Skip to main content

Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection

Abstract

A large number of common disorders, including cancer, have complex genetic traits, with multiple genetic and environmental components contributing to susceptibility. A literature search revealed that even among several meta-analyses, there were ambiguous results and conclusions. In the current study, we conducted a thorough meta-analysis gathering the published meta-analysis studies previously reported to correlate any random effect or predictive value of genome variations in certain genes for various types of cancer. The overall analysis was initially aimed to result in associations (1) among genes which when mutated lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer. We have meta-analysed 150 meta-analysis articles which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total) including various racial groups and other population groups (native Americans, Latinos, Aborigines, etc.). Our results were not only consistent with previously published literature but also depicted novel correlations of genes with new cancer types. Our analysis revealed a total of 17 gene-disease pairs that are affected and generated gene/disease clusters, many of which proved to be independent of the criteria used, which suggests that these clusters are biologically meaningful.

Introduction

Cancer is the result of a complicated process that involves the accumulation of both genetic and epigenetic alterations in various genes [1]. The somatic genetic alterations in cancer include point mutations, small insertion/deletion events, translocations, copy number changes and loss of heterozygosity [2]. These changes either augment the action and/or expression of an oncoprotein or silence tumour suppressor genes. Single-nucleotide polymorphism (SNP) is the most common form of genetic variation in the human genome. Although common SNPs for disease prediction are not ready for widespread use [3], recent genome-wide association studies (GWASs) using high-throughput techniques have identified regions of the genome that contain SNPs with alleles that are associated with increased risk for cancer such as FGFR2 in breast cancer [47].

The knowledge on gene mutations that predispose tumour initiation or tumour development and progress will give an advantage in cancer patients' treatment. Despite the complexity and variability of cancer genome, numerous studies have examined the correlation of genome variation with cancer development and progression [8]. However, ambiguous results have been generated from the attempt to link genome variants with cancer prediction or detection. A literature search revealed that even among several meta-analyses, there were unclear results and conclusions.

We have, therefore, conducted a thorough meta-analysis of meta-analysis studies previously reported to correlate the random effect or predictive value of genome variations in certain genes for various types of cancer. The aim of the overall analysis was the detection of correlations (1) among genes whose mutation might lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer.

Methods

We performed a thorough field synopsis by studying published meta-analysis studies involving the association of various types of cancer with SNPs located in certain genomic regions. For each published meta-analysis included in our study, we also investigated the number of patients (cases) and controls, date, type of study, study group details (e.g. gender, race, age, etc.), measures included, allele and genotype frequency and also the outcome of each study, i.e. if there was an association or not, the interactions noticed in each of these studies, etc.

We have meta-analysed 150 meta-analysis articles (Additional file 1), which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total). The meta-analyses that have been meta-analysed included various racial groups, e.g. Caucasians, Far Eastern populations (Asian, Chinese, Japanese, Korean, etc.), African-American and other population groups (native Americans, Latinos, Aborigines, etc.). Three types of studies were included: (1) pooled analysis, (2) GWAS and (2) other studies, e.g. search in published reports. Collected data consisted of a list of genes, genomic variants and diseases with a known genotype-phenotype association (whether or not a given variation has an impact on susceptibility to a given disease). The principle of our study was to use data mining techniques to find groups (referred to as clusters hereafter) of genes or diseases that behave similarly according to related data. Such groupings will make it possible to find different cancer types susceptible to similar genotypes as well as different genes associated to similar cancer types. Furthermore, our approach would facilitate predicting whether susceptibility to one type of cancer may be indicative of predisposition to another cancer type. Moreover, the association between a group of genes and a given phenotype may suggest that these genes interact or belong to the same biochemical pathway. In order to allow data mining analysis, genotype-phenotype associations had to be classified within a fixed set of categories, i.e. yes/small yes/may/no. Moreover, genes or diseases with fewer than two entries were not considered in our analysis since their clustering would not be meaningful.

Then, data were processed using a state-of-the-art general purpose clustering tool, CLUTO [9]. Data analysis consisted in finding the tightest and most reliable groupings. Since CLUTO offers a wide range of methods, and many different scoring schemes can be used to estimate similarity between genotypes or phenotypes, cluster reliability was assessed by their robustness to clustering criteria (details are provided in Additional file 1). As a consequence, each putative association has been qualified as either ‘highly consistent’ or ‘moderately consistent’. The biological significance of those clusters was, first, evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [10, 11], a biological database and web resource of known and predicted protein-protein interactions. The STRING database contains information from numerous sources, including experimental data, computational prediction methods and public text collections. It is widely accessible, and it is regularly updated. Second, literature research was performed to complete this initial evaluation.

Results and discussion

In this study, we performed a meta-analysis of published meta-analysis studies to investigate possible correlations among genes and SNPs and various types of cancer, as well as among gene-gene and/or gene-environmental interactions. Furthermore, an advanced literature research was applied in order to evaluate our results obtained from our meta-analysis. Our data were not only consistent with previously published literature but we have also depicted novel correlations of genes with new types of cancer. Our analysis showed a total of ten cancer-related genes that are affected (Table 1).

Table 1 Summary of genes and SNPs identified by meta-analysis to be positively correlated with various cancers

Correlation of SNPs' genes with various types of cancer

The association highlighted by our meta-analysis between the CYP2E1 gene and colorectal cancer (CRC), head and neck cancer (HNC) and liver cell carcinoma (LLC) is supported by published data [3339, 44, 121]. An additional literature search to evaluate our initial results revealed novel correlations of the gene combination CYP2E1 and GSTM1 with prostate cancer (PC) susceptibility, lung cancer (LC) and bladder cancer (UBC) as shown in Table 2[126128]. A similar correlation was found in CRC using a knockdown model [32, 40, 41]. Studies not only confirm the possibility of association between the CCND1 gene and breast cancer (BC) [25] but also suggest involvement with squamous cell carcinoma (SCC), oesophageal cancer (EC), oral cancer (OC) and malignant glioma (MG), as arisen from the interaction between the CCND1 and CCND3 genes [26, 122124]. This is further corroborated in mouse model studies that show association of CCND1 with BC [25, 2731, 153] and PC [125].

Table 2 Summary of genes and SNPs identified by further literature search as positively correlated with various cancers

Moreover, as far as the ERCC2 is concerned along with the association of ERCC1 gene with BC and LC which is already confirmed [1417, 21, 22], we have also identified from our further literature search on humans the existence of an association with OC [26] and with HNC [129131]. There were no similar mouse studies that could confirm or overrule our findings.

Our findings regarding the GSTP1 gene are confirmed by the published literature [39, 4655]. Furthermore, we have noticed an association with PC derived from the combination of GSTM1 and CYP1A1[126, 128, 132, 133]. Likewise, previous experimental evidence supports the association we found between the MTHFR gene and BC, basal cell carcinoma (BCC) [63, 134] and gastric cancer (GC) [59, 60]. An association was also found between MTHFR gene with other types of cancer, such as acute lymphoblastic leukaemia (ALL) [135, 136, 154], LC [137], UBC coming from interaction between CTH and GSTM1[138], CRC [139], non-Hodgkin's lymphoma (NHL) [140, 141], BC [64] and HNC [142]. Specifically, in the case of NHL, the gene combination of MTHFR and TYMS might influence the susceptibility to NHL[140, 141].

Concerning TGFB1, apart from the BC [64] that was confirmed from the results of our further literature search on humans and on mouse model [75, 76], we have noticed also the following associations with gastric dysplasia, LC, pancreatic cancer (PanC) and BC [77, 143146]. Also, an association of TGFB1 with CRC was found using a mouse model [147].

In addition for TP53 gene, we have observed in the results of our meta-analysis that it is associated with BC, UBC, CRC, EC and LC [8087, 96100, 104108, 111113, 149]. We have observed also that TP53 gene might be associated with OC [88, 148], too. Concerning the literature research on knockout mice, we have confirmed the associations with BC [8994] and LC [114117], and we have found also associations with ovarian cancer (OVCa) [150], GC [151] and OC [152]. Moreover for the VEGFA gene, based on further literature TGFB1 research, we have confirmed the association with BC [120], but we had not found any other evidence supporting the association with other types of cancer.

Correlations between groups of genes and various types of cancer

We have examined and confirmed the highly consistent gene clustering results over further literature search via STRING. Our search revealed additional types of cancer, except from the types that we have studied in our meta-analysis that seems to be related with pair of genes. STRING database reports binding interaction between GSTP1 and GSTM1 genes, activating interaction between MMP2 and EGF genes, between VEGFA and IL1B genes and between MMP-9 and IL8 genes (Table 3). The application of our machine learning method has highlighted that those pair of genes have similar association profiles and, therefore, might be involved in the same pathways. The genes that do not appear in the associations do not probably correlate with the presence of a certain type of cancer.

