Badawi S, Ali BR. ACE2 nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues. Hum Genomics. 2021;15(1):8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereira NL, Ahmad F, Byku M, Cummins NW, Morris AA, Owens A, et al. COVID-19: understanding inter-individual variability and implications for precision medicine. Mayo Clin Proc. 2021;96(2):446–63.
Article
CAS
PubMed
Google Scholar
Suryamohan K, Diwanji D, Stawiski EW, Gupta R, Miersch S, Liu J, et al. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun Biol. 2021;4(1):1–11.
Article
CAS
Google Scholar
Jia H, Neptune E, Cui H. Targeting ACE2 for COVID-19 therapy: opportunities and challenges. Am J Respir Cell Mol Biol. 2021;64(4):416–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6(1):1–4.
Article
CAS
Google Scholar
Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 2020;28(11):1602–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novelli A, Biancolella M, Borgiani P, Cocciadiferro D, Colona VL, D’Apice MR, et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum Genomics. 2020;14(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Yang N, Tang J, Liu S, Luo D, Duan Q, et al. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014;24(185):64–71.
Article
CAS
Google Scholar
Saih A, Baba H, Bouqdayr M, Ghazal H, Hamdi S, Kettani A, et al. In Silico analysis of high-risk missense variants in human ACE2 gene and susceptibility to SARS-CoV-2 infection. BioMed Res Int. 2021;9(2021):e6685840.
Google Scholar
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The impact of ACE2 polymorphisms on COVID-19 disease: susceptibility, severity, and therapy. Front Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.753721.
Article
PubMed
PubMed Central
Google Scholar
Kizhakkedath P, John A, Al-Sawafi BK, Al-Gazali L, Ali BR. Endoplasmic reticulum quality control of LDLR variants associated with familial hypercholesterolemia. FEBS Open Bio. 2019;9(11):1994–2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuda R, Okiyoneda T. Cystic fibrosis transmembrane conductance regulator (CFTR) ubiquitylation as a novel pharmaceutical target for cystic fibrosis. Pharmaceuticals. 2020;13(4):75.
Article
CAS
PubMed Central
Google Scholar
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, et al. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet. 2020;139(5):657–73.
Article
CAS
PubMed
Google Scholar
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases. Cold Spring Harb Perspect Biol. 2019;11(8):a033928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gariballa N, Ali BR. Endoplasmic reticulum associated protein degradation (ERAD) in the pathology of diseases related to TGFβ signaling pathway: future therapeutic perspectives. Front Mol Biosci. 2020;7:575608.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Oliveira RM, Marijanovic Z, Carvalho F, Miltényi GM, Matos JE, Tenreiro S, et al. Impaired proteostasis contributes to renal tubular dysgenesis. PLoS ONE. 2011;6(6):e20854.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11(1):1–9.
Article
CAS
PubMed
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and Indels. PLoS ONE. 2012;7(10):e46688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.
Article
CAS
PubMed
Google Scholar
Capriotti E, Fariselli P, Casadio R. I-Mutant20: predicting stability changes upon mutation from the protein sequence or structure. Nucl Acids Res. 2005;1(33):W306-310.
Article
CAS
Google Scholar
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;23(9):40.
Article
CAS
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hume AN, Buttgereit J, Al-Awadhi AM, Al-Suwaidi SS, John A, Bader M, et al. Defective cellular trafficking of missense NPR-B mutants is the major mechanism underlying acromesomelic dysplasia-type Maroteaux. Hum Mol Genet. 2009;18(2):267–77.
Article
CAS
PubMed
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods. 2012;9(7):671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland R, Brandariz-Nuñez A. Analysis of the role of N-linked glycosylation in cell surface expression, function, and binding properties of SARS-CoV-2 receptor ACE2. Microbiol Spectr. 2021;9(2):e01199-21.
Article
CAS
PubMed Central
Google Scholar
Mehdipour AR, Hummer G. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc Natl Acad Sci USA. 2021;118(19):e2100425118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Mulla F, Mohammad A, Al Madhoun A, Haddad D, Ali H, Eaaswarkhanth M, et al. ACE2 and FURIN variants are potential predictors of SARS-CoV-2 outcome: a time to implement precision medicine against COVID-19. Heliyon. 2021;7(2):e06133.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ortiz-Fernández L, Sawalha AH. Genetic variability in the expression of the SARS-CoV-2 host cell entry factors across populations. Genes Immun. 2020;21(4):269–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;15(18):216.
