Balaton BP, Dixon-McDougall T, Peeters SB, Brown CJ. The eXceptional nature of the X chromosome. Hum Mol Genet. 2018;27(R2):R242–9.
Article
PubMed
PubMed Central
Google Scholar
Hughes JF, Page DC. The biology and evolution of mammalian Y chromosomes. Annu Rev Genet. 2015;49:507–27.
Article
CAS
PubMed
Google Scholar
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286(5441):964–7.
Article
CAS
PubMed
Google Scholar
Chromosome X: 1-1 - Chromosome summary - Homo sapiens - Ensembl genome browser 88 [Internet]. [cited 2018 Oct 22]. Available from: http://mar2017.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=X
Gao F, Chang D, Biddanda A, Ma L, Guo Y, Zhou Z, et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J Hered. 2015;106(5):666–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delaneau O, Coulonges C, Zagury J-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics. 2008;9:540.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009 [cited 2015 Oct 7]; Available from: http://genome.cshlp.org/content/early/2009/07/31/gr.094052.109
Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93(2):278–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, et al. Genome-wide patterns of population structure and admixture in west Africans and African Americans. Proc Natl Acad Sci. 2010;107(2):786–91.
Article
CAS
PubMed
Google Scholar
Bryc K, Velez C, Karafet T, Moreno-Estrada A, Reynolds A, Auton A, et al. Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8954–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C, et al. Geographic patterns of genome admixture in Latin American mestizos. PLoS Genet. 2008;4(3):e1000037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaillon S, Berthenet K. Garlanda C. Clin Rev Allergy Immunol: Sexual dimorphism in innate immunity; 2017.
Google Scholar
Washburn TC, Medearis DN, Childs B. Sex differences in the susceptibility to infections. Pediatrics. 1965;35:57–64.
CAS
PubMed
Google Scholar
Abramowitz LK, Olivier-Van Stichelen S, Hanover JA. Chromosome imbalance as a driver of sex disparity in disease. J Genomics. 2014;2:77–88.
Article
PubMed
PubMed Central
Google Scholar
Brooks WH. X chromosome inactivation and autoimmunity. Clin Rev Allergy Immunol. 2010;39(1):20–9.
Article
PubMed
Google Scholar
Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–25.
Article
CAS
PubMed
Google Scholar
Klein SL, Marriott I, Fish EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg. 2015;109(1):9–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bustamante J, Picard C, Boisson-Dupuis S, Abel L, Casanova J-L. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann N Y Acad Sci. 2011;1246:92–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun. 2012;38(2–3):J187–92.
Article
CAS
PubMed
Google Scholar
Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis. 2014;209(Suppl 3):S100–6.
Article
PubMed
Google Scholar
Borgdorff MW, Nagelkerke NJ, Dye C, Nunn P. Gender and tuberculosis: a comparison of prevalence surveys with notification data to explore sex differences in case detection. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2000;4(2):123–32.
CAS
Google Scholar
Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8(9):737–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626.
Article
CAS
PubMed
Google Scholar
Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol. 2010;10(8):594.
Article
CAS
PubMed
Google Scholar
vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016;12(2):e1005374.
Article
CAS
Google Scholar
Cutolo M, Capellino S, Sulli A, Serioli B, Secchi ME, Villaggio B, et al. Estrogens and autoimmune diseases. Ann N Y Acad Sci. 2006;1089:538–47.
Article
CAS
PubMed
Google Scholar
Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoSMed. 2009;6(12):e1000199.
Google Scholar
van Lunzen J, Altfeld M. Sex differences in infectious diseases-common but neglected. J Infect Dis. 2014;209(Suppl 3):S79–80.
Article
PubMed
CAS
Google Scholar
Brockdorff N. Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Dev Camb Engl. 2011;138(23):5057–65.
CAS
Google Scholar
Naqvi S, Bellott DW, Lin KS, Page DC. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res. 2018;gr.230433.117.
Migeon BR. Choosing the active X: the human version of X inactivation. Trends Genet TIG. 2017;33(12):899–909.
Article
CAS
PubMed
Google Scholar
Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190(4773):372–3.
Article
CAS
PubMed
Google Scholar
Lyon MF. Possible mechanisms of X chromosome inactivation. Nature. 1971;232(34):229–32.