Table 3 Putative gene-gene associations with various cancer types

First, in our meta-analyses, we observed that the interaction between IL6 and TGFB1 genes was associated to the following types of cancer: BC, CRC, GC, LC and PC as shown in Table 4. Although further literature search on humans could not validate our highly consistent results, we discovered that these interactions are associated to additional types of cancer, such as HNC [187], CRC [158], renal cancer (RC), small cell lung cancer [188], malignant melanoma (MM) [189192] and OVCa [193]. Additionally, regarding our further research on the interaction between IL6 and TGFB1 genes on mouse models, we have confirmed our initial results principally for BC [155157] and PC [159] and have noticed associations with epithelial cancer [194], skin tumour [195], LC [196], OVCa and cervical cancer (CC) [197, 198] and HNSCC [199]. Second, we found that the interaction between MMP-2 and EGF was associated with LC, BC and GC (Table 4). Subsequently with a further literature search, we confirmed the association with BC osteolysis [163, 164] and also found new associations with EC [200], LC, RC and PC [162]. Furthermore, in some cases, we have observed the association of the aforementioned genes with OSCC [201]. In this study, EGF induced MMP-1 expression that is required for type I collagen degradation. In addition, MMP-1 is also associated with human papillomavirus [202] and BC [165].

Table 4 Summary of gene-gene interactions and the corresponding SNPs in these genes

Another interesting interaction that was revealed from our analysis was between the VEGFA and IL1B genes that were associated with BC and GC (Table 4). After proceeding with a further literature search, we have not found similar results - except from one report [171] - but we have identified additional associations with HNC, ALL, laryngeal carcinoma and MM [203206]. For MMP-9 and IL8 interaction, there was no study confirming our initial results for BC, CRC and GC on neither humans nor mouse models. We have observed though that there was evidence for an association with nasopharyngeal carcinoma [171], LC [177, 178] and UBC [207]. Similarly, we could not find any study that could support the interactions between MMP-1 and MMP-3 and GSTP1 with GSTM1, although two studies confirmed that GSTP1 and GSTM1 interactions could be associated with BC [182, 183] (Table 4).

Indications from further literature search on human models revealed associations for MMP-1 and MMP-3 with types of cancer such as BCC, metatypical cancer of the skin [208], colorectal adenoma and RC [209, 210], and for GSTP1 and GSTM1, endometrial cancer (EmCa) [211], LC [212], multiple myeloma (observed no significant association to prostatic adenoma and adenocarcinoma) [213], PC [133, 214], ALL [215], chronic myeloid leukaemia [216] and PanC [217].

We have then attempted to depict the various types of cancers according to the number of SNPs and genes and/or gene clusters found from our meta-analysis to be meaningfully associated with certain cancer types. Our data indicate that BC is correlated more often than the other types of cancer both with the number of SNPs (Figure 1A) as well as with the number of genes or gene clusters (Figure 1B). This observation underlies the heterogeneity of BC, indicating that it is, most likely, not a single disease but a spectrum of related disease states.

Figure 1
figure 1

The distribution of various cancer types. According to (A) the number of SNPs per cancer type and (B) the number of genes or gene correlations per cancer type. By extrapolating the data in Tables 1, 2, 3 and 4, it seems that the number of genome variations and genes is profoundly bigger in BC, probably indicating that this type of cancer is not a single disease but, most likely, a spectrum of related disease states.

Conclusions

In essence, our meta-analysis study generated clusters of genes and diseases, many of which proved to be independent of the criteria used, which suggests that these clusters are most likely biologically meaningful. Preliminary study of some clusters and of our results shows that indeed these genes interact. As regards the associations, with a further literature analysis on human and mouse models, we have also found meaningful gene associations related to other cancer types not previously reported in the literature, an observation that warrants further investigation.

References

  1. Lea IA, Jackson MA, Li X, Bailey S, Peddada SD, Dunnick JK: Genetic pathways and mutation profiles of human cancers: site- and exposure-specific patterns. Carcinogenesis. 2007, 28 (9): 1851-1858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dutt A, Beroukhim R: Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol. 2007, 19 (1): 43-49.

    Article  CAS  PubMed  Google Scholar 

  3. Chung CC, Chanock SJ: Current status of genome-wide association studies in cancer. Hum Genet. 2011, 130 (1): 59-78.

    Article  PubMed  Google Scholar 

  4. Rae JM, Skaar TC, Hilsenbeck SG, Oesterreich S: The role of single nucleotide polymorphisms in breast cancer metastasis. Breast Cancer Res. 2008, 10 (1): 301-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Teraoka SN, Bernstein JL, Reiner AS, Haile RW, Bernstein L, Lynch CF, Malone KE, Stovall M, Capanu M, Liang X, Smith SA, Mychaleckyj J, Hou X, Mellemkjaer L, Boice JD, Siniard A, Duggan D, Thomas DC, WECARE Study Collaborative Group, Concannon P: Single nucleotide polymorphisms associated with risk for contralateral breast cancer in the women's environment, cancer, and radiation epidemiology (WECARE) study. Breast Cancer Res. 2011, 13 (6): R114-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Inaki K, Liu ET: Structural mutations in cancer: mechanistic and functional insights. Trends Genet. 2012, 28 (11): 550-559.

    Article  CAS  PubMed  Google Scholar 

  7. You JS, Jones PA: Cancer genetics and epigenetics: two sides of the same coin?. Cancer Cell. 2012, 22 (1): 9-20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lopez-Lazaro M: A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med. 2010, 16 (3–4): 144-153.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Rasmussen MD, Deshpande MS, Karypis G, Johnson J, Crow JA, Retzel EF: wCLUTO: a Web-enabled clustering toolkit. Plant Physiol. 2003, 133 (2): 510-516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39 (Database issue): D561-D568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Search Tool for the Retrieval of Interacting Genes/Proteins. http://www.string-db.org,

  12. Jiang Z, Li C, Xu Y, Cai S, Wang X: Associations between XPD polymorphisms and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2010, 123 (1): 203-212.

    Article  PubMed  Google Scholar 

  13. Qiu LX, Yao L, Zhang J, Zhu XD, Zhao XM, Xue K, Mao C, Chen B, Zhan P, Yuan H, Hu X-C: XPD Lys751Gln polymorphism and breast cancer susceptibility: a meta-analysis involving 28,709 subjects. Breast Cancer Res Treat. 2010, 124 (1): 229-235.

    Article  CAS  PubMed  Google Scholar 

  14. Wang HC, Liu CS, Wang CH, Tsai RY, Tsai CW, Wang RF, Chang CH, Chen YS, Chiu CF, Bau DT, Huang CY: Significant association of XPD Asp312Asn polymorphism with breast cancer in Taiwanese patients. Chin J Physiol. 2010, 53 (2): 130-135.

    Article  CAS  PubMed  Google Scholar 

  15. Han W, Kim KY, Yang SJ, Noh DY, Kang D, Kwack K: SNP-SNP interactions between DNA repair genes were associated with breast cancer risk in a Korean population. Cancer. 2012, 118 (3): 594-602.

    Article  CAS  PubMed  Google Scholar 

  16. Hussien YM, Gharib AF, Awad HA, Karam RA, Elsawy WH: Impact of DNA repair genes polymorphism (XPD and XRCC1) on the risk of breast cancer in Egyptian female patients. Mol Biol Rep. 2012, 39 (2): 1895-1901.

    Article  CAS  PubMed  Google Scholar 

  17. Yin J, Vogel U, Wang C, Liang D, Ma Y, Wang H, Yue L, Liu D, Ma J, Sun X: Hapmap-based evaluation of ERCC2, PPP1R13L, and ERCC1 and lung cancer risk in a Chinese population. Environ Mol Mutagen. 2012, 53 (3): 239-245.

    Article  CAS  PubMed  Google Scholar 

  18. Yao L, Qiu LX, Yu L, Yang Z, Yu XJ, Zhong Y, Hu XC: The association between ERCC2 Asp312Asn polymorphism and breast cancer risk: a meta-analysis involving 22,766 subjects. Breast Cancer Res Treat. 2010, 123 (1): 227-231.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Gu SY, Zhang P, Jia Z, Chang JH: ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur J Cancer. 2010, 46 (13): 2479-2484.

    Article  CAS  PubMed  Google Scholar 

  20. Zhan P, Wang Q, Wei SZ, Wang J, Qian Q, Yu LK, Song Y: ERCC2/XPD Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: a meta-analysis involving 22 case–control studies. J Thorac Oncol. 2010, 5 (9): 1337-1345.

    Article  PubMed  Google Scholar 

  21. Yin J, Vogel U, Ma Y, Qi R, Wang H, Yue L, Liang D, Wang C, Li X, Song T: HapMap-based study of a region encompassing ERCC1 and ERCC2 related to lung cancer susceptibility in a Chinese population. Mutat Res. 2011, 713 (1–2): 1-7.

    Article  CAS  PubMed  Google Scholar 

  22. Christiani DC: ERCC2/XPD polymorphisms and lung cancer risk. J Thorac Oncol. 2011, 6 (1): 233-author reply 233–235

    Article  PubMed  Google Scholar 

  23. Zhang J, Qiu LX, Leaw SJ, Hu XC, Chang JH: The association between XPD Asp312Asn polymorphism and lung cancer risk: a meta-analysis including 16,949 subjects. Med Oncol. 2011, 28 (3): 655-660.