Article
CAS
Google Scholar
Ren W, Zhu Y, Lan J, Chen H, Wang Y, Shi H, et al. Susceptibilities of human ACE2 genetic variants in coronavirus infection. J Virol. 2022;96(1):e0149221.
Article
PubMed
Google Scholar
Sorokina M, Teixeira J, Barrera-Vilarmau S, Paschke R, Papasotiriou I, Rodrigues JPGLM, et al. Structural models of human ACE2 variants with SARS-CoV-2 Spike protein for structure-based drug design. Sci Data. 2020;7(1):309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinzelman P, Romero PA. Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein. PLoS ONE. 2021;16(5):e0251585.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nat Commun. 2020;11(1):5165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherman EJ, Emmer BT. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. Sci Rep. 2021;11(1):15900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla N, Roelle SM, Suzart VG, Bruchez AM, Matreyek KA. Mutants of human ACE2 differentially promote SARS-CoV and SARS-CoV-2 spike mediated infection. PLOS Pathog. 2021;17(7):e1009715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharjee MJ, Lin JJ, Chang CY, Chiou YT, Li TN, Tai CW, et al. Identifying primate ACE2 variants that confer resistance to SARS-CoV-2. Mol Biol Evol. 2021;38(7):2715–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacGowan SA, Barton MI, Kutuzov M, Dushek O, van der Merwe PA, Barton GJ. Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19: case study in affinity predictions of interface variants. PLoS Comput Biol. 2022;18(3):e1009922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science. 2020;369(6508):1261–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, Van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife. 2021;10:e70658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammad A, Marafie SK, Alshawaf E, Abu-Farha M, Abubaker J, Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci. 2020;15(259):118219.
Article
CAS
Google Scholar
Hadi-Alijanvand H, Rouhani M. Studying the effects of ACE2 mutations on the stability, dynamics, and dissociation process of SARS-CoV-2 S1/hACE2 complexes. J Proteome Res. 2020;19(11):4609–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007;81(16):8722–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karthika T, Joseph J, Das VRA, Nair N, Charulekha P, Roji MD, et al. SARS-CoV-2 cellular entry is independent of the ACE2 cytoplasmic domain signaling. Cells. 2021;10(7):1814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh R, Almutairi MM, Pacheco-Andrade R, Almiahuob MYM, Di Fulvio M. Impact of hybrid and complex N-glycans on cell surface targeting of the endogenous chloride cotransporter Slc12a2. Int J Cell Biol. 2015;2015:505294.
Article
PubMed
PubMed Central
Google Scholar
Weng TY, Chiu WT, Liu HS, Cheng HC, Shen MR, Mount DB, et al. Glycosylation regulates the function and membrane localization of KCC4. Biochim Biophys Acta. 2013;1833(5):1133–46.
Article
CAS
PubMed
Google Scholar
Wang T, Nakagawa S, Miyake T, Setsu G, Kunisue S, Goto K, et al. Identification and functional characterisation of N-linked glycosylation of the orphan G protein-coupled receptor Gpr176. Sci Rep. 2020;10(1):4429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe. 2020;28(4):586-601.e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;3:1–15.
Google Scholar
Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation: might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int J Mol Sci. 2020;21(10):3474.
Article
CAS
PubMed Central
Google Scholar
Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19(7):e13168.
Article
PubMed Central
CAS
Google Scholar
Lima RS, Rocha LPC, Moreira PR. Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19. Cell Biochem Funct. 2021. https://doi.org/10.1002/cbf.3648.
Article
PubMed
PubMed Central
Google Scholar
Novelli G, Biancolella M, Mehrian-Shai R, Colona VL, Brito AF, Grubaugh ND, et al. COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genomics. 2021;15(1):27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng M. ACE2 and COVID-19 susceptibility and severity. Aging Dis. 2022;13(2):360.
PubMed
PubMed Central
Google Scholar