Gribnau J, Barakat TS. X-chromosome inactivation and its implications for human disease. bioRxiv, 2017. https://doi.org/10.1101/076950.
Cantone I, Fisher AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond Ser B Biol Sci. 2017;5:372(1733).
Google Scholar
Orstavik KH. X chromosome inactivation in clinical practice. Hum Genet. 2009;126(3):363–73.
Article
PubMed
Google Scholar
Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet. 2001;2(1):59–67.
Article
CAS
PubMed
Google Scholar
Peeters SB, Korecki AJ, Simpson EM, Brown CJ. Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse. Hum Mol Genet. 2018;27(7):1252–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berletch JB, Yang F, Disteche CM. Escape from X inactivation in mice and humans. Genome Biol. 2010;11(6):213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moreira de Mello JC, Fernandes GR, Vibranovski MD, Pereira LV. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep. 2017 [cited 2018 Oct 22];7(1). Available from: http://www.nature.com/articles/s41598-017-11044-z
Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44.
Article
CAS
PubMed
Google Scholar
Vallot C, Ouimette J-F, Makhlouf M, Féraud O, Pontis J, Côme J, et al. Erosion of X chromosome inactivation in human pluripotent cells initiates with XACT coating and depends on a specific heterochromatin landscape. Cell Stem Cell. 2015;16(5):533–46.
Article
CAS
PubMed
Google Scholar
Vallot C, Huret C, Lesecque Y, Resch A, Oudrhiri N, Bennaceur-Griscelli A, et al. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet. 2013;45(3):239–41.
Article
CAS
PubMed
Google Scholar
Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165(4):1012–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472(7343):370–4.
Article
CAS
PubMed
Google Scholar
Migeon BR, Beer MA, Bjornsson HT. Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. Wutz A, editor. PLOS ONE. 2017;12(4):e0170403.
Syrett CM, Sindhava V, Hodawadekar S, Myles A, Liang G, Zhang Y, et al. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. Chadwick BP, editor. PLOS Genet. 2017;13(10):e1007050.
Vallot C, Patrat C, Collier AJ, Huret C, Casanova M, Liyakat Ali TM, et al. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell. 2017;20(1):102–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath JE, Sheedy CB, Merrett SL, Diallo AB, Swofford DL. NISC comparative sequencing program null, et al. comparative analysis of the primate X-inactivation center region and reconstruction of the ancestral primate XIST locus. Genome Res. 2011;21(6):850–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, et al. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 1997;17(3):353–6.
Article
CAS
PubMed
Google Scholar
Agrelo R, Wutz A. ConteXt of change—X inactivation and disease. EMBO Mol Med. 2010;2(1):6–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaligné R, Popova T, Mendoza-Parra M-A, Saleem M-AM, Gentien D, Ban K, et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res. 2015;25(4):488–503.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125(1):13–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun. 2009;33(1):12–6.
Article
CAS
PubMed
Google Scholar
Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X inactivation. Hum Genet. 2011;130(2):237–45.
Article
PubMed
PubMed Central
Google Scholar
Brown CJ, Greally JM. A stain upon the silence: genes escaping X inactivation. Trends Genet TIG. 2003;19(8):432–8.
Article
CAS
PubMed
Google Scholar
Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, et al. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49(1):10–6.
Article
CAS
PubMed
Google Scholar
Renault NKE, Pritchett SM, Howell RE, Greer WL, Sapienza C, Ørstavik KH, et al. Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice. Eur J Hum Genet EJHG. 2013;21(12):1396–402.
Article
PubMed
Google Scholar
Ruttum MS, Lewandowski MF, Bateman JB. Affected females in X-linked congenital stationary night blindness. Ophthalmology. 1992;99(5):747–52.
Article
CAS
PubMed
Google Scholar
Brown CJ, Robinson WP. The causes and consequences of random and non-random X chromosome inactivation in humans. Clin Genet. 2000;58(5):353–63.
Article
CAS
PubMed
Google Scholar
Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y, et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood. 1996;88(1):59–65.
CAS
PubMed
Google Scholar
Wareham KA, Lyon MF, Glenister PH, Williams ED. Age related reactivation of an X-linked gene. Nature. 1987;327(6124):725–7.
Article
CAS
PubMed
Google Scholar
Sharp A, Robinson D, Jacobs P. Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Hum Genet. 2000;107(4):343–9.