    Article  CAS  PubMed  Google Scholar 

  24. Sergentanis TN, Economopoulos KP: Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep. 2011, 38 (8): 4955-4963.

    Article  CAS  PubMed  Google Scholar 

  25. Millar EK, Dean JL, McNeil CM, O'Toole SA, Henshall SM, Tran T, Lin J, Quong A, Comstock CE, Witkiewicz A, Musgrove EA, Rui H, Lemarchand L, Setiawan VW, Haiman CA, Knudsen KE, Sutherland RL, Knudsen ES: Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene. 2009, 28 (15): 1812-1820.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Miyashita H, Mori S, Tanda N, Nakayama K, Kanzaki A, Sato A, Morikawa H, Motegi K, Takebayashi Y, Fukumoto M: Loss of heterozygosity of nucleotide excision repair factors in sporadic oral squamous cell carcinoma using microdissected tissue. Oncol Rep. 2001, 8 (5): 1133-1138.

    CAS  PubMed  Google Scholar 

  27. Ghosh-Choudhury N, Ghosh-Choudhury G, Celeste A, Ghosh PM, Moyer M, Abboud SL, Kreisberg J: Bone morphogenetic protein-2 induces cyclin kinase inhibitor p21 and hypophosphorylation of retinoblastoma protein in estradiol-treated MCF-7 human breast cancer cells. Biochim Biophys Acta. 2000, 1497 (2): 186-196.

    Article  CAS  PubMed  Google Scholar 

  28. Musgrove EA, Hui R, Sweeney KJ, Watts CK, Sutherland RL: Cyclins and breast cancer. J Mammary Gland Biol Neoplasia. 1996, 1 (2): 153-162.

    Article  CAS  PubMed  Google Scholar 

  29. Sutherland RL, Hamilton JA, Sweeney KJ, Watts CK, Musgrove EA: Expression and regulation of cyclin genes in breast cancer. Acta Oncol. 1995, 34 (5): 651-656.

    Article  CAS  PubMed  Google Scholar 

  30. Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K: MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn. 2009, 9 (5): 423-440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yang C, Ionescu-Tiba V, Burns K, Gadd M, Zukerberg L, Louis DN, Sgroi D, Schmidt EV: The role of the cyclin D1-dependent kinases in ErbB2-mediated breast cancer. Am J Pathol. 2004, 164 (3): 1031-1038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhou GW, Hu J, Li Q: CYP2E1 PstI/RsaI polymorphism and colorectal cancer risk: a meta-analysis. World J Gastroenterol. 2010, 16 (23): 2949-2953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Silva TD, Felipe AV, Pimenta CA, Barao K, Forones NM: CYP2E1 RsaI and 96-bp insertion genetic polymorphisms associated with risk for colorectal cancer. Genet Mol Res. 2012, 11 (3): 3138-3145.

    Article  CAS  PubMed  Google Scholar 

  34. Sameer AS, Nissar S, Qadri Q, Alam S, Baba SM, Siddiqi MA: Role of CYP2E1 genotypes in susceptibility to colorectal cancer in the Kashmiri population. Hum Genomics. 2011, 5 (6): 530-537.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Yang H, Zhou Y, Zhou Z, Liu J, Yuan X, Matsuo K, Takezaki T, Tajima K, Cao J: A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a southwestern Chinese population. Cancer Epidemiol Biomarkers Prev. 2009, 18 (9): 2522-2527.

    Article  CAS  PubMed  Google Scholar 

  36. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, Colman H, Le Houerou C, Le Neel T, Bourdon J, Faroux R, Ollivry J, Lafraise B, Chupin LD, Bézieau S: Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev. 2007, 16 (7): 1460-1467.

    Article  PubMed  CAS  Google Scholar 

  37. Chen K, Jin MJ, Fan CH, Song L, Jiang QT, Yu WP, Ma XY, Yao KY: A case–control study on the association between genetic polymorphisms of metabolic enzymes and the risk of colorectal cancer. Zhonghua Liu Xing Bing Xue Za Zhi. 2005, 26 (9): 659-664.

    PubMed  Google Scholar 

  38. van der Logt EM, Bergevoet SM, Roelofs HM, Te Morsche RH, Dijk Y, Wobbes T, Nagengast FM, Peters WH: Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res. 2006, 593 (1–2): 39-49.

    Article  CAS  PubMed  Google Scholar 

  39. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, Navarro M, de Oca J, Capella G, Canzian F: A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics. 2005, 15 (8): 535-546.

    Article  CAS  PubMed  Google Scholar 

  40. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA: Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2008, 17 (11): 3098-3107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chen J, Huang XF: The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol Ther. 2009, 8 (14): 1313-1317.

    Article  CAS  PubMed  Google Scholar 

  42. Tang K, Li Y, Zhang Z, Gu Y, Xiong Y, Feng G, He L, Qin S: The PstI/RsaI and DraI polymorphisms of CYP2E1 and head and neck cancer risk: a meta-analysis based on 21 case–control studies. BMC Cancer. 2010, 10: 575-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lu D, Yu X, Du Y: Meta-analyses of the effect of cytochrome P450 2E1 gene polymorphism on the risk of head and neck cancer. Mol Biol Rep. 2011, 38 (4): 2409-2416.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia SM, Curioni OA, de Carvalho MB, Gattas GJ: Polymorphisms in alcohol metabolizing genes and the risk of head and neck cancer in a Brazilian population. Alcohol Alcohol. 2010, 45 (1): 6-12.

    Article  CAS  PubMed  Google Scholar 

  45. Economopoulos KP, Sergentanis TN: GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer. 2010, 46 (9): 1617-1631.

    Article  CAS  PubMed  Google Scholar 

  46. Ebrahimkhani S, Asgharian AM, Nourinaier B, Ebrahimkhani K, Vali N, Abbasi F, Zali MR: Association of GSTM1, GSTT1, GSTP1 and CYP2E1 single nucleotide polymorphisms with colorectal cancer in Iran. Pathol Oncol Res. 2012, 18 (3): 651-656.

    Article  CAS  PubMed  Google Scholar 

  47. Sameer AS, Qadri Q, Siddiqi MA: GSTP1 I105V polymorphism and susceptibility to colorectal cancer in Kashmiri population. DNA Cell Biol. 2012, 31 (1): 74-79.

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, Martinez ME, Haile RW, Ahnen DJ, Sandler RS, Lance P, Stern MC: Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. Int J Cancer. 2012, 130 (8): 1898-1907.

    Article  CAS  PubMed  Google Scholar 

  49. Sainz J, Rudolph A, Hein R, Hoffmeister M, Buch S, von Schonfels W, Hampe J, Schafmayer C, Volzke H, Frank B, Brenner H, Försti A, Hemminki K, Chang-Claude J: Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocr Relat Cancer. 2011, 18 (2): 265-276.

    Article  CAS  PubMed  Google Scholar 

  50. Jones BA, Christensen AR, Wise JP, Yu H: Glutathione S-transferase polymorphisms and survival in African-American and white colorectal cancer patients. Cancer Epidemiol. 2009, 33 (3–4): 249-256.

    Article  CAS  PubMed  Google Scholar 

  51. Skjelbred CF, Saebo M, Hjartaker A, Grotmol T, Hansteen IL, Tveit KM, Hoff G, Kure EH: Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer. 2007, 7: 228-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Talseth BA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ: Genetic polymorphisms in xenobiotic clearance genes and their influence on disease expression in hereditary nonpolyposis colorectal cancer patients. Cancer Epidemiol Biomarkers Prev. 2006, 15 (11): 2307-2310.

    Article  CAS  PubMed  Google Scholar 

  53. Romero RZ, Morales R, Garcia F, Huarriz M, Bandres E, De la Haba J, Gomez A, Aranda E, Garcia-Foncillas J: Potential application of GSTT1-null genotype in predicting toxicity associated to 5-fluouracil irinotecan and leucovorin regimen in advanced stage colorectal cancer patients. Oncol Rep. 2006, 16 (3): 497-503.

    CAS  PubMed  Google Scholar 

  54. Probst-Hensch NM, Sun CL, Van Den Berg D, Ceschi M, Koh WP, Yu MC: The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese health study. Carcinogenesis. 2006, 27 (12): 2475-2482.

    Article  CAS  PubMed  Google Scholar 

  55. Gaustadnes M, Orntoft TF, Jensen JL, Torring N: Validation of the use of DNA pools and primer extension in association studies of sporadic colorectal cancer for selection of candidate SNPs. Hum Mutat. 2006, 27 (2): 187-194.

    Article  CAS  PubMed  Google Scholar 

  56. Yu KD, Di GH, Fan L, Chen AX, Yang C, Shao ZM: Lack of an association between a functional polymorphism in the interleukin-6 gene promoter and breast cancer risk: a meta-analysis involving 25,703 subjects. Breast Cancer Res Treat. 2010, 122 (2): 483-488.

