Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 2011;12:565–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 2007;21:1581–97.
Article
PubMed
CAS
Google Scholar
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res. 2007;313:2021–32.
Article
PubMed
CAS
Google Scholar
Lane EB, McLean WH. Keratins and skin disorders. J Pathol. 2004;204(4):355–66.
Article
PubMed
CAS
Google Scholar
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest. 2009;119:1794–805.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oriolo AS, Wald FA, Ramsauer VP, Salas PJ. Intermediate filaments: a role in epithelial polarity. Exp Cell Res. 2007;313:2255–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science. 1998;279:514–9.
Article
PubMed
CAS
Google Scholar
Osborn M. Intermediate filaments as histologic markers: an overview. J Invest Dermatol. 1983;81:104s–9s.
Article
PubMed
CAS
Google Scholar
Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;61:496–509.
Article
Google Scholar
Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980;19:1033–42.
Article
PubMed
CAS
Google Scholar
Thewes M, Stadler R, Korge B, Mischke D. Normal psoriatic epidermis expression of hyperproliferation-associated keratins. Arch Dermatol Res. 1991;283(7):465–71.
Article
PubMed
CAS
Google Scholar
Korver JE, van Duijnhoven MW, Pasch MC, et al. Assessment of epidermal subpopulations and proliferation in healthy skin, symptomless and lesional skin of spreading psoriasis. Br J Dermatol. 2006;155(4):688–94.
Article
PubMed
CAS
Google Scholar
Elango T, Thirupathi A, Subramanian S, et al. Methotrexate normalized keratinocyte activation cycle by overturning abnormal keratins as well as deregulated inflammatory mediators in psoriatic patients. Clin Chim Act. 2015;451(Pt B):329–37.
Article
CAS
Google Scholar
Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11:558–68.
Article
PubMed
CAS
Google Scholar
Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet. 2001;28:165–8.
Article
PubMed
CAS
Google Scholar
Schweizer J, Bowden PE, Coulombe PA, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174:169–74.
Schweizer J, Langbein L, Rogers MA, Winter H. Hair follicle-specific keratins and their diseases. Exp Cell Res. 2007;313:2010–20.
Article
PubMed
CAS
Google Scholar
Uitto J, Richard G, McGrath JA. Diseases of epidermal keratins and their linker proteins. Exp Cell Res. 2007;313:1995–2009.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Cid R, Riveira-Munoz E, Zeeuwen PL, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41(2):211–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang XJ, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41(2):205–10.
Article
PubMed
CAS
Google Scholar
Mrowietz U, Kragballe K, Reich K, et al. Definition of treatment goals for moderate to severe psoriasis: a European consensus. Arch Dermatol Res. 2011 Jan;303(1):1–10.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta deltaC(T)) method. Methods. 2001;25:402–8.
Article
PubMed
CAS
Google Scholar
Dong C, Yu B. Mutation surveyor: an in silico tool for sequencing analysis. Methods Mol Biol. 2011;760:223–37.
Article
PubMed
CAS
Google Scholar
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.
Article
PubMed
CAS
Google Scholar
Alamut®: gene mutation interpretation software: http://www.interactive-biosoftware.com. Accessed 8 Dec 2014.
Karbassi I, Maston GA, Love A, et al. A standardized DNA variant scoring system for pathogenicity assessments in Mendelian disorders. Hum Mutat. 2016;37(1):127–34.
Article
PubMed
CAS
Google Scholar
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bendl J, Stourac J, Salanda O, et al. Predict SNP: robust and accurate consensus classifier for prediction of disease related mutations. PLoS Comput Biol. 2014;10(1):e1003440.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sucularli C, Arslantas M. Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H1. Mol Cell Probes. 2017;34:21–9.
Article
PubMed
CAS
Google Scholar
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62(4):1125–32.
Article
PubMed
CAS
Google Scholar
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33(Web Server issue):W306–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics. 2016;32(19):2936–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johansen C, Funding AT, Otkjaer K, et al. Protein expression of TNF-alpha in psoriatic skin is regulated at a post transcriptional level by MAPK-activated protein kinase 2. J Immunol. 2006;176:1431–8.
Article
PubMed
CAS
Google Scholar
Raul U, Sawant S, Dange P, et al. Implications of cytokeratin 8/18 filament formation in stratified epithelial cells: induction of transformed phenotype. Int J Cancer. 2004;111:662–8.