Article
CAS
PubMed
Google Scholar
Migeon BR, Axelman J, Beggs AH. Effect of ageing on reactivation of the human X-linked HPRT locus. Nature. 1988;335(6185):93–6.
Article
CAS
PubMed
Google Scholar
Gale RE, Fielding AK, Harrison CN, Linch DC. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol. 1997;98(3):512–9.
Article
CAS
PubMed
Google Scholar
Vickers MA. Assessment of mechanism of acquired skewed X inactivation by analysis of twins. Blood. 2001;97(5):1274–81.
Article
CAS
PubMed
Google Scholar
Vallot C, Ouimette J-F, Rougeulle C. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. BioEssays News Rev Mol Cell Dev Biol. 2016;38(9):869–80.
Article
CAS
Google Scholar
McClelland EE, Smith JM. Gender specific differences in the immune response to infection. Arch Immunol Ther Exp. 2011;59(3):203–13.
Article
Google Scholar
Jarefors S, Bennet L, You E, Forsberg P, Ekerfelt C, Berglund J, et al. Lyme borreliosis reinfection: might it be explained by a gender difference in immune response? Immunology. 2006;118(2):224–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. Surveillance for Lyme disease—United States, 2008–2015. MMWR Surveill Summ. 2017;66(22):1.
Article
PubMed
PubMed Central
Google Scholar
Network EPHCV. A significant sex—but not elective cesarean section—effect on mother-to-child transmission of hepatitis C virus infection. J Infect Dis. 2005;192(11):1872–9.
Article
Google Scholar
Schott E, Witt H, Hinrichsen H, Neumann K, Weich V, Bergk A, et al. Gender-dependent association of CTLA4 polymorphisms with resolution of hepatitis C virus infection. J Hepatol. 2007;46(3):372–80.
Article
CAS
PubMed
Google Scholar
Arnold AP, Chen X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol. 2009;30(1):1–9.
Article
PubMed
Google Scholar
Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A. 2016 5;113(14):E2029–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152.
Article
PubMed
PubMed Central
Google Scholar
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov. 2018;17(1):35–56.
Article
CAS
PubMed
Google Scholar
Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med. 2017;11(9):721–37.
Article
CAS
PubMed
Google Scholar
WHO | Global tuberculosis report 2017. WHO. [cited 2018 Jan 19]. Available from: http://www.who.int/tb/publications/global_report/en/
Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 1998;2(2):96–104.
CAS
Google Scholar
Hamid Salim MA, Declercq E, Van Deun A, K a. R S. Gender differences in tuberculosis: a prevalence survey done in Bangladesh. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2004;8(8):952–7.
CAS
Google Scholar
Pinzan CF, Ruas LP, Casabona-Fortunato AS, Carvalho FC, Roque-Barreira M-C. Immunological basis for the gender differences in murine Paracoccidioides brasiliensis infection. PLoS One. 2010;5(5):e10757.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lotter H, Helk E, Bernin H, Jacobs T, Prehn C, Adamski J, et al. Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNγ secretion in natural killer T cells. PLoS One. 2013;8(2):e55694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bashour H, Mamaree F. Gender differences and tuberculosis in the Syrian Arab Republic: patients’ attitudes, compliance and outcomes. East Mediterr Health J Rev Santé Méditerranée Orient Al-Majallah Al-Ṣiḥḥīyah Li-Sharq Al-Mutawassiṭ. 2003;9(4):757–68.
CAS
Google Scholar
Watkins RE, Plant AJ. Does smoking explain sex differences in the global tuberculosis epidemic? Epidemiol Infect. 2006;134(2):333–9.
Article
CAS
PubMed
Google Scholar
Eum S-Y, Kong J-H, Hong M-S, Lee Y-J, Kim J-H, Hwang S-H, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest. 2010;137(1):122–8.
Article
PubMed
Google Scholar
Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117(7):1988–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deitch EA, Ananthakrishnan P, Cohen DB, Xu DZ, Feketeova E, Hauser CJ. Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries. Am J Physiol Heart Circ Physiol. 2006;291(3):H1456–65.
Article
CAS
PubMed
Google Scholar
Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? BioEssays. 2011;33(11):791–802.