    Article  CAS  PubMed  Google Scholar 

  57. Xu B, Niu XB, Wang ZD, Cheng W, Tong N, Mi YY, Min ZC, Tao J, Li PC, Zhang W, Wu HF, Zhang ZD, Wang ZJ, Hua LX, Feng NH, Wang XR: IL-6–174G>C polymorphism and cancer risk: a meta-analysis involving 29,377 cases and 37,739 controls. Mol Biol Rep. 2011, 38 (4): 2589-2596.

    Article  CAS  PubMed  Google Scholar 

  58. Dong X, Wu J, Liang P, Li J, Yuan L, Liu X: Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer: a meta-analysis. Arch Med Res. 2010, 41 (2): 125-133.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Z, Chen JQ, Liu JL, Qin XG, Huang Y: Polymorphisms in ERCC1, GSTs, TS and MTHFR predict clinical outcomes of gastric cancer patients treated with platinum/5-Fu-based chemotherapy: a systematic review. BMC Gastroenterol. 2012, 12: 137-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Balassiano K, Lima S, Jenab M, Overvad K, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Canzian F, Kaaks R, Boeing H, Meidtner K, Trichopoulou A, Laglou P, Vineis P, Panico S, Palli D, Grioni S, Tumino R, Lund E, Bueno-de-Mesquita HB, Numans ME, Peeters PH, Ramon Quirós J, Sánchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Hallmans G, Stenling R, et al: Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Cancer Lett. 2011, 311 (1): 85-95.

    Article  CAS  PubMed  Google Scholar 

  61. Qi X, Ma X, Yang X, Fan L, Zhang Y, Zhang F, Chen L, Zhou Y, Jiang J: Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat. 2010, 123 (2): 499-506.

    Article  CAS  PubMed  Google Scholar 

  62. Qiu LX, Zhang J, Li WH, Zhang QL, Yu H, Wang BY, Wang LP, Wang JL, Wang HJ, Liu XJ, Luo ZG, Wu XH: Lack of association between methylenetetrahydrofolate reductase gene A1298C polymorphism and breast cancer susceptibility. Mol Biol Rep. 2011, 38 (4): 2295-2299.

    Article  CAS  PubMed  Google Scholar 

  63. Perel'muter VM, Zav'ialova MV, Vtorushin SV, Slonimskaia EM, Kritskaia NG, Garbukov E, Litviakov NV, Stakheeva MN, Babyshkina NN, Malinovskaia EA, Denisov EV, Grigor'eva ES, Nazarenko MS, Sennikov SV, Goreva EP, Kozlov VA, Voevoda MI, Maksimov VN, Beliavskaia VA, Cherdyntseva NV: Genetic and clinical and pathological characteristics of breast cancer in premenopausal and postmenopausal women. Adv Gerontol. 2008, 21 (4): 643-653.

    PubMed  Google Scholar 

  64. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ, Calle EE: Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomarkers Prev. 2007, 16 (6): 1140-1147.

    Article  CAS  PubMed  Google Scholar 

  65. Qiu LX, Mao C, Yao L, Yu KD, Zhan P, Chen B, Liu HG, Yuan H, Zhang J, Xue K, Hu XC: XRCC3 5′-UTR and IVS5-14 polymorphisms and breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat. 2010, 122 (2): 489-493.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, Pei J: Possible risk modifications in the association between MnSOD Ala-9Val polymorphism and breast cancer risk: subgroup analysis and evidence-based sample size calculation for a future trial. Breast Cancer Res Treat. 2011, 125 (2): 495-504.

    Article  PubMed  Google Scholar 

  67. Qi X, Zhang F, Yang X, Fan L, Zhang Y, Chen L, Zhou Y, Chen X, Zhong L, Jiang J: Transforming growth factor-beta1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case–control studies. Breast Cancer Res Treat. 2010, 122 (1): 273-279.

    Article  CAS  PubMed  Google Scholar 

  68. Huang Y, Hao Y, Li B, Xie J, Qian J, Chao C, Yu L: Lack of significant association between TGF-beta1-590C/T polymorphism and breast cancer risk: a meta-analysis. Med Oncol. 2011, 28 (2): 424-428.

    Article  CAS  PubMed  Google Scholar 

  69. Woo SU, Park KH, Woo OH, Yang DS, Kim AR, Lee ES, Lee JB, Kim YH, Kim JS, Seo JH: Association of a TGF-beta1 gene -509 C/T polymorphism with breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010, 124 (2): 481-485.

    Article  CAS  PubMed  Google Scholar 

  70. Gu D, Zhuang L, Huang H, Cao P, Wang D, Tang J, Chen J: TGFB1 T29C polymorphism and breast cancer risk: a meta-analysis based on 10,417 cases and 11,455 controls. Breast Cancer Res Treat. 2010, 123 (3): 857-861.

    Article  CAS  PubMed  Google Scholar 

  71. Wei BB, Xi B, Wang R, Bai JM, Chang JK, Zhang YY, Yoneda R, Su JT, Hua LX: TGFbeta1 T29C polymorphism and cancer risk: a meta-analysis based on 40 case–control studies. Cancer Genet Cytogenet. 2010, 196 (1): 68-75.

    Article  CAS  PubMed  Google Scholar 

  72. Ma X, Chen C, Xiong H, Li Y: Transforming growth factorbeta1 L10P variant plays an active role on the breast cancer susceptibility in Caucasian: evidence from 10,392 cases and 11,697 controls. Breast Cancer Res Treat. 2010, 124 (2): 453-457.

    Article  CAS  PubMed  Google Scholar 

  73. Huang Y, Li B, Qian J, Xie J, Yu L: TGF-beta1 29T/C polymorphism and breast cancer risk: a meta-analysis involving 25,996 subjects. Breast Cancer Res Treat. 2010, 123 (3): 863-868.

    Article  CAS  PubMed  Google Scholar 

  74. Qiu LX, Yao L, Mao C, Chen B, Zhan P, Xue K, Zhang J, Yuan H, Hu XC: TGFB1 L10P polymorphism is associated with breast cancer susceptibility: evidence from a meta-analysis involving 47,817 subjects. Breast Cancer Res Treat. 2010, 123 (2): 563-567.

    Article  CAS  PubMed  Google Scholar 

  75. Radisky DC, Hartmann LC: Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia. 2009, 14 (2): 181-191.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE: Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One. 2010, 5 (3): e9832-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Zheng W: Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol. 2009, 472: 265-277.

    Article  CAS  PubMed  Google Scholar 

  78. Hu Z, Li X, Qu X, He Y, Ring BZ, Song E, Su L: Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: a meta-analysis. Carcinogenesis. 2010, 31 (4): 643-647.

    Article  CAS  PubMed  Google Scholar 

  79. Ma Y, Yang J, Liu Z, Zhang P, Yang Z, Wang Y, Qin H: No significant association between the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis of 21 studies involving 24,063 subjects. Breast Cancer Res Treat. 2011, 125 (1): 201-205.

    Article  PubMed  Google Scholar 

  80. Chunder N, Mandal S, Roy A, Roychoudhury S, Panda CK: Differential association of BRCA1 and BRCA2 genes with some breast cancer-associated genes in early and late onset breast tumors. Ann Surg Oncol. 2004, 11 (12): 1045-1055.

    Article  PubMed  Google Scholar 

  81. Rebbeck TR: Inherited genetic predisposition in breast cancer. A population-based perspective. Cancer. 1999, 86 (11 Suppl): 2493-2501.

    Article  CAS  PubMed  Google Scholar 

  82. Rossner P, Gammon MD, Zhang YJ, Terry MB, Hibshoosh H, Memeo L, Mansukhani M, Long CM, Garbowski G, Agrawal M, Agrawal M, Kalra TS, Gaudet MM, Teitelbaum SL, Neugut AI, Santella RM: Mutations in p53, p53 protein overexpression and breast cancer survival. J Cell Mol Med. 2009, 13 (9B): 3847-3857.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP: Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009, 21 (6): 1611-1619.

    CAS  PubMed  Google Scholar 

  84. Palanca Suela S, Esteban Cardenosa E, Barragan Gonzalez E, de Juan Jimenez I, Chirivella Gonzalez I, Segura Huerta A, Guillen Ponce C, Montalar Salcedo J, Martinez de Duenas E, Castel Sanchez V, Bolufer Gilabert P, Group for Assessment of Hereditary Cancer of Valencia Community: CASP8 D302H polymorphism delays the age of onset of breast cancer in BRCA1 and BRCA2 carriers. Breast Cancer Res Treat. 2010, 119 (1): 87-93.

    Article  CAS  PubMed  Google Scholar 

  85. Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A: Breast cancer genome-wide association studies: there is strength in numbers. Oncogene. 2012, 31 (17): 2121-2128.