Article
PubMed
CAS
Google Scholar
Meng L, Du J, Li W, et al. Study of a family with epidermolysis bullosa simplex resulting from a novel mutation of KRT14 gene. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2017;34(4):504–8.
PubMed
Google Scholar
Wang WH, Zhang L, Li LF, et al. Ichthyosis hystrix Lambert type and Curth-Macklin type are a single entity with affected (KRT1 mutation) or unaffected (KRT10 mutation) palms and soles? Eur J Dermatol. 2016;26(5):493–5.
PubMed
Google Scholar
Chen PJ, Li CX, Wen J, et al. S159P mutation of keratin 10 gene causes severe form of epidermolytic hyperkeratosis. J Eur Acad Dermatol Venereol. 2016;30(10):e102–4.
Article
PubMed
CAS
Google Scholar
Dai L, Wu J, Guo H, et al. Mutation p.Leu128Pro in the 1A domain of K16 causes pachyonychia congenita with focal palmoplantar keratoderma in a Chinese family. Eur J Pediatr. 2014;173(6):737–41.
Article
PubMed
Google Scholar
Jiang M, Sun Z, Dang E, et al. TGFß/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J Invest Dermatol. 2017;137(10):2177–86.
Article
PubMed
CAS
Google Scholar
Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 2006;116(5):1150–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rugg EL, McLean WH, Lane EB, Pitera R, McMillan JR, Dopping-Hepenstal PJ, et al. A functional “knockout” of human keratin 14. Genes Dev. 1994;8(21):2563–73.
Article
PubMed
CAS
Google Scholar
Chan Y, Anton-Lamprecht I, Yu QC, Jäckel A, Zabel B, Ernst JP, et al. A human keratin 14 “knockout”: the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev. 1994;8(21):2574–87.
Article
PubMed
CAS
Google Scholar
Jonkman MF, Heeres K, Pas HH, van Luyn MJ, Elema JD, Corden LD, et al. Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex. J Invest Dermatol. 1996;107(5):764–9.
Article
PubMed
CAS
Google Scholar
Schuilenga-Hut PH, Vlies PV, Jonkman MF, Waanders E, Buys CH, Scheffer H. Mutation analysis of the entire keratin 5 and 14 genes in patients with epidermolysis bullosa simplex and identification of novel mutations. Hum Mutat. 2003;21(4):447.
Article
PubMed
CAS
Google Scholar
Homberg M, Ramms L, Schwarz N, Dreissen G, Leube RE, Merkel R, et al. Distinct impact of two keratin mutations causing epidermolysisbullosa simplex on keratinocyte adhesion and stiffness. J Invest Dermatol. 2015;135(10):2437–45.
Article
PubMed
CAS
Google Scholar
Szeverenyi I, Cassidy AJ, Chung CW, et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum Mutat. 2008;29:351–60.
Article
PubMed
CAS
Google Scholar
D’Alessandro M, Russell D, Morley SM, et al. Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock. J Cell Sci. 2002;115:4341–51.
Article
PubMed
CAS
Google Scholar
Russell D, Ross H, Lane EB. ERK involvement in resistance to apoptosis in keratinocytes with mutant keratin. J Invest Dermatol. 2010;130:671–81.
Article
PubMed
CAS
Google Scholar
Syder AJ, Yu QC, Paller AS, et al. Genetic mutations in the K1 and K10 genes of patients with epidermolytic hyperkeratosis. Correlation between location and disease severity. J Clin Invest. 1994;93:1533–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
McLean WH, Morley SM, Higgins C, et al. Novel and recurrent mutations in keratin 10 causing bullous congenital ichthyosiformerthroderma. Exp Dermatol. 1999;8:120–3.
Article
PubMed
CAS
Google Scholar
Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J Cell Sci. 2002;115:2639–50.
PubMed
CAS
Google Scholar
Reichelt J, Furstenberger G, Magin TM. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol. 2004;123(5):973–81.
Article
PubMed
CAS
Google Scholar
Ishidayamamoto A, Iizuka H, Manabe M, et al. Altered distribution of keratinization markers in epidermolytic hyperkeratosis. Arch Dermatol Res. 1995;287:705–11.
Article
CAS
Google Scholar
Porter RM, Lane EB. Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet. 2003;19:278–85.
Article
PubMed
CAS
Google Scholar
Cacoub P, Artru L, Canesi M, Koeger AC, Camus JP. Lifethreatening psoriasis relapse on withdrawal of cyclosporin. Lancet. 1988;2:219–20.
Article
PubMed
CAS
Google Scholar
Georgala S, Koumantaki E, Rallis E, Papadavid E. Generalized pustular psoriasis developing during withdrawal of short-term cyclosporin therapy. Br J Dermatol. 2000;142:1057–8.
Article
PubMed
CAS
Google Scholar
Fabiano A, De Simone C, Gisondi P, Piaserico S, Lasagni C, Pellacani G, et al. Management of patients with psoriasis treated with biological drugs needing a surgical treatment. Drug Dev Res. 2014;75(Suppl 1):S24–6.s.
Article
PubMed
CAS
Google Scholar
Masson Regnault M, Konstantinou MP, Khemis A, Poulin Y, Bourcier M, Amelot F, et al. Early relapse of psoriasis after stopping brodalumab: a retrospective cohort study in 77 patients. J Eur Acad Dermatol Venereol. 2017;6 [Epub ahead of print]
McLean WH, Rugg EL, Lunny DP, et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet. 1995;9:273–8.
Article
PubMed
CAS
Google Scholar
Connors JB, Rahil AK, Smith FJ, et al. Delayed-onset pachyonychia congenita associated with a novel mutation in the central 2B domain of keratin 16. Br J Dermatol. 2001;144:1058–62.
Article
PubMed
CAS
Google Scholar
Smith FJ, Corden LD, Rugg EL, et al. Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol. 1997;108:220–3.
Article
PubMed
CAS
Google Scholar
Smith FJ, Fisher MP, Healy E, et al. Novel keratin 16 mutations and protein expression studies in pachyonychia congenita type and focal palmoplantar keratoderma. Exp Dermatol. 2000;9:170–7.
Article
PubMed
CAS
Google Scholar
Smith FJ. Nail that mutation-keratin 17 defect in late-onset pachyonychia. J Invest Dermatol. 2004;122:x–xi.
Article
PubMed
CAS
Google Scholar
Lessard JC, Coulombe PA. Keratin 16-null mice develop palmoplantar keratoderma, a hallmark feature of pachyonychia congenita and related disorders. J Invest Dermatol. 2012;132(5):1384–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paladini RD, Takahashi K, Bravo NS, Coulombe PA. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol. 1996;132(3):381–97.
Article
PubMed
CAS
Google Scholar
Kim S, Wong P, Coulombe PA. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature. 2006;441:362–5.
Article
PubMed
CAS
Google Scholar
Castelijns FA, Gerritsen MJ, van Vlijmen-Willems IM, et al. Proliferation is the main epidermal target in the treatment of psoriatic plaques with once daily application of tacalcitol ointment. Acta Derm Venereol. 1999;79(2):111–4.
Article
PubMed
CAS
Google Scholar
van de Kerkhof PCM, JornBovenschen H, et al. In vivo effects of topical anti-psoriatic treatments on cutaneous inflammation, epidermal proliferation and keratinisation. Current Drug Therapy. 2007;2:21–6.
Article
CAS
Google Scholar
de Jong EMG, Ferrier CM, de Zwart A, et al. Effects of topical treatment with budesonide on parameters for epidermal proliferation, keratinization and inflammation in psoriasis. J Dermatol Sci. 1995;9:185–94.
Article
PubMed
CAS
Google Scholar
de Jong EM, van Vlijmen IM, van Erp PE, Ramaekers FC, Troyanovski SM, van de Kerkhof PC. Keratin 17: a useful marker in anti-psoriatic therapies. Arch Dermatol Res. 1991;283(7):480–2.
Article
PubMed
CAS
Google Scholar
Fu M, Wang G. Keratin 17 as a therapeutic target for the treatment of psoriasis. J DermatolSci. 2012;67(3):161–5.
CAS
Google Scholar
Bowden PE, Knight AG, Liovic M. A novel mutation (p.Thrl98Ser) in the 1A helix of keratin 5 causes the localized variant of epidermolysis bullosa simplex. ExpDermatol. 2009;18(7):650–2.
CAS
Google Scholar
Glasz-Bona A, Medvecz M, Sajo R, Lepesi-Benko R, Tulassay Z, Katona M, et al. Easy method for keratin 14 gene amplification to exclude pseudogene sequences: new keratin 5 and 14 mutations in epidermolysis bullosa simplex. J Invest Dermatol. 2009;129:229–31.
Article
PubMed
CAS
Google Scholar