Article
CAS
PubMed
Google Scholar
Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J, Moura-Alves P, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest. 2013;123(11):4836–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox GJ, Orlova M, Schurr E. Tuberculosis in newborns: the lessons of the “Lübeck disaster” (1929-1933). PLoS Pathog. 2016;12(1):e1005271.
Article
PubMed
PubMed Central
CAS
Google Scholar
Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku C-L, Puel A, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bustamante J, Picard C, Fieschi C, Filipe-Santos O, Feinberg J, Perronne C, et al. A novel X-linked recessive form of Mendelian susceptibility to mycobaterial disease. J Med Genet. 2007;44(2):e65.
Article
PubMed
PubMed Central
Google Scholar
Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. ProcNatlAcadSciUSA. 2000;97(14):8005–9.
Article
CAS
Google Scholar
Campbell SJ, Sabeti P, Fielding K, Sillah J, Bah B, Gustafson P, et al. Variants of the CD40 ligand gene are not associated with increased susceptibility to tuberculosis in West Africa. Immunogenetics. 2003;55(7):502–7.
Article
CAS
PubMed
Google Scholar
Salie M, Daya M, Lucas LA, Warren RM, van der Spuy GD, van Helden PD, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2015;34:221–9.
CAS
Google Scholar
Davila S, Hibberd ML, Hari Dass R, Wong HEE, Sahiratmadja E, Bonnard C, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4(10):e1000218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dalgic N, Tekin D, Kayaalti Z, Cakir E, Soylemezoglu T, Sancar M. Relationship between toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis. Dis Markers. 2011;31(1):33–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashemi-Shahri SM, Taheri M, Gadari A, Naderi M, Bahari G, Hashemi M. Association between TLR8 and TLR9 gene polymorphisms and pulmonary tuberculosis. Gene Cell Tissue. 2014[cited 2015 Jan 30];1(1). Available from: http://genecelltissue.com/18316.abstract
Bukhari M, Aslam MA, Khan A, Iram Q, Akbar A, Naz AG, et al. TLR8 gene polymorphism and association in bacterial load in southern Punjab of Pakistan: an association study with pulmonary tuberculosis. Int J Immunogenet. 2015;42(1):46–51.
Article
CAS
PubMed
Google Scholar
Lai Y-F, Lin T-M, Wang C-H, Su P-Y, Wu J-T, Lin M-C, et al. Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. Tuberc Edinb Scotl. 2016;98:125–31.
Article
CAS
Google Scholar
Marcus U, Bremer V, Hamouda O. Syphilis surveillance and trends of the syphilis epidemic in Germany since the mid-90s. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2004;9(12):11–4.
CAS
Google Scholar
Pope V, Larsen SA, Rice RJ, Goforth SN, Parham CE, Fears MB. Flow cytometric analysis of peripheral blood lymphocyte immunophenotypes in persons infected with Treponema pallidum. Clin Diagn Lab Immunol. 1994;1(1):121–4.
CAS
PubMed
PubMed Central
Google Scholar
Righarts AA, Simms I, Wallace L, Solomou M, Fenton KA. Syphilis surveillance and epidemiology in the United Kingdom. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2004;9(12):21–5.
CAS
Google Scholar
Kuo Chou T-N, Chao W-N, Yang C, Wong R-H, Ueng K-C, Chen S-C. Predictors of mortality in skin and soft-tissue infections caused by Vibrio vulnificus. World J Surg. 2010;34(7):1669–75.
Article
PubMed
Google Scholar
Allard C, Carignan A, Bergevin M, Boulais I, Tremblay V, Robichaud P, et al. Secular changes in incidence and mortality associated with Staphylococcus aureus bacteraemia in Quebec, Canada, 1991–2005. Clin Microbiol Infect. 2008;14(5):421–8.
Article
CAS
PubMed
Google Scholar
Laupland KB, Gregson DB, Church DL, Ross T, Pitout JDD. Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clin Microbiol Infect. 2008;14(11):1041–7.