    Article  CAS  PubMed  Google Scholar 

  86. Cherdyntseva NV, Denisov EV, Litviakov NV, Maksimov VN, Malinovskaya EA, Babyshkina NN, Slonimskaya EM, Voevoda MI, Choinzonov EL: Crosstalk between the FGFR2 and TP53 genes in breast cancer: data from an association study and epistatic interaction analysis. DNA Cell Biol. 2012, 31 (3): 306-316.

    Article  CAS  PubMed  Google Scholar 

  87. Lo Nigro C, Vivenza D, Monteverde M, Lattanzio L, Gojis O, Garrone O, Comino A, Merlano M, Quinlan PR, Syed N, Purdie CA, Thompson A, Palmieri C, Crook T: High frequency of complex TP53 mutations in CNS metastases from breast cancer. Br J Cancer. 2012, 106 (2): 397-404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Mathoulin-Portier MP, Viens P, Cowen D, Bertucci F, Houvenaeghel G, Geneix J, Puig B, Bardou VJ, Jacquemier J: Prognostic value of simultaneous expression of p21 and mdm2 in breast carcinomas treated by adjuvant chemotherapy with antracyclin. Oncol Rep. 2000, 7 (3): 675-680.

    CAS  PubMed  Google Scholar 

  89. Blackburn AC, Jerry DJ: Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?. Breast Cancer Res. 2002, 4 (3): 101-111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Bennett CN, Green JE: Genomic analyses as a guide to target identification and preclinical testing of mouse models of breast cancer. Toxicol Pathol. 2010, 38 (1): 88-95.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Jordan L, Quinlan P, Thompson A, Mano M, Rosato A, Crook T, Scanziani E, Means AR, Lozano G, Schneider C, Del Sal G: A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011, 20 (1): 79-91.

    Article  CAS  PubMed  Google Scholar 

  92. Alsner J, Jensen V, Kyndi M, Offersen BV, Vu P, Borresen-Dale AL, Overgaard J: A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients. Acta Oncol. 2008, 47 (4): 600-607.

    Article  CAS  PubMed  Google Scholar 

  93. Bourdon JC, Khoury MP, Diot A, Baker L, Fernandes K, Aoubala M, Quinlan P, Purdie CA, Jordan LB, Prats AC, Lane DP, Thompson AM: p53 mutant breast cancer patients expressing p53gamma have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res. 2011, 13 (1): R7-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Besaratinia A, Pfeifer GP: Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. FASEB J. 2010, 24 (8): 2612-2619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Jiang DK, Ren WH, Yao L, Wang WZ, Peng B, Yu L: Meta-analysis of association between TP53 Arg72Pro polymorphism and bladder cancer risk. Urology. 2010, 76 (3): 765-767. e761

    Article  PubMed  Google Scholar 

  96. Burger M, Burger SJ, Denzinger S, Wild PJ, Wieland WF, Blaszyk H, Obermann EC, Stoehr R, Hartmann A: Elevated microsatellite instability at selected tetranucleotide repeats does not correlate with clinicopathologic features of bladder cancer. Eur Urol. 2006, 50 (4): 770-775. discussion 776

    Article  CAS  PubMed  Google Scholar 

  97. Zuiverloon TC, Abas CS, van der Keur KA, Vermeij M, Tjin SS, van Tilborg AG, Busstra M, Zwarthoff EC: In-depth investigation of the molecular pathogenesis of bladder cancer in a unique 26-year old patient with extensive multifocal disease: a case report. BMC Urol. 2010, 10: 5-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Kompier LC, van Tilborg AA, Zwarthoff EC: Bladder cancer: novel molecular characteristics, diagnostic, and therapeutic implications. Urol Oncol. 2010, 28 (1): 91-96.

    Article  CAS  PubMed  Google Scholar 

  99. Jarmalaite S, Andrekute R, Scesnaite A, Suziedelis K, Husgafvel-Pursiainen K, Jankevicius F: Promoter hypermethylation in tumour suppressor genes and response to interleukin-2 treatment in bladder cancer: a pilot study. J Cancer Res Clin Oncol. 2010, 136 (6): 847-854.

    Article  CAS  PubMed  Google Scholar 

  100. Lin HY, Huang CH, Yu TJ, Wu WJ, Yang MC, Lung FW: p53 codon 72 polymorphism as a progression index for bladder cancer. Oncol Rep. 2012, 27 (4): 1193-1199.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Dahabreh IJ, Linardou H, Bouzika P, Varvarigou V, Murray S: TP53 Arg72Pro polymorphism and colorectal cancer risk: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2010, 19 (7): 1840-1847.

    Article  CAS  PubMed  Google Scholar 

  102. Economopoulos KP, Sergentanis TN, Zagouri F, Zografos GC: Association between p53 Arg72Pro polymorphism and colorectal cancer risk: a meta-analysis. Onkologie. 2010, 33 (12): 666-674.

    Article  CAS  PubMed  Google Scholar 

  103. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Dong JH, Zhang L, Xu J, Shi W, Ren YC: TP53 codon 72 polymorphism and colorectal cancer susceptibility: a meta-analysis. Mol Biol Rep. 2011, 38 (8): 4847-4853.

    Article  CAS  PubMed  Google Scholar 

  104. Goodman JE, Mechanic LE, Luke BT, Ambs S, Chanock S, Harris CC: Exploring SNP-SNP interactions and colon cancer risk using polymorphism interaction analysis. Int J Cancer. 2006, 118 (7): 1790-1797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Zhang Y, Liu L, Tang Y, Chen C, Wang Q, Xu J, Yang C, Miao X, Wei S, Chen J, Nie S: Polymorphisms in TP53 and MDM2 contribute to higher risk of colorectal cancer in Chinese population: a hospital-based, case–control study. Mol Biol Rep. 2012, 39 (10): 9661-9668.

    Article  CAS  PubMed  Google Scholar 

  106. Lopez I, PO L, Tucci P, Alvarez-Valin F, AC R, Marin M: Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene. 2012, 499 (1): 81-87.

    Article  CAS  PubMed  Google Scholar 

  107. Kanaan Z, Rai SN, Eichenberger MR, Barnes C, Dworkin AM, Weller C, Cohen E, Roberts H, Keskey B, Petras RE, Crawford NP, Galandiuk S: Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat. 2012, 33 (3): 551-560.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Aizat AA, Shahpudin SN, Mustapha MA, Zakaria Z, Sidek AS, Abu Hassan MR, Ankathil R: Association of Arg72Pro of P53 polymorphism with colorectal cancer susceptibility risk in Malaysian population. Asian Pac J Cancer Prev. 2011, 12 (11): 2909-2913.

    PubMed  Google Scholar 

  109. Wang B, Wang D, Zhang D, Li A, Liu D, Liu H, Jin H: Pro variant of TP53 Arg72Pro contributes to esophageal squamous cell carcinoma risk: evidence from a meta-analysis. Eur J Cancer Prev. 2010, 19 (4): 299-307.

    Article  CAS  PubMed  Google Scholar 

  110. Zhao Y, Wang F, Shan S, Qiu X, Li X, Jiao F, Wang J, Du Y: Genetic polymorphism of p53, but not GSTP1, is association with susceptibility to esophageal cancer risk - a meta-analysis. Int J Med Sci. 2010, 7 (5): 300-308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Bashash M, Yavari P, Hislop TG, Shah A, Sadjadi A, Babaei M, Le N, Brooks-Wilson A, Malekzadeh R, Bajdik C: Comparison of two diverse populations, British Columbia, Canada, and Ardabil, Iran, indicates several variables associated with gastric and esophageal cancer survival. J Gastrointest Cancer. 2011, 42 (1): 40-45.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Duenas M, Santos M, Aranda JF, Bielza C, Martinez-Cruz AB, Lorz C, Taron M, Ciruelos EM, Rodriguez-Peralto JL, Martin M, Larrañaga P, Dahabreh J, Stathopoulos GP, Rosell R, Paramio JM, García-Escudero R: Mouse p53-deficient cancer models as platforms for obtaining genomic predictors of human cancer clinical outcomes. PLoS One. 2012, 7 (8): e42494-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Perez-Morales R, Mendez-Ramirez I, Castro-Hernandez C, Martinez-Ramirez OC, Gonsebatt ME, Rubio J: Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet Mol Biol. 2011, 34 (4): 546-552.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Deeb KK, Michalowska AM, Yoon CY, Krummey SM, Hoenerhoff MJ, Kavanaugh C, Li MC, Demayo FJ, Linnoila I, Deng CX, Lee EY, Medina D, Shih JH, Green JE: Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res. 2007, 67 (17): 8065-8080.

    Article  CAS  PubMed  Google Scholar 

  115. Campling BG, el-Deiry WS: Clinical implications of p53 mutations in lung cancer. Methods Mol Med. 2003, 75: 53-77.

    CAS  PubMed  Google Scholar 

  116. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T: Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature. 2009, 462 (7269): 104-107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA: Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst. 1994, 86 (19): 1458-1462.

    Article  CAS  PubMed  Google Scholar 

  118. Jiang DK, Yao L, Ren WH, Wang WZ, Peng B, Yu L: TP53 Arg72Pro polymorphism and endometrial cancer risk: a meta-analysis. Med Oncol. 2011, 28 (4): 1129-1135.

