Rein DB, Wittenborn JS, Zhang X, et al: Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatment. Arch Ophthalmol. 2009, 127: 533-540. 10.1001/archophthalmol.2009.58.
Article
PubMed
Google Scholar
Brown GC, Brown MM, Sharma S, et al: The burden of age-related macular degeneration: A value-based medicine analysis. Trans Am Ophthalmolol Soc. 2006, 103: 173-186.
Google Scholar
Klein R, Klein BEK, Jensen SC, Meuer SM: The 5-year incidence and progression of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1997, 104: 7-21.
Article
CAS
PubMed
Google Scholar
Klein R, Peto T, Bird A, Vannewkirk MR: The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004, 137: 486-495. 10.1016/j.ajo.2003.11.069.
Article
PubMed
Google Scholar
Allikmets R, Dean M: Bringing age-related macular degeneration into focus. Nat Genet. 2008, 40: 820-821. 10.1038/ng0708-820.
Article
CAS
PubMed
Google Scholar
Swaroop A, Chew EY, Rickman CB, Abecasis GR: Unraveling a multifactorial late-onset disease: From genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet. 2009, 10: 19-43. 10.1146/annurev.genom.9.081307.164350.
Article
PubMed Central
CAS
PubMed
Google Scholar
Connell PP, Keane PA, O'Neill EC, et al: Risk factors for age-related maculopathy. J Ophthalmol. 2009, 2009: Article ID 360764-
Article
Google Scholar
Scott WK, Schmidt S, Hauser MA, et al: Independent effects of complement factor H Y402H polymorphism and cigarette smoking on risk of age-related macular degeneration. Ophthalmology. 2007, 114: 1151-1156. 10.1016/j.ophtha.2006.08.054.
Article
PubMed
Google Scholar
DeAngelis MM, Ji F, Kim IK, et al: Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch Ophthalmol. 2007, 125: 49-54. 10.1001/archopht.125.1.49.
Article
CAS
PubMed
Google Scholar
DeAngelis MM, Ji F, Adams S, et al: Alleles in the HtrA serine peptidase 1 gene alter the risk of neovascular age-related macular degeneration. Ophthalmology. 2008, 115: 1209-1215. 10.1016/j.ophtha.2007.10.032. e7
Article
PubMed Central
PubMed
Google Scholar
Dewan A, Liu M, Hartman S, et al: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006, 314: 989-992. 10.1126/science.1133807.
Article
CAS
PubMed
Google Scholar
Edwards AO, Ritter R, Abel KJ, et al: Complement factor H polymorphism and age-related macular degeneration. Science. 2005, 308: 421-424. 10.1126/science.1110189.
Article
CAS
PubMed
Google Scholar
Hageman GS, Anderson DH, Johnson LV, et al: A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005, 102: 7227-7232. 10.1073/pnas.0501536102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haines JL, Hauser MA, Schmidt S, et al: Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005, 308: 419-421. 10.1126/science.1110359.
Article
CAS
PubMed
Google Scholar
Jakobsdottir J, Conley YP, Weeks DE, et al: Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 2005, 77: 389-407. 10.1086/444437.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klein RJ, Zeiss C, Chew EY, et al: Complement factor H polymorphism in age-related macular degeneration. Science. 2005, 308: 385-389. 10.1126/science.1109557.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li M, Atmaca-Sonmez P, Othman M, et al: CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet. 2006, 38: 1049-1054. 10.1038/ng1871.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rivera A, Fisher SA, Fritsche LG, et al: Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005, 14: 3227-3236. 10.1093/hmg/ddi353.
Article
CAS
PubMed
Google Scholar
Yang Z, Camp NJ, Sun H, et al: A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006, 314: 992-993. 10.1126/science.1133811.
Article
CAS
PubMed
Google Scholar
Anderson DH, Mullins RF, Hageman GS, Johnson LV: A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002, 134: 411-431. 10.1016/S0002-9394(02)01624-0.
Article
CAS
PubMed
Google Scholar
Anderson DH, Radeke MJ, Gallo NB, et al: The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010, 29: 95-112. 10.1016/j.preteyeres.2009.11.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gehrs KM, Anderson DH, Johnson LV, Hageman GS: Age-related macular degeneration -- Emerging pathogenetic and therapeutic concepts. Ann Med. 2006, 38: 450-471. 10.1080/07853890600946724.
Article
PubMed
Google Scholar
Gehrs KM, Jackson JR, Brown EN, et al: Complement, age-related macular degeneration and a vision for the future. Arch Ophthalmol. 2010, 128: 349-358. 10.1001/archophthalmol.2010.18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hageman GS, Mullins RF, Russell SR, et al: Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB J. 1999, 13: 477-484.
CAS
PubMed
Google Scholar
Hageman GS, Luthert PJ, Victor Chong NH, et al: An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001, 20: 705-732. 10.1016/S1350-9462(01)00010-6.
Article
CAS
PubMed
Google Scholar
Mullins RF, Russell SR, Anderson DH, Hageman GS: Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000, 14: 835-846.