Article
CAS
PubMed
Google Scholar
Aguiar PADF, Pedroso RDS, Borges AS, Moreira TA, Araújo LB, Röder DVDB. The epidemiology of cryptococcosis and the characterization of Cryptococcus neoformans isolated in a Brazilian University Hospital. Rev Inst Med Trop São Paulo. 2017 [cited 2018 Jul 1];59(0). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0036-46652017005000208&lng=en&tlng=en
Amornkul PN, Hu DJ, Tansuphasawadikul S, Lee S, Eampokalap B, Likanonsakul S, et al. Human immunodeficiency virus type 1 subtype and other factors associated with extrapulmonary Cryptococcosis among patients in Thailand with AIDS. AIDS Res Hum Retrovir. 2003;19(2):85–90.
Article
PubMed
Google Scholar
Micol R, Lortholary O, Sar B, Laureillard D, Ngeth C, Dousset J-P, et al. Prevalence, determinants of positivity, and clinical utility of cryptococcal antigenemia in Cambodian HIV-infected patients. JAIDS J Acquir Immune Defic Syndr. 2007;45(5):555.
Article
PubMed
Google Scholar
Li S, Yu X, Wu W, Chen DZ, Xiao M, Huang X. The opportunistic human fungal pathogen Candida albicans promotes the growth and proliferation of commensal Escherichia coli through an iron-responsive pathway. Microbiol Res. 2018 Mar;207:232–9.
Article
CAS
PubMed
Google Scholar
Ruiz-Herrera J, Victoria Elorza M, Valentín E, Sentandreu R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006;6(1):14–29.
Article
CAS
PubMed
Google Scholar
Ellabib MS, Agaj M, Khalifa Z, Kavanagh K. Yeasts of the genus Candida are the dominant cause of onychomycosis in Libyan women but not men: results of a 2-year surveillance study. Br J Dermatol. 2002;146(6):1038–41.
Article
CAS
PubMed
Google Scholar
Shi W, Mei X, Gao F, Huo K, Shen L, Qin H, et al. Analysis of genital Candida albicans infection by rapid microsatellite markers genotyping. Chin Med J. 2007;120(11):975–80.
CAS
PubMed
Google Scholar
White S, Larsen B. Candida albicans morphogenesis is influenced by estrogen. Cell Mol Life Sci CMLS. 1997;53(9):744–9.
Article
CAS
PubMed
Google Scholar
Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J Infect Dis. 2000;181(4):1441–6.
Article
CAS
PubMed
Google Scholar
Restrepo A, Benard G, de Castro CC, Agudelo CA, Tobón AM. Pulmonary Paracoccidioidomycosis. Semin Respir Crit Care Med. 2008 Apr;29(02):182–97.
Article
PubMed
Google Scholar
Kelvin EA, Carpio A, Bagiella E, Leslie D, Leon P, Andrews H, et al. The association of host age and gender with inflammation around neurocysticercosis cysts. Ann Trop Med Parasitol. 2009;103(6):487–99.
Article
CAS
PubMed
Google Scholar
Lezama-Davila CM, Oghumu S, Satoskar AR, Isaac-Marquez AP. Sex-associated susceptibility in humans with Chiclero’s ulcer: resistance in females is associated with increased serum-levels of GM-CSF. Scand J Immunol. 65(2):210–1.
Sady H, Al-Mekhlafi HM, Mahdy MAK, Lim YAL, Mahmud R, Surin J. Prevalence and associated factors of schistosomiasis among children in Yemen: implications for an effective control programme. PLoS Negl Trop Dis. 2013 22;7(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749985/
Anastos K, Gange SJ, Lau B, Weiser B, Detels R, Giorgi JV, et al. Association of race and gender with HIV-1 RNA levels and immunologic progression. J Acquir Immune Defic Syndr 1999. 2000;24(3):218–26.
Article
CAS
Google Scholar
Anejo-Okopi J, Abah IO, Barshep Y, Ebonyi AO, Daniyam C, Isa SE, et al. Demographic and clinical correlates of HIV-1 RNA levels in antiretroviral therapy-naive adults attending a tertiary hospital in Jos, Nigeria. J Virus Erad. 3(1):51–5.
Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, et al. Sex differences in the toll-like receptor–mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009;15(8):955–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui RA, Sauermann U, Altmüller J, Fritzer E, Nothnagel M, Dalibor N, et al. X chromosomal variation is associated with slow progression to AIDS in HIV-1-infected women. Am J Hum Genet. 2009;85(2):228–39.
Article
CAS
PubMed
PubMed Central
Google Scholar