    Article  CAS  PubMed  Google Scholar 

  119. Chen MB, Li C, Shen WX, Guo YJ, Shen W, Lu PH: Association of a LSP1 gene rs3817198T>C polymorphism with breast cancer risk: evidence from 33,920 cases and 35,671 controls. Mol Biol Rep. 2011, 38 (7): 4687-4695.

    Article  CAS  PubMed  Google Scholar 

  120. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM: Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res. 2001, 61 (15): 5736-5740.

    CAS  PubMed  Google Scholar 

  121. Eriksson L, Ahluwalia M, Spiewak J, Lee G, Sarma DS, Roomi MJ, Farber E: Distinctive biochemical pattern associated with resistance of hepatocytes in hepatocyte nodules during liver carcinogenesis. Environ Health Perspect. 1983, 49: 171-174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Volm M, Koomagi R, Rittgen W: Clinical implications of cyclins, cyclin-dependent kinases, RB and E2F1 in squamous-cell lung carcinoma. Int J Cancer. 1998, 79 (3): 294-299.

    Article  CAS  PubMed  Google Scholar 

  123. Anayama T, Furihata M, Takeuchi T, Sonobe H, Sasaguri S, Matsumoto M, Ohtsuki Y: Insufficient effect of p27(KIP1) to inhibit cyclin D1 in human esophageal cancer in vitro. Int J Oncol. 2001, 18 (1): 151-155.

    CAS  PubMed  Google Scholar 

  124. Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G: Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol. 1999, 9 (3): 435-442. discussion 432–433

    Article  CAS  PubMed  Google Scholar 

  125. Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, Tindall EA, Wang Y, Burd CJ, Groh EM, Hoang HN, Giles GG, Severi G, Hayes VM, Henderson BE, Le Marchand L, Kolonel LN, Haiman CA, Baffa R, Gomella LG, Knudsen ES, Rui H, Henshall SM, Sutherland RL, Knudsen KE: Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res. 2009, 15 (17): 5338-5349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Murata M, Watanabe M, Yamanaka M, Kubota Y, Ito H, Nagao M, Katoh T, Kamataki T, Kawamura J, Yatani R, Shiraishi T: Genetic polymorphisms in cytochrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett. 2001, 165 (2): 171-177.

    Article  CAS  PubMed  Google Scholar 

  127. Uematsu F: Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to lung cancer-relevance to smoking. Nihon Rinsho. 1996, 54 (2): 513-517.

    CAS  PubMed  Google Scholar 

  128. Murray GI, Taylor VE, McKay JA, Weaver RJ, Ewen SW, Melvin WT, Burke MD: Expression of xenobiotic metabolizing enzymes in tumours of the urinary bladder. Int J Exp Pathol. 1995, 76 (4): 271-276.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Hu YY, Yuan H, Jiang GB, Chen N, Wen L, Leng WD, Zeng XT, Niu YM: Associations between XPD Asp312Asn polymorphism and risk of head and neck cancer: a meta-analysis based on 7,122 subjects. PLoS One. 2012, 7 (4): e35220-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Yuan H, Niu YM, Wang RX, Li HZ, Chen N: Association between XPD Lys751Gln polymorphism and risk of head and neck cancer: a meta-analysis. Genet Mol Res. 2011, 10 (4): 3356-3364.

    Article  CAS  PubMed  Google Scholar 

  131. Kumar A, Pant MC, Singh HS, Khandelwal S: Associated risk of XRCC1 and XPD cross talk and life style factors in progression of head and neck cancer in north Indian population. Mutat Res. 2012, 729 (1–2): 24-34.

    Article  CAS  PubMed  Google Scholar 

  132. Clapper ML: Genetic polymorphism and cancer risk. Curr Oncol Rep. 2000, 2 (3): 251-256.

    Article  CAS  PubMed  Google Scholar 

  133. Likhin FA, Bartnovskii AE, Vdovichenko KK, Abramov AA, Belokhvostov AS: Characteristics of methyl-specific PCR-test of glutathione-S-transferase P1 gene in plasm DNA and cellular urinary precipitate for differential diagnosis of prostatic adenoma and adenocarcinoma. Urologiia. 2005, 4: 12-15.

    PubMed  Google Scholar 

  134. Zhang Z, Liu W, Jia X, Gao Y, Hemminki K, Lindholm B: Use of pyrosequencing to detect clinically relevant polymorphisms of genes in basal cell carcinoma. Clin Chim Acta. 2004, 342 (1–2): 137-143.

    Article  CAS  PubMed  Google Scholar 

  135. Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrabi A: Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2004, 4 (1): 66-72.

    Article  CAS  PubMed  Google Scholar 

  136. Petra BG, Janez J, Vita D: Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma. 2007, 48 (4): 786-792.

    Article  CAS  PubMed  Google Scholar 

  137. Matakidou A, El Galta R, Rudd MF, Webb EL, Bridle H, Eisen T, Houlston RS: Prognostic significance of folate metabolism polymorphisms for lung cancer. Br J Cancer. 2007, 97 (2): 247-252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanock S, Welch R, Tardón A, Serra C, Carrato A, Dosemeci M, García-Closas M: Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007, 120 (11): 2452-2458.

    Article  CAS  PubMed  Google Scholar 

  139. Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, Albertsen H, Potter JD, Samowitz WS: Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis. 2007, 28 (8): 1672-1679.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Weiner AS, Beresina OV, Voronina EN, Voropaeva EN, Boyarskih UA, Pospelova TI, Filipenko ML: Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin's lymphoma. Leuk Res. 2011, 35 (4): 508-515.

    Article  CAS  PubMed  Google Scholar 

  141. Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chanock S, Rothman N, Armstrong BK: One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet. 2007, 122 (5): 525-533.

    Article  CAS  PubMed  Google Scholar 

  142. Suzuki T, Matsuo K, Hasegawa Y, Hiraki A, Wakai K, Hirose K, Saito T, Sato S, Ueda R, Tajima K: One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: case–control study. Cancer Sci. 2007, 98 (9): 1439-1446.

    Article  CAS  PubMed  Google Scholar 

  143. Kim SH, Lee SH, Choi YL, Wang LH, Park CK, Shin YK: Extensive alteration in the expression profiles of TGFB pathway signaling components and TP53 is observed along the gastric dysplasia-carcinoma sequence. Histol Histopathol. 2008, 23 (12): 1439-1452.

    CAS  PubMed  Google Scholar 

  144. Gemma A, Uematsu K, Hagiwara K, Takenoshita S, Kudoh S: Mechanism of resistance to growth inhibition by transforming growth factor-beta 1 (TGF-beta 1) in primary lung cancer and new molecular targets in therapy. Gan To Kagaku Ryoho. 2000, 27 (8): 1253-1259.

    CAS  PubMed  Google Scholar 

  145. Jonson T, Albrechtsson E, Axelson J, Heidenblad M, Gorunova L, Johansson B, Hoglund M: Altered expression of TGFB receptors and mitogenic effects of TGFB in pancreatic carcinomas. Int J Oncol. 2001, 19 (1): 71-81.

    CAS  PubMed  Google Scholar 

  146. Franzen P, Ichijo H, Miyazono K: Different signals mediate transforming growth factor-beta 1-induced growth inhibition and extracellular matrix production in prostatic carcinoma cells. Exp Cell Res. 1993, 207 (1): 1-7.

    Article  CAS  PubMed  Google Scholar 

  147. Maggio-Price L, Treuting P, Bielefeldt-Ohmann H, Seamons A, Drivdahl R, Zeng W, Lai L, Huycke M, Phelps S, Brabb T, Iritani BM: Bacterial infection of Smad3/Rag2 double-null mice with transforming growth factor-beta dysregulation as a model for studying inflammation-associated colon cancer. Am J Pathol. 2009, 174 (1): 317-329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Hirshfield KM, Rebbeck TR, Levine AJ: Germline mutations and polymorphisms in the origins of cancers in women. J Oncol. 2010, 2010: 297671-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Volate SR, Kawasaki BT, Hurt EM, Milner JA, Kim YS, White J, Farrar WL: Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol Cancer Ther. 2010, 9 (2): 461-470.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Bernardini MQ, Baba T, Lee PS, Barnett JC, Sfakianos GP, Secord AA, Murphy SK, Iversen E, Marks JR, Berchuck A: Expression signatures of TP53 mutations in serous ovarian cancers. BMC Cancer. 2010, 10: 237-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Shimada S, Mimata A, Sekine M, Mogushi K, Akiyama Y, Fukamachi H, Jonkers J, Tanaka H, Eishi Y, Yuasa Y: Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut. 2012, 61 (3): 344-353.

