Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a noonan syndrome-like phenotype. Am J Hum Genet. 2010;87:250–7. https://doi.org/10.1016/j.ajhg.2010.06.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt MHH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005;6:907–18.
Article
CAS
PubMed
Google Scholar
Martinelli S, Stellacci E, Pannone L, D’Agostino D, Consoli F, Lissewski C, et al. Molecular diversity and associated phenotypic spectrum of germline CBL mutations. Hum Mutat. 2015;36:787–96.
Article
CAS
PubMed
Google Scholar
Pérez B, Mechinaud F, Galambrun C, Ben Romdhane N, Isidor B, Philip N, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet. 2010;47:686–91.
Article
PubMed
CAS
Google Scholar
Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann NY Acad Sci. 2010;1214:99–121.
Article
CAS
PubMed
Google Scholar
Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S, Finklestein JZ, Sakamoto KM, Gorr TA, Mehta P. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic Leukemia. Nat Genet. 2010;42(9):794–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114:1859–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masetti R, Vendemini F, Zama D, Biagi C, Pession A, Locatelli F. Acute myeloid leukemia in infants: biology and treatment. Front Pediatr. https://doi.org/10.3389/fped.2015.00037
Article
PubMed
PubMed Central
Google Scholar
Strullu M, Caye A, Cassinat B, Fenneteau O, Touzot F, Blauwblomme T, et al. In hematopoietic cells with a germline mutation of CBL, loss of heterozygosity is not a signature of juvenile myelo-monocytic leukemia. Leukemia. 2013;27(12):2404–7. https://doi.org/10.1038/leu.2013.203.
Article
CAS
PubMed
Google Scholar
Guey S, Grangeon L, Brunelle F, Bergametti F, Amiel J, Lyonnet S, et al. De novo mutations in CBL causing early-onset paediatric moyamoya angiopathy. J Med Genet. 2017;54:550–7.
Article
CAS
PubMed
Google Scholar
Cortellazzo Wiel L, Pastore S, Taddio A, Tommasini A. A case of uveitis in a patient with juvenile myelomonocytic leukemia successfully treated with adalimumab. J Pediatr Hematol Oncol. 2020;42:e373–6.
Article
PubMed
Google Scholar
Ali AM, Cooper J, Walker A, Jones D, Saad A. Adult‐onset acute myeloid leukaemia in a patient with germline mutation of CBL. Br J Haematol. 2021;192(3):665–7. https://doi.org/10.1111/bjh.17234.
Article
PubMed
Google Scholar
Thien CBF, Dagger SA, Steer JH, Koentgen F, Jansen ES, Scott CL, et al. c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2010;285(14):10969–81. https://doi.org/10.1074/jbc.M109.094920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitaura Y, Jang IK, Wang Y, Han YC, Inazu T, Cadera EJ, et al. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity. 2007;26:567–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naramura M, Jang I-K, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol. 2002;3:1192–9.
Article
CAS
PubMed
Google Scholar
Lyle CL, Belghasem M, Chitalia VC. c-Cbl: an important regulator and a target in angiogenesis and tumorigenesis. Cells. 2019;8:498.
Article
CAS
PubMed Central
Google Scholar
Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The role of LNK (SH2B3) in the regulation of JAK-STAT signalling in haematopoiesis. Pharmaceuticals (Basel). 2021;15(1):24.
Article
CAS
Google Scholar
Devallire J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol. 2011;82:1391–402.
Article
CAS
Google Scholar
Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia Nat Publish Group. 2017;31:1661–70.
CAS
Google Scholar
Coltro G, Lasho TL, Finke CM, Gangat N, Pardanani A, Tefferi A, et al. Germline SH2B3 pathogenic variant associated with myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. Am J Hematol. 2019;94:E231–4.
Article
PubMed
Google Scholar
Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K, et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood. 2013;122:2425–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavrikova EY, Nikitin AG, Kuraeva TL, Peterkova VA, Tsitlidze NM, Chistiakov DA, et al. The carriage of the type 1 diabetes-associated R262W variant of human LNK correlates with increased proliferation of peripheral blood monocytes in diabetic patients. Pediatr Diabetes. 2011;12:127–32.
Article
CAS
PubMed
Google Scholar
Leardini D, Messelodi D, Muratore E, Baccelli F, Bertuccio SN, Anselmi L, et al. Role of CBL mutations in cancer and non-malignant phenotype. Cancers. 2022;14(3):839. https://doi.org/10.3390/cancers14030839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niemeyer CM, Aricó M, Basso G, Biondi A, Cantú Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood. 1997;89:3534–43.
CAS
PubMed
Google Scholar
Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:35–40.