CAS
PubMed
Google Scholar
Ennis S, Gibson J, Cree AJ, et al: Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet. 2010, 18: 15-16. 10.1038/ejhg.2009.113.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fagerness JA, Maller JB, Neale BM, et al: Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet. 2009, 17: 100-104. 10.1038/ejhg.2008.140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gold B, Merriam JE, Zernant J, et al: Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006, 38: 458-462. 10.1038/ng1750.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hageman GS, Hancox LS, Taiber AJ, et al: Extended hap-lotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: Characterization, ethnic distribution and evolutionary implications. Ann Med. 2006, 38: 592-604. 10.1080/07853890601097030.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hughes AE, Orr N, Esfandiary H, et al: A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet. 2006, 38: 1173-1177. 10.1038/ng1890.
Article
CAS
PubMed
Google Scholar
Jakobsdottir J, Conley YP, Weeks DE, et al: C2 and CFB genes in age-related maculopathy and joint action with CFH and LOC387715 genes. PLoS ONE. 2008, 3: e2199-10.1371/journal.pone.0002199.
Article
PubMed Central
PubMed
Google Scholar
Kondo N, Bessho H, Honda S, Negi A: Additional evidence to support the role of a common variant near the complement factor I gene in susceptibility to age-related macular degeneration. Eur J Hum Genet. 2010, 18: 634-635. 10.1038/ejhg.2009.243.
Article
PubMed Central
PubMed
Google Scholar
Maller J, George S, Purcell S, et al: Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet. 2006, 38: 1055-1059. 10.1038/ng1873.
Article
CAS
PubMed
Google Scholar
Maller JB, Fagerness JA, Reynolds RC, et al: Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007, 39: 1200-1201. 10.1038/ng2131.
Article
CAS
PubMed
Google Scholar
Spencer KL, Olson LM, Anderson BM, et al: C3 R102G polymorphism increases risk of age-related macular degeneration. Hum Mol Genet. 2008, 17: 1821-1824. 10.1093/hmg/ddn075.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yates JR, Sepp T, Matharu BK, et al: Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007, 357: 553-561. 10.1056/NEJMoa072618.
Article
CAS
PubMed
Google Scholar
Zhang H, Morrison MA, Dewan A, et al: The NEI/NCBI dbGAP database: Genotypes and haplotypes that may specifically predispose to risk of neovascular age-related macular degeneration. BMC Med Genet. 2008, 9: 51-
Article
PubMed Central
PubMed
Google Scholar
Chen W, Stambolian D, Edwards AO, et al: Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci USA. 2010, 107: 7401-7406. 10.1073/pnas.0912702107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neale BM, Fagerness J, Reynolds R, et al: Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci USA. 2010, 107: 7395-7400. 10.1073/pnas.0912019107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jakobsdottir J, Gorin MB, Conley YP, et al: Interpretation of genetic association studies: markers with replicated highly signifi-cant odds ratios may be poor classifiers. PLoS Genet. 2009, 5: e1000337-10.1371/journal.pgen.1000337.
Article
PubMed Central
PubMed
Google Scholar
Seddon JM, Reynolds R, Maller J, et al: Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Invest Ophthalmol Vis Sci. 2009, 50: 2044-2053. 10.1167/iovs.08-3064.
Article
PubMed Central
PubMed
Google Scholar
McKay GJ, Dasari S, Patterson CC, et al: Complement component 3: An assessment of association with AMD and analysis of gene-gene and gene-environment interactions in a Northern Irish cohort. Mol Vis. 2010, 16: 194-199.
PubMed Central
CAS
PubMed
Google Scholar
Zanke B, Hawken S, Carter R, Chow D: A genetic approach to stratification of risk for age-related macular degeneration. Can J Ophthalmol. 2010, 45: 22-27. 10.3129/i09-209.
Article
PubMed
Google Scholar
Brown EN, Hancox LS, Miller NJ, et al: Determination and assessment of extended haplotypes spanning the chromosome 1q32 CFH-to-CFHR5 locus. Invest Ophthalmol Vis Sci. 2010, 51: Abstract 1262-
Article
Google Scholar
Baird PN, Islam FM, Richardson AJ, et al: Analysis of the Y402H variant of the complement factor H gene in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006, 47: 4194-4198. 10.1167/iovs.05-1285.
Article
PubMed
Google Scholar
Robman L, Baird PN, Dimitrov PN, et al: C-reactive protein levels and complement factor H polymorphism interaction in age-related macular degeneration and its progression. Ophthalmology. 2010, 117: 1982-1988. 10.1016/j.ophtha.2010.02.003.
Article
PubMed
Google Scholar
National Center for Biotechnology Information, National Library of Medicine Database of Single Nucleotide Polymorphisms (dbSNP). (Accessed 4th April, 2011), [http://www.ncbi.nlm.nih.gov/SNP]
Kent WJ, Sugnet CW, Furey TS, et al: The human genome browser at UCSC. Genome Res. 2002, 12: 996-1006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ambroise C, McLachlan G: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA. 2002, 99: 6562-6566. 10.1073/pnas.102102699.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44: 837-845. 10.2307/2531595.
Article
CAS
PubMed
Google Scholar
SAS Institute Inc: SAS Version 9.1. SAS Institute, Cary, NC, USA. 2008
Google Scholar
Rosner B, Glynn RJ: Power and sample size estimation for the Wilcoxon rank sum test with application to comparisons of C statistics from alternative prediction models. Biometrics. 2009, 65: 188-197. 10.1111/j.1541-0420.2008.01062.x.
Article
CAS
PubMed
Google Scholar