    Article  CAS  PubMed  Google Scholar 

  152. Sano D, Xie TX, Ow TJ, Zhao M, Pickering CR, Zhou G, Sandulache VC, Wheeler DA, Gibbs RA, Caulin C, Myers JN: Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin Cancer Res. 2011, 17 (21): 6658-6670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Furth PA, Cabrera MC, Diaz-Cruz ES, Millman S, Nakles RE: Assessing estrogen signaling aberrations in breast cancer risk using genetically engineered mouse models. Ann N Y Acad Sci. 2011, 1229: 147-155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. de Jonge R, Hooijberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ, Peters GJ, Ravindranath Y, Pieters R, Lindemans J: Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005, 106 (2): 717-720.

    Article  CAS  PubMed  Google Scholar 

  155. Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova AG, Schillaci R, Francois JC: Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS One. 2012, 7 (1): e29213-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Calogero RA, Cordero F, Forni G, Cavallo F: Inflammation and breast cancer. Inflammatory component of mammary carcinogenesis in ErbB2 transgenic mice. Breast Cancer Res. 2007, 9 (4): 211-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Schiff R, Osborne CK: Endocrinology and hormone therapy in breast cancer: new insight into estrogen receptor-alpha function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Res. 2005, 7 (5): 205-211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Lahm H, Petral-Malec D, Yilmaz-Ceyhan A, Fischer JR, Lorenzoni M, Givel JC, Odartchenko N: Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1. Eur J Cancer. 1992, 28A (11): 1894-1899.

    Article  CAS  PubMed  Google Scholar 

  159. Yu C, Yao Z, Jiang Y, Keller ET: Prostate cancer stem cell biology. Minerva Urol Nefrol. 2012, 64 (1): 19-33.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Peng B, Cao L, Ma X, Wang W, Wang D, Yu L: Meta-analysis of association between matrix metalloproteinases 2, 7 and 9 promoter polymorphisms and cancer risk. Mutagenesis. 2010, 25 (4): 371-379.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang YM, Cao C, Liang K: Genetic polymorphism of epidermal growth factor 61A>G and cancer risk: a meta-analysis. Cancer Epidemiol. 2010, 34 (2): 150-156.

    Article  CAS  PubMed  Google Scholar 

  162. Willmarth NE, Ethier SP: Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia. 2008, 13 (2): 171-179.

    Article  PubMed  Google Scholar 

  163. Guise TA: Breaking down bone: new insight into site-specific mechanisms of breast cancer osteolysis mediated by metalloproteinases. Genes Dev. 2009, 23 (18): 2117-2123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Lacroix M, Body JJ: Regulation of c-fos and c-jun expression by calcitonin in human breast cancer cells. Calcif Tissue Int. 1997, 60 (6): 513-519.

    Article  CAS  PubMed  Google Scholar 

  165. Chen MB, Wu XY, Shen W, Wei MX, Li C, Cai B, Tao GQ, Lu PH: Association between polymorphisms of trinucleotide repeat containing 9 gene and breast cancer risk: evidence from 62,005 subjects. Breast Cancer Res Treat. 2011, 126 (1): 177-183.

    Article  PubMed  Google Scholar 

  166. Gu D, Wang M: VEGF 936C>T polymorphism and breast cancer risk: evidence from 5,729 cases and 5,868 controls. Breast Cancer Res Treat. 2011, 125 (2): 489-493.

    Article  CAS  PubMed  Google Scholar 

  167. Qiu LX, Wang K, Yang S, Mao C, Zhao L, Yao L, Zhang J, Zhang QL, Sun S, Xue K: Current evidences on vascular endothelial growth factor polymorphisms and breast cancer susceptibility. Mol Biol Rep. 2011, 38 (7): 4491-4494.

    Article  CAS  PubMed  Google Scholar 

  168. Yang DS, Park KH, Woo OH, Woo SU, Kim AR, Lee ES, Lee JB, Kim YH, Kim JS, Seo JH: Association of a vascular endothelial growth factor gene 936 C/T polymorphism with breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011, 125 (3): 849-853.

    Article  CAS  PubMed  Google Scholar 

  169. Xu B, Li JM, Tong N, Tao J, Li PC, Song NH, Zhang W, Wu HF, Feng NH, Hua LX: VEGFA +936C>T polymorphism and cancer risk: a meta-analysis. Cancer Genet Cytogenet. 2010, 198 (1): 7-14.

    Article  CAS  PubMed  Google Scholar 

  170. Liu X, Wang Z, Yu J, Lei G, Wang S: Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a meta-analysis. Breast Cancer Res Treat. 2010, 124 (3): 821-825.

    Article  CAS  PubMed  Google Scholar 

  171. Oh JS, Kucab JE, Bushel PR, Martin K, Bennett L, Collins J, DiAugustine RP, Barrett JC, Afshari CA, Dunn SE: Insulin-like growth factor-1 inscribes a gene expression profile for angiogenic factors and cancer progression in breast epithelial cells. Neoplasia. 2002, 4 (3): 204-217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Cao C, Ying T, Fang JJ, Sun SF, Lv D, Chen ZB, Ma HY, Yu YM, Ding QL, Shu LH, Deng Z-C: Polymorphism of vascular endothelial growth factor -2578C/A with cancer risk: evidence from 11263 subjects. Med Oncol. 2011, 28 (4): 1169-1175.

    Article  CAS  PubMed  Google Scholar 

  173. Xue H, Lin B, Ni P, Xu H, Huang G: Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol Hepatol. 2010, 25 (10): 1604-1617.

    Article  PubMed  Google Scholar 

  174. Gao LB, Pan XM, Jia J, Liang WB, Rao L, Xue H, Zhu Y, Li SL, Lv ML, Deng W, Chen TY, Wei YG, Zhang L: IL-8–251A/T polymorphism is associated with decreased cancer risk among population-based studies: evidence from a meta-analysis. Eur J Cancer. 2010, 46 (8): 1333-1343.

    Article  CAS  PubMed  Google Scholar 

  175. Liu L, Zhuang W, Wang C, Chen Z, Wu XT, Zhou Y: Interleukin-8–251 A/T gene polymorphism and gastric cancer susceptibility: a meta-analysis of epidemiological studies. Cytokine. 2010, 50 (3): 328-334.

    Article  CAS  PubMed  Google Scholar 

  176. Peng B, Cao L, Wang W, Xian L, Jiang D, Zhao J, Zhang Z, Wang X, Yu L: Polymorphisms in the promoter regions of matrix metalloproteinases 1 and 3 and cancer risk: a meta-analysis of 50 case–control studies. Mutagenesis. 2010, 25 (1): 41-48.

    Article  CAS  PubMed  Google Scholar 

  177. Wysoczynski M, Ratajczak MZ: Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009, 125 (7): 1595-1603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J: Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett. 2008, 271 (1): 105-116.

    Article  CAS  PubMed  Google Scholar 

  179. Gao Y, Cao Y, Tan A, Liao C, Mo Z, Gao F: Glutathione S-transferase M1 polymorphism and sporadic colorectal cancer risk: an updating meta-analysis and HuGE review of 36 case–control studies. Ann Epidemiol. 2010, 20 (2): 108-121.

    Article  PubMed  Google Scholar 

  180. Lu S, Wang Z, Cui D, Liu H, Hao X: Glutathione S-transferase P1 Ile105Val polymorphism and breast cancer risk: a meta-analysis involving 34,658 subjects. Breast Cancer Res Treat. 2011, 125 (1): 253-259.

    Article  CAS  PubMed  Google Scholar 

  181. Qiu LX, Yuan H, Yu KD, Mao C, Chen B, Zhan P, Xue K, Zhang J, Hu XC: Glutathione S-transferase M1 polymorphism and breast cancer susceptibility: a meta-analysis involving 46,281 subjects. Breast Cancer Res Treat. 2010, 121 (3): 703-708.

    Article  CAS  PubMed  Google Scholar 

  182. Singh V, Parmar D, Singh MP: Do single nucleotide polymorphisms in xenobiotic metabolizing genes determine breast cancer susceptibility and treatment outcomes?. Cancer Invest. 2008, 26 (8): 769-783.

    Article  CAS  PubMed  Google Scholar 

  183. Curran JE, Weinstein SR, Griffiths LR: Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and breast cancer susceptibility. Cancer Lett. 2000, 153 (1–2): 113-120.

    Article  CAS  PubMed  Google Scholar 

  184. Economopoulos KP, Sergentanis TN, Vlahos NF: Glutathione S-transferase M1, T1, and P1 polymorphisms and ovarian cancer risk: a meta-analysis. Int J Gynecol Cancer. 2010, 20 (5): 732-737.

    Article  PubMed  Google Scholar 

  185. Zeng FF, Liu SY, Wei W, Yao SP, Zhu S, Li KS, Wan G, Zhang HT, Zhong M, Wang BY: Genetic polymorphisms of glutathione S-transferase T1 and bladder cancer risk: a meta-analysis. Clin Exp Med. 2010, 10 (1): 59-68.