Article
CAS
Google Scholar
Li H, Tsokos GC. Double-negative T cells in autoimmune diseases. Curr Opin Rheumatol. 2021;33:163–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell TB, Kurre P. Double-negative T cells are non-ALPS-specific markers of immune dysregulation found in patients with aplastic anemia. Blood. 2010;116:5072–3.
Article
CAS
PubMed
Google Scholar
Steenholt JV, Nielsen C, Baudewijn L, Staal A, Rasmussen KS, Sabir HJ, et al. The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One. 2017;12:e0170270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA. 2007;104:8953–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takagi MM, Shinoda K, Piao J, Mitsuiki N, Takagi MM, Matsuda K, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood Am Soc Hematol. 2011;117:2887–90. https://doi.org/10.1182/blood-2010-08-301515.
Article
CAS
Google Scholar
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell Elsevier. 2017;170:17–33.
CAS
Google Scholar
Calvo KR, Price S, Braylan RC, Oliveira JB, Lenardo M, Fleisher TA, et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood. 2015;125:2753–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neven Q, Boulanger C, Bruwier A, de Ville M, de Goyet I, Meyts LM, et al. Clinical spectrum of ras-associated autoimmune leukoproliferative disorder (RALD). J Clin Immunol. 2020;41(1):51–8. https://doi.org/10.1007/s10875-020-00883-7.
Article
PubMed
Google Scholar
Li P, Huang P, Yang Y, Hao M, Peng H, Li F. Updated understanding of autoimmune lymphoproliferative syndrome (ALPS). Clin Rev Allergy Immunol. 2016;50:55–63.
Article
CAS
PubMed
Google Scholar
Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, Nagler A, et al. SH2B3 (LNK) mutations from myeloproliferative neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F. Br J Haematol. 2013;161:811–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales CE, Stieglitz E, Kogan SC, Loh ML, Braun BS. Nf1 and Sh2b3 mutations cooperate in vivo in a mouse model of juvenile myelomonocytic leukemia. Blood Adv. 2021;5:3587–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thien CBF, Scaife RM, Papadimitriou JM, Murphy MA, Bowtell DDL, Langdon WY. A mouse with a loss-of-function mutation in the c-Cbl TKB domain shows perturbed thymocyte signaling without enhancing the activity of the ZAP-70 tyrosine kinase. J Exp Med. 2003;197:503–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takaki S, Tezuka Y, Sauer K, Kubo C, Kwon S-M, Armstead E, et al. Impaired lymphopoiesis and altered B cell subpopulations in mice overexpressing lnk adaptor protein. J Immunol. 2003;170:703–10.
Article
CAS
PubMed
Google Scholar
Cheng Y, Chikwava K, Wu C, Zhang H, Bhagat A, Pei D, et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest. 2016;126:1267–81.
Article
PubMed
PubMed Central
Google Scholar
Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M, et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell. 2005;8:907–14.
Article
CAS
PubMed
Google Scholar
Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A, et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med. 2002;195:1599–611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 2005;105:4604–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyakuna N, Muramatsu H, Higa T, Chinen Y, Wang X, Kojima S. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer. 2015;62:542–4.
Article
PubMed
Google Scholar
Seaby EG, Gilbert RD, Andreoletti G, Pengelly RJ, Mercer C, Hunt D, et al. Unexpected findings in a child with atypical hemolytic uremic syndrome: an example of how genomics is changing the clinical diagnostic paradigm. Front Pediatr. 2017;5:1–6.
Article
Google Scholar
Hong Y, Keylock A, Jensen B, Jacques TS, Ogunbiyi O, Omoyinmi E, et al. Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene. Neurology Genetics. 2020;6(4):e448. https://doi.org/10.1212/NXG.0000000000000448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auger JM, Best D, Snell DC, Wilde JI, Watson SP. c-Cbl negatively regulates platelet activation by glycoprotein VI. J Thromb Haemost J Thromb Haemost. 2003;1:2419–26.
Article
CAS
PubMed
Google Scholar
Devalliè J, Atrice Charreau B. The adaptor Lnk (SH2B3): An emerging regulator in vascular cells and a link between immune and inflammatory signaling.
Thien CBF, Langdon WY. c-Cbl and Cbl-b ubiquitin ligases: Substrate diversity and the negative regulation of signalling responses. Biochem J. 2005;391:153–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nat Publish Group. 2009;460:904–8.
CAS
Google Scholar
Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature. 2000;403:216–20.
Article
CAS
PubMed
Google Scholar
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, et al. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev. 2017;31:1007–23.
Article
CAS
PubMed
PubMed Central
Google Scholar