Mind the (sr)GAP - roles of Slit-Robo GAPs in neurons, brains and beyond. J Cell Sci. 2017;130:3965–74. https://doi.org/10.1242/jcs.207456.
Article
CAS
PubMed
Google Scholar