    Article  CAS  PubMed  Google Scholar 

  186. Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, Johnson AT, Lubin JH, Hein DW, Dagnall CL, Colt JS, Kida M, Jones MA, Schned AR, Cherala SS, Chanock SJ, Cantor KP, Silverman DT, Rothman N: GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011, 32 (2): 182-189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Tsukuda M, Nagahara T, Yago T, Matsuda H, Yanoma S: Production of granulocyte colony-stimulating factor by head and neck carcinomas. Biotherapy. 1993, 6 (3): 183-187.

    Article  CAS  PubMed  Google Scholar 

  188. Lagadec PF, Saraya KA, Balkwill FR: Human small-cell lung-cancer cells are cytokine-resistant but NK/LAK-sensitive. Int J Cancer. 1991, 48 (2): 311-317.

    Article  CAS  PubMed  Google Scholar 

  189. Enzmann V, Faude F, Kohen L, Wiedemann P: Secretion of cytokines by human choroidal melanoma cells and skin melanoma cell lines in vitro. Ophthalmic Res. 1998, 30 (3): 189-194.

    Article  CAS  PubMed  Google Scholar 

  190. Kimura F, Nakamura Y, Sato K, Wakimoto N, Kato T, Tahara T, Yamada M, Nagata N, Motoyoshi K: Cyclic change of cytokines in a patient with cyclic thrombocytopenia. Br J Haematol. 1996, 94 (1): 171-174.

    Article  CAS  PubMed  Google Scholar 

  191. Reinhold D, Bank U, Buhling F, Lendeckel U, Ulmer AJ, Flad HD, Ansorge S: Transforming growth factor-beta 1 (TGF-beta 1) inhibits DNA synthesis of PWM-stimulated PBMC via suppression of IL-2 and IL-6 production. Cytokine. 1994, 6 (4): 382-388.

    Article  CAS  PubMed  Google Scholar 

  192. Nikolova PN, Pawelec GP, Mihailova SM, Ivanova MI, Myhailova AP, Baltadjieva DN, Marinova DI, Ivanova SS, Naumova EJ: Association of cytokine gene polymorphisms with malignant melanoma in Caucasian population. Cancer Immunol Immunother. 2007, 56 (3): 371-379.

    Article  CAS  PubMed  Google Scholar 

  193. Freedman RS, Deavers M, Liu J, Wang E: Peritoneal inflammation - a microenvironment for epithelial ovarian cancer (EOC). J Transl Med. 2004, 2 (1): 23-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  194. Jarnicki A, Putoczki T, Ernst M: Stat3: linking inflammation to epithelial cancer - more than a “gut” feeling?. Cell division. 2010, 5: 14-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Rundhaug JE, Fischer SM: Molecular mechanisms of mouse skin tumor promotion. Cancers. 2010, 2 (2): 436-482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Mischek D, Steinborn R, Petznek H, Bichler C, Zatloukal K, Sturzl M, Gunzburg WH, Hohenadl C: Molecularly characterised xenograft tumour mouse models: valuable tools for evaluation of new therapeutic strategies for secondary liver cancers. J Biomed Biotechnol. 2009, 2009: 437284-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  197. Hiss D: Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. Journal of Oncology. 2012, 2012: 737981-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  198. Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009, 136 (5): 823-837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Chen Z, Yan B, Van Waes C: The role of the NF-kappaB transcriptome and proteome as biomarkers in human head and neck squamous cell carcinomas. Biomark Med. 2008, 2 (4): 409-426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Shimada Y, Imamura M: Prognostic factors for esophageal cancer–from the viewpoint of molecular biology. Gan To Kagaku Ryoho. 1996, 23 (8): 972-981.

    CAS  PubMed  Google Scholar 

  201. Ziober BL, Turner MA, Palefsky JM, Banda MJ, Kramer RH: Type I collagen degradation by invasive oral squamous cell carcinoma. Oral Oncol. 2000, 36 (4): 365-372.

    Article  CAS  PubMed  Google Scholar 

  202. Nuovo GJ: In situ detection of PCR-amplified metalloproteinase cDNAs, their inhibitors and human papillomavirus transcripts in cervical carcinoma cell lines. Int J Cancer. 1997, 71 (6): 1056-1060.

    Article  CAS  PubMed  Google Scholar 

  203. Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW: Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer. 2001, 93 (6): 781-785.

    Article  CAS  PubMed  Google Scholar 

  204. Stachel D, Albert M, Meilbeck R, Kreutzer B, Haas RJ, Schmid I: Bone marrow Th2 cytokine expression as predictor for relapse in childhood acute lymphoblastic leukemia (ALL). Eur J Med Res. 2006, 11 (3): 102-113.

    CAS  PubMed  Google Scholar 

  205. Melinceanu L, Sarafoleanu C, Lerescu L, Tucureanu C, Caras I, Salageanu A: Impact of smoking on the immunological profile of patients with laryngeal carcinoma. J Med Life. 2009, 2 (2): 211-218.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Lazar-Molnar E, Hegyesi H, Toth S, Falus A: Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine. 2000, 12 (6): 547-554.

    Article  CAS  PubMed  Google Scholar 

  207. Inoue K, Wood CG, Slaton JW, Karashima T, Sweeney P, Dinney CP: Adenoviral-mediated gene therapy of human bladder cancer with antisense interleukin-8. Oncol Rep. 2001, 8 (5): 955-964.

    CAS  PubMed  Google Scholar 

  208. Snarskaia ES, Molochkov VA, Frank GA, Zavalishina LA: Matrix metalloproteinases and their tissue inhibitors in basal cell and metatypical cancer of the skin. Arkhiv Patologii. 2005, 67 (3): 14-16.

    CAS  PubMed  Google Scholar 

  209. Lievre A, Milet J, Carayol J, Le Corre D, Milan C, Pariente A, Nalet B, Lafon J, Faivre J, Bonithon-Kopp C, Olschwang S, Bonaiti-Pellié C, Laurent-Puig P, Members of the ANGH group: Genetic polymorphisms of MMP1, MMP3 and MMP7 gene promoter and risk of colorectal adenoma. BMC Cancer. 2006, 6: 270-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  210. Ricketts C, Zeegers MP, Lubinski J, Maher ER: Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma. PLoS One. 2009, 4 (6): e6037-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  211. Esteller M, Garcia A, Martinez-Palones JM, Xercavins J, Reventos J: Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci. Br J Cancer. 1997, 75 (9): 1385-1388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Kozhemiakin LA, Bulavin DV, Morozov VI, Osipov EV, Zolotarev DV: Effectiveness of the glutathione s-transferase assay in diagnosing lung cancer. Vopr Onkol. 1995, 41 (1): 33-38.

    CAS  PubMed  Google Scholar 

  213. Schilthuizen C, Broyl A, van der Holt B, de Knegt Y, Lokhorst H, Sonneveld P: Influence of genetic polymorphisms in CYP3A4, CYP3A5, GSTP1, GSTM1, GSTT1 and MDR1 genes on survival and therapy-related toxicity in multiple myeloma. Haematologica. 2007, 92 (2): 277-278.

    Article  PubMed  Google Scholar 

  214. Lavender NA, Benford ML, VanCleave TT, Brock GN, Kittles RA, Moore JH, Hein DW, Kidd LC: Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among men of African descent: a case–control study. BMC Cancer. 2009, 9: 397-

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  215. Saadat I, Saadat M: The glutathione S-transferase mu polymorphism and susceptibility to acute lymphocytic leukemia. Cancer Lett. 2000, 158 (1): 43-45.

    Article  CAS  PubMed  Google Scholar 

  216. Ovsepian VA, Vinogradova E, Sherstneva ES: Cytochrome P4501A1, glutathione S-transferase M1 and T1 gene polymorphisms in chronic myeloid leukemia. Genetika. 2010, 46 (10): 1360-1362.

    CAS  PubMed  Google Scholar 

  217. Vrana D, Pikhart H, Mohelnikova-Duchonova B, Holcatova I, Strnad R, Slamova A, Schejbalova M, Ryska M, Susova S, Soucek P: The association between glutathione S-transferase gene polymorphisms and pancreatic cancer in a central European Slavonic population. Mutat Res. 2009, 680 (1–2): 78-81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted to fulfil the requirements of an undergraduate thesis, jointly with the Universities of Trieste, Italy and Patras, Greece. This work was partly funded by the University of Patras research budget and a European Commission grant (GEN2PHEN; FP7-200754) to GPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Pavlidis.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ZL carried out the data collection, result analysis and participated in the manuscript preparation. EG participated in the manuscript preparation and data analysis. MF participated in the result and statistical analysis and manuscript revision. EK participated in the data collection and manuscript revision. JCN carried out the result and statistical analysis and participated in the manuscript preparation. HPK participated in the manuscript preparation. GPP participated in the design of the study, data analysis and manuscript preparation. CP conceived of the study, participated in its design and coordination as well as manuscript preparation. All authors read and approved for the final manuscript.

Zoi Lanara, Efstathia Giannopoulou contributed equally to this work.

Electronic supplementary material

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lanara, Z., Giannopoulou, E., Fullen, M. et al. Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. Hum Genomics 7, 14 (2013). https://doi.org/10.1186/1479-7364-7-14

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1479-7364-7-14